
(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

14 | P a g e

www.ijarai.thesai.org

Design and Implementation of Rough Set Algorithms

on FPGA: A Survey

Kanchan Shailendra Tiwari

Research Scholar, ECE Dept. VNIT, Nagpur

Asst. Professor, E&TC Dept. MESCOE,

Pune, India

Ashwin. G. Kothari

Associate Professor, ECE Dept.

VNIT

Nagpur, India

Abstract—Rough set theory, developed by Z. Pawlak, is a

powerful soft computing tool for extracting meaningful patterns

from vague, imprecise, inconsistent and large chunk of data. It

classifies the given knowledge base approximately into suitable

decision classes by removing irrelevant and redundant data using

attribute reduction algorithm. Conventional Rough set

information processing like discovering data dependencies, data

reduction, and approximate set classification involves the use of

software running on general purpose processor. Since last

decade, researchers have started exploring the feasibility of these

algorithms on FPGA. The algorithms implemented on a

conventional processor using any standard software routine

offers high flexibility but the performance deteriorates while

handling larger real time databases. With the tremendous

growth in FPGA, a new area of research has boomed up. FPGA

offers a promising solution in terms of speed, power and cost and

researchers have proved the benefits of mapping rough set

algorithms on FGPA. In this paper, a survey on hardware

implementation of rough set algorithms by various researchers is

elaborated.

Keywords—Rough set theory; Discernibility matrix; reduct;

Core; FPGA; classification

I. INTRODUCTION

Rough set theory(RST), by Zdzisław Pawlak, is a powerful
mathematical tool, for discovering data dependencies by
reducing the number of attributes contained in a data set using
the data alone, without requiring any further additional
information like degree of membership, probability etc. as
required in fuzzy or in probability theory[1]. It is not an
alternative to classical set theory but rather embedded in it. It
provides efficient algorithms for finding hidden patterns in
data, minimal sets of data (data reduction), evaluating
significance of data, and generating sets of decision rules from
data. The rough set approach is easy to understand, offers
straightforward interpretation of obtained results, most of its
algorithms are particularly suited for parallel processing. It is
considered as one of the first non-statistical approach in data
analysis [2]. Its methodology is concerned with the
classification and analysis of imprecise, uncertain, vague or
incomplete information and knowledge. The conceptual
foundation of rough set data analysis is the consideration that
all perception is subject to granularity and the ability to
classify is at the root of human intelligence [3].

RST has been widely used in machine learning, data
mining, and artificial intelligence successfully. Various
software tools like ROSE, RSES, and ROSETTA [4-6] etc. are

used for generating reduct, cores, and meaningful rules. These
purely software program offer users a relatively high level of
versatility and can handle any type of algorithm but the
biggest and important issue is deterioration in the
performance as the size of datasets increases. The software
execution time becomes relatively slow while handling large
real time datasets since the processor is not specially
optimized for it. With the advent of digital technologies,
Internet of Things, social media, etc. online storage of data has
increased exponentially. It’s need of the hour to process data
in real time and at a faster rate. Recently, there has been a
growing interest amongst researchers in developing a
dedicated hardware for RST using FPGAs. The advantage of
using a dedicated hardware is huge acceleration in terms of
speed as they relieve main processor from the computational
overheads. There are several such accelerators already
available commercially in markets like Graphics Processing
Units (GPUs), Digital Signal Processor (DSP), Fuzzy
Processor. A dedicated hardware of rough set modules tends
to be much faster than their software counterpart. The growth
of VLSI industries had led to significant improvement in
FPGAs in terms of resources available, speed, cost, and re-
programmability etc. motivating researchers to choose it as
one of the most viable solution.

In this paper in section 2, the basics of rough set theory are
presented. In Section 3, need for hardware accelerator is
discussed while section 4 covers the current status of art in the
design of Rough Set Processor (RSP) by various authors
followed by conclusion in section 5.

II. ROUGH SET PRELIMINARIES

The information in the world surrounding us is often
imprecise, incomplete and uncertain. The human’s ability of
thinking and concluding widely depends on this information.
In order to draw conclusion, one has to process this
incomplete and imprecise data [7].

A soft computing tool mimics human decision making
system and hence gives more promising results while handling
such data. The various soft computing tools are fuzzy theory,
neural network, genetic algorithms, rough set theory, etc.
Rough set and fuzzy set theory are complementary to each
other. RST is an effective tool for mining deterministic rules
from a database. The rough set philosophy is founded on the
assumption that with every object of the universe of discourse
we associate some information i.e., knowledge is associated,
through which classification can be achieved. It is based on

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

15 | P a g e

www.ijarai.thesai.org

the idea that lowering the degree of precision in the data
makes data pattern more perceptible [7]. The main motto of
Rough Set theory is “Let the Data Speak for themselves”. RST
gives more formal framework for discovering facts from
imperfect data. It gives results in the form of classification or
decision rules derived from a set of examples.

Objects characterized by the same information are
indiscernible (similar) in view of the available information
about them. The indiscernibility relation generated in this way
is the mathematical basis of rough set theory. Any set of all
indiscernible (similar) objects is called an elementary set
(neighborhood), and forms a basic granule (atom) of
knowledge about the universe (fig.1). Any union of
elementary sets is referred to as crisp (precise) set - otherwise
the set is rough (imprecise, vague). Some of the Rough set
related terms are presented below [7][8]:

A. Information System

The basic vehicle for data representation in the rough set
framework is an information system (IS). An IS is a table,
listing attributes of objects. Each row represents objects while
each column specifies its attributes or features. Formally IS
can be defined as IS = (U, A) where U is finite set of objects,
U={x1, x2, x3, …, xn}; and A is a finite set of attributes
(features, variables), the attributes in A are further classified
as condition attributes C and decision attribute D, such that
A=C∪D and C∩D=∅ (empty). Table 1 shows an example of a
typical information system.

TABLE I. AN INFORMATION SYSTEM

Objects. c1 c2 c3 c4 c5 c6 c7 c8 d

x1 1 1 0 0 1 1 0 0 1

x2 0 0 1 1 1 1 1 0 2

x3 1 0 1 1 1 1 0 0 3

x4 1 0 0 0 1 1 1 1 4

x5 1 1 1 1 0 0 0 1 2

x6 1 0 1 0 0 1 1 1 3

x7 1 1 1 0 0 0 1 1 4

x8 0 0 0 1 0 1 0 0 1

B. Decision Attributes

These are those attributes, which absolutely decide to
which class the object belongs. In an IS shown in Table 1, d
column is decision attribute column. The value of d, in it
ranges from 1 through 4. Hence above IS is a 4 class system.

C. Condition Attributes

These are those attributes which do not absolutely decide
the class to which the object belongs, but helps to decide. IS
with distinguished decision and condition attributes are called
decision tables. In Table 1, c1, c2, c3---c8 are condition
attributes of 8 objects.

D. Upper Approximation (A(x))

Upper Approximation is a description of the objects that
possibly belong to the subset of interest.

E. Lower Approximation (A(x))

It consists of those objects that can be with certainty
classified as belonging to X. It is also known as POS(X).

F. Boundary Region

A set is said to be rough if its boundary region is non-
empty, otherwise the set is crisp. It is also known as BR(X)

Whereas U -A(x) is known as NEG(X). If the boundary
region is a set X = ∅ (empty), then the set is considered
"Crisp", otherwise, if the boundary region is a set X ≠ ∅ the
set X "rough" is considered.

G. Indiscernibility relation

Indiscernibility relation is a central concept in RST and is
considered as a relation between two objects or more, where
all the values are identical in relation to a subset of considered
attributes. Indiscernibility relation is an equivalence relation,
where all identical objects of set are considered as elementary.

H. Discernibility Matrix

An information system can also be presented in terms of a
discernibility matrix. A discernibility matrix is a square matrix
in which rows and columns are objects, and cells are attribute
sets that discern objects. Two objects are considered
discernible if and only if they have different values for at least
one attribute. The discernibility matrix, denoted by M, for a
decision table DT, of an IS is given as –

 {

 A discernibility function can be constructed from
discernibility matrix by OR-ing all attributes in cij and then
AND-ing all of them together. After simplifying the
discernibility function using absorption law, the set of all
prime implicants determines the set of all reducts of the
information system. However, simplifying discernibility
function for reducts is a NP-hard problem. In Table 2 partial
discernibility matrix for IS shown in Table 1 is tabulated.

Fig. 1. Rough Set Concept Illusttration.

The lower approximation

Granules of knowledge
The set of objects

The upper approximation
The set

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

16 | P a g e

www.ijarai.thesai.org

TABLE II. PARTIAL BINARY DISCERNIBILITY MATRIX

Objects. c1 c2 c3 c4 c5 c6 c7 c8

x12 1 1 1 1 0 0 1 0

x13 0 1 1 1 0 0 0 0

x14 0 1 0 0 0 0 1 1

x15 0 0 1 1 1 1 0 1

x16 0 1 1 0 1 0 1 1

x17 0 0 1 0 1 1 1 1

I. Reduct and Core

The reduct and the core are important concepts in rough
sets theory. A reduct is any minimal subset of condition
features, which discerns all pairs with different decision
values and is complete if the deletion of any attribute of a
reduct will make at least one pair of objects with different
decision attribute values indiscernible. The intersection of all
reducts is called the core of the decision table. Discernibility
matrix and Positive region based methods are more popular
for computation of reducts in RST. Reducts can be of dynamic
types too. Dynamic reducts are just a subset of all reducts
which are derivable both from the original decision table and
from the majority of randomly chosen decision sub-tables.
Dynamic reducts gives dynamic rules.

J. Inconsistent Decision Table:

A decision table is inconsistent if for a given pair of object,
all condition attributes are same but differ in decision attribute
i.e. belong to two different classes. A medical database of 6
patients having symptoms of flu is shown in Table 3. The
symptoms of flu are conditions attributes, which includes
headache, muscle-pain, and temperature etc. while whether the
patient is suffering from flu or not (1 or 0) is indicated by last
column, also called as decision attribute. In Table 3, object 2
and 5 makes database inconsistent.

TABLE III. INCONSISTENT DECISION TABLE

Patients Attributes Decision

Headache Muscle-

pain

Temperature Flu

P1 No Yes High No

P2 Yes No High Yes

P3 Yes Yes Very High Yes

P4 No Yes Normal No

P5 Yes No High No

P6 No Yes Very High Yes

III. NEED OF HARDWARE ACCELERATORS

In data mining, processing of large volumes of data using
complex algorithms is increasingly common. There are
numerous applications like image processing, speech
processing, artificial intelligence, analyzing experimental data
etc. which demands fast processing of high volumes of data.

Computers are able to handle a wide variety of
applications. Since the design and development of computers
from 1940, there has been exponential growth in its
performance for decades. This growth has been further
complemented by a combination of improvements in
implementation technology, architectural innovations, and
compiler optimizations. However, as computers becomes even
faster, new applications empowered by technology arise,
which demands development of new technologies [9]. In
addition to those continuous improvements, designers have
relied on solutions based on special architectures to accelerate
the performance of these applications, with processing units
exploiting their common features such as parallelism,
repetitive tasks or intensive mathematical processing.
Traditionally, these solutions have been of two types:

A. Parallel Processing Computers With Parallel Processors

During the last few decades, traditional general-purpose
single-core CPUs has shown a remarkable growth due to the
multiple improvements in VLSI technologies. This growth
was marked by the reduction in size of transistors, increase in
the frequency of processor as per Moore’s law and hence
software performance also improved continuously for
decades. However, the gain in the performance of
conventional single core CPU has diminished as the VLSI
system performance hit the memory wall, power wall [10] and
instruction-level parallelism (ILP) wall. The memory wall
refers to the increasing gap between processor and memory
speeds. This demanded increase in size of cache for hiding
memory access latencies [11]; thus making memory
bandwidth a bottleneck in performance. The power wall refers
to power supply limitations and thermal dissipation limitation.
For the silicon lithography below 90nm, the static power from
leakage current surpass dynamic power from circuit switching.
Power density has become the dominant constraint in chip
design, and limits the clock frequency growth [12]. The
performance, cost, and reliability of modern computer systems
and data centers are dictated by the management of their
limited energy and thermal budgets [13]. The ILP wall refers
to the rising difficulty in finding enough parallelism in the
existing instructions stream of a single process. Increasing
cache size or introducing more ILP yields too little
performance gain compared to the development cost [14].
Together, these three walls reduce the performance gains
expected for single-core general-purpose processors.

With current technology, even though the number of
transistors is increasing, but the clock speeds are flattening as
shown in fig.2. In order to overcome the problems posed by
power and ILP wall, the computer industry shifted from single
core processors to multiple parallel processing units. This
showed the beginning of a paradigm shift towards parallel
hardware architectures. CPU manufacturers used the improved
processes to fit more and more CPU cores onto each device,
producing generations of many-core processors, each running
at about the same clock frequency as their predecessors.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

17 | P a g e

www.ijarai.thesai.org

Fig. 2. Moore’s Law- The number of transistors and power consumption is

constantly increasing, while the frequency is flattening. (Source- Taken from

Kunle Olukotun and Herb Sutter)

However, conventional computer programs are described
as sequentially executed instructions and cannot easily be
adapted for a multi-processor environment. This condition
prevents a potential speed-up due to the problem of finding
enough parallelism in the software. The speedup S from using
N parallel processing units is calculated using Amdahl’s law
[15] as

where p is the fraction of the sequential program that can
be parallelized.

If one assumes that 50% of the sequential code can be
executed on parallel processors, then speedup will still be
limited to a modest factor of 2, no matter how many parallel
processors are used. Parallel architectures have a promising
future, but will require new design approaches and
programming methodologies to enable high system utilization.
This means that for faster execution, one must actively seek
alternative ways to speed up the software.

B. Accelerators

 In order to exploit the parallelism and distribute the
computation amongst several processing cores, software
execution style should change from sequential to parallel. This
opens up the playfield for new types of processing resources
to complement the traditional CPU architecture. Recently,
market is dominated by cost-efficient accelerators available
from several vendors as common off the-shelf (COTS)
products [16]. Accelerators are specialized processors that can
be used to speed up specific processing tasks and they
complement conventional architectures. Accelerators with
CPUs, forms a hybrid computing system or Multi-Processor
Systems-on-Chip (MPSoCs), where each processing resource
executes the parts of the software for which it delivers the best
performance. Currently, heterogeneous MPSoCs are becoming
the de-facto standard for embedded system design. Such
system usually is composed of several general purpose
processors, digital signal processor and hardware accelerators
interconnected through various communication mechanisms

for accelerating specific part of an application. This results in
greatly increased system performance.

The main competitors for the COTS accelerator market are
Field Programmable Gate Arrays (FPGAs) and Graphics
Processors (GPUs). These devices have strong mass markets
in the high performance computing fields. Acceleration
continues to be a great necessity in this new scenario
dominated by multicore processors and clusters built with
them, because of the following reasons:

 Optimum performance for all types of applications is
not given by General Purpose Processors, even if
multicore technology is used.

 There are certain applications like single thread
applications, embedded systems, etc., where significant
acceleration is not achieved by using conventional
multicore technology.

 The complexity and huge size of digital circuit causes
the run time of software to become unreasonably large
as these problems are NP-hard.

 To reduce execution time.

 To offload the general purpose CPU.

 To offer special features for easy use.

Therefore, while the use of specific parallel processors
computing has declined, new solutions continue to appear in
the field of hardware accelerators. Accelerators can be
realized using different technologies like DSP, GPGPU,
ASIC, FPGA.

They all differ in architectures and are suited for different
applications.

1) Digital Signal Processor (DSP)

 A DSP is a processor system optimized to implement
signal processing at very high speed.

 DSP's include a specialized architecture which allows
parallel processing at the instruction level; this is called
SIMD (Single Instruction Multiple Data).

 There are fixed and floating point DSP’s available in
market.

 Parallel instructions are used with special assembler
instructions included in C program.

 The DSP Blackfin 609 is a fixed point DSP based in a
Dual-Core processor working up to 1GHz. The
Blackfin arithmetic unit allows the execution of
multiple operations in parallel: up to four 8-bit video
ALUs or two multiplications and 2 accumulations of
32/40-bits.

2) Application Specific Integrated Circuit (ASICs).

 ASIC is basically a circuit designed for a specific use
rather than a circuit designed for general purposes

 ASIC designs offer a very attractive solution for many
high volume applications.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

18 | P a g e

www.ijarai.thesai.org

 The design using ASIC offers better performance,
density and power consumption when compared to an
FPGA.

 ASIC prototyping can be done using FPGAs, which
allows taking advantage of FPGAs re-programmability.

 However, the cost of prototyping is quite high
increasing the Nonrecurring Engineering (NRE) costs
depending upon the design, complexity and method of
implementation.

 Also, they do not offer any flexibility, as the task they
perform cannot be modified.

 Hence, their use for acceleration purpose is quite
limited.

3) General Purpose Graphical Processing Units

(GPGPUs).

 Graphics Processors are highly parallel processors
capable of running thousands of threads
simultaneously. Threading is handled automatically by
the hardware thread manager. The programmer does
not have direct control of the processors of the GPU;
everything is done through Application Programming
Interfaces (API).

 They are special types of processor dedicated for
graphics operation in game consoles and computers.

 They are an order of magnitude faster on floating point
operations.

 Recently GPGPUs have been specifically developed
with the computational precision required for finite
element analysis solutions as well as the computational
power to effectively complement the performance of
the latest CPUs.

 With hundreds of low-power cores on a single socket,
they have the potential to dramatically increase
computing capacity, provided that the compute
workload will fit in the available memory of the
GPGPUs.

 However, the applications with complex feedback
loop, and control or extensive bit handling is not
suitable for GPGPUs implementation. The high power
consumption of GPGPUs restricts their usage to certain
applications.

 GPGPUs are difficult to program for general-purpose
uses.

 In the current market there are three principal GPU
providers: NVidia, Intel, and AMD.

4) Field Programmable Gate Arrays (FPGAs)

 FPGA is semiconductor device, invented by Xilinx co-
founder, Ross Freeman, in 1984.

 FPGAs generally consist of sets of flexible gates,
registers, and memories whose function and
interconnection are controlled through the loading of
SRAMs (Static Random Access Memory).

 FPGA can be programmed either statically (between
applications) or dynamically (during an application)
without the addition of physical hardware elements.

 It is intended to fill the gap between the hardware
(ASICs) and software (General Purpose (GP)
Processors), achieving potentially much higher
performance than software, while maintaining a higher
level of flexibility than hardware

 The main resources available in the current FPGAs are
hard Processors, RAM memory, Slices, DSP Slices,
Multipliers, Gigabit transceivers, Triple-Speed
Ethernet MAC, PCI express, Phase Locked Loop
(PLL), etc.

 FPGAs tend to operate at relatively modest clock rates
measured in a few hundreds of MHz, but they can
perform sometimes tens of thousands of calculations
per clock cycle while operating in the low “tens of
watts” range of power.

 Improvements in FPGAs have driven a huge increase
in their use in space, weight and power (SWaP)
constrained embedded computing systems for military
and aerospace applications. They are ideal for
addressing many classes of military applications, such
as Radar, SIGINT, image processing and signal
processing where high-performance DSP and other
vector or matrix processing is required.

 FPGAs seem to gives an unbeatable edge over a
microprocessor as they can provide 50 to 100 times the
performance per watt of power consumed than a
microprocessor.

 FPGA offers field reprogrammability. A new bit
stream file can be uploaded remotely.

The advantages and disadvantages of FPGA with respect
to other available technologies are presented in table 4. In case
of the ASIC, the fabrication cost is reduced if chip is produced
in mass; however for unit production ASIC design is
expensive. FPGA combines many benefits of both software
and ASIC implementations. Like software, the mapped circuit
is flexible, and can be reconfigured over the lifetime of the
system. FPGAs therefore have the potential to achieve far
greater performance than software as a result of bypassing the
fetch-decode-execute operations of traditional processors, and
possibly exploiting a greater level of parallelism. Creating
parallel programs implemented in FPGAs is not trivial. Fig. 3
[17] summarizes the application fitness categorization. Hence
it is concluded that FPGA is best choice for implementation of
rough set algorithms as it out performs with respect to other
available technologies.

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

19 | P a g e

www.ijarai.thesai.org

Fig. 3. Application Characteristic Fitness Categorization

TABLE IV. TECHNOLOGY COMPARISON

Features Platforms

DSP GPU ASIC FPGA GPP

Size Medium - High High Medium

Power Medium - High Low Medium

Flexibility High High - High High

Reliability Low Low High Medium Low

Parallelism Low Medium High High Low

Operation

Frequency

Medium High High Low-

Medium

High

Design

complexity

Medium Low - - High

Cost Medium Low High Low High

IV. CURRENT STATE OF ART

A. Z. Pawlak Concept of Rough Set Processor

The concept of Rough Set Processor (RSP) is put forth by
Z. Pawlak (RSP) in [18]. He stated that RSP can be used as an
additional fast classification unit in ordinary computers or as
an autonomous learning machine. In latter case, RSP can
replace neural networks. He stated that each row of a decision
table induces a rule, which specifies the actions if some
conditions are satisfied. If a decision rule uniquely determines
a decision in terms of condition attributes then that rule is
certain otherwise it is uncertain. According to him, decision
rules are closely associated with concept of approximation in
rough set theory. Lower approximation are described by
certain decision rules while upper approximation by uncertain
decision rules. He associated the two conditional probabilities
called, uncertainty and coverage coefficient with each decision
rule. The certainty coefficient expresses the probability that an

object belongs to the decision class specified by the decision
rule, if it satisfies the condition of the rules. The coverage
coefficient gives the conditional probability of the reasons for
a given decision. He proved that the certainty and coverage
coefficient satisfy Bayes’ theorem and it can be used for
drawing conclusion from data. This idea is used as a
foundation for RSP. The computation of certainty and
coverage factors of decision rules is dependent on strength of
decision rules. The strength can be computed from data or can
be a subjective assessment. The concept of flow graph i.e. a
directed acyclic graph is associated with decision table. In that
graph, to every decision rule, a directed branch connecting
input node with output node is assigned. The strength of the
decision rule represents a throughflow of the corresponding
branch. The classification of objects is done by finding the
maximal output flow in the flow graph whereas, the
explanation of the decisions is connected to the maximal input
flow associated with the given decision. He proposed
requirement of a special microprocessor for doing all above
mentioned computation. According to him, RSP should
perform operations pointed out by the flow graph of a decision
table i.e. first computation of strengths from the support of
decision rules, and then certainty and coverage factors of all
rules should be computed. All these parameters are stored and
computed subsequently in a format of word structure as shown
in Fig. 4. Decision table will store condition and decision
attributes of objects, Decision rule register will compute
meaningful rules from data while arithmetic block will
perform arithmetic operation of computing strength, coverage
and certainty factors as shown in Fig. 5. This idea, however, is
not realized on programmable logic devices.

Fig. 4. Word structure.

Condition

attribute

Decision

attribute

Support Strength Certainty Coverage

Fig. 5. RSP Structure.

Input
Decision Table Desion Rule

Register

Arithmetic

Block

B. Towards PRSComp

Authors in [19] put forward the concept of describing
rough set methods using cellular networks. They designed a

Good to Fit

Bad Fit

GPGPU FPGA

No inter-dependences in

the data flow and the

computation can be done

in parallel

Computation involves a lot of

detailed low level hardware

control operation which

cannot be efficiently

implemented in high level

languages, such as bit

operation

Applications contain a lot

of parallelism, but involve

computations which

cannot be efficiently

implemented on GPU

A certain degree of

complexity is required, and

the implementation can take

advantage of data streaming

and pipelining

Applications have a lot of

memory access and have

limited parallelism

Applications that require a lot

of complexity in the logic and

data flow

design

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

20 | P a g e

www.ijarai.thesai.org

device for parallel processing of rough set algorithms and
called it as Parallel Rough Set Computer (PRSComp). Cellular
network is a matrix of interconnected elements of the same
type, wherein each cell is treated as a single processor and a
set of control registers. The cellular network based on rough
sets transforms the input data set to the matrix and performs
basics operation of rough sets using matrix notations. In [19]
authors have used all basic notions of rough set
(indiscernibility relation, upper and lower approximation,
reducts and core calculations) for implementation of
PRSComp. Authors have given pseudo code for all basic
routines also.

C. Lewis T. Idea as Learning Machine

Authors in [20] built a Universal Logic Machine (ULM)
based on the principles of constructive induction and RST. It
is a self-learning rough set model based on the concept of
cellular networks by [19]. It is thought of an early prototype of
data mining machine which will not only be able to collect
data from online databases, but also from industries, military
and other real time applications. The authors presented a
preliminary work on design and implementation of a single
instruction multiple data (SIMD) computer to implement RST
operations. RST can be effectively used in logic minimization
and data mining. They identified that some subsets of RST are
isomorphic with some subsets of logic synthesis and
decomposition theories; hence their mutual relationship can be
investigated, leading to synergies of concepts. For example the
powerful logic concepts of rough set theory can be linked with
efficient algorithms and data structures developed in logic
synthesis for EDA. According to them the RST algorithms
have a natural high parallelism and high possible speed-ups.
Using a fast prototyping tool, the DEC-PERLE-1 board based
on an array of Xilinx FPGAs, a virtual SIMD processor that
accelerates the learning (design) of optimized multi-valued
logic nets using the concept of cellular networks has been
developed. They have proposed the principles of learning
hardware that will use previous human problem-solving
experience and apply mathematical algorithms, problem-
solving strategies rather than relying only on neural network
and genetic algorithm.

A solution to a given problem is achieved by partitioning it
in two phases: the phase of learning and the phase of using the
knowledge. The hardware processor (parallel rough set
computer) is responsible for creation of logic network
description using logic or mathematical algorithms. The
optimally constructed network is mapped on FPGA using
EDA tool. The knowledge of machine is stored in memory.
While solving the new problem under the supervision of
software program in the main processor, the hardware
switches between various learned nets, depending on rules.
Since network has to solve new problems, hence new datasets
and training decisions are accumulated and the network is
repetitively automatically redesigned. The old network can
serve as a platform for redesigning of new network or new
network can start from scratch to avoid any bias.

Lewis implemented basic rough set operation of basic
category, upper approximation, and lower approximation,
indispensable and external comparison. Authors demonstrated
the working of all above mentioned algorithms on a learning

machine called as parallel rough set computer (PRSComp) and
its architecture is shown above in Fig. 6. In Fig. 6 E is word
selection register, C is comparand register and CM is column
mask register. He proposed a machine consisting of m by n
primitive processor, in which each of the processors is
connected to its neighboring four processors as well as to
global control signals. Each processor performs the same
operation defined by the instruction at that time. PRSComp
operates as SIMD (single input multiple data). The input data
is mapped on these processors as a binary matrix of size m*n
wherein each processor operates on one bit of it at a time.
They utilized various registers for doing all these operations.
In this paper, there is no discussion on time complexity, space
complexity. The author however has put forth the problems
posed by purely genetic and artificial neural network and
justified that rough set theory is an appropriate solution for
handling those problems.

Fig. 6. PRScomputer architecture.

D. Kanasugi Discernibility Matrix approach

Authors in [21] presented a design of architecture of rough
set processor in 2001 (shown in fig.7). It is used for solving
large-scale problem in real time. The main blocks in their
architecture are discernibility matrix maker, core selector,
covering unit, reconstruction unit, registers, cache memory,
controller and bus interface. The execution process is divided
into two parts: pre-process and main process. In pre-process,
some sparse terms are selected as cores and then implying
relation reduces the input logic functions. In the main process,
input logic function is converted into the sum of products
form.

The block of discernibility matrix maker is not dealt in this
proposed work. The core selector unit selects data whose sum
is minimum and transfers its row number to core number
register unit. Core unit reduces data using implying function.
Reconstruction unit searches for dominant variables from
input logic function and then reconstructs the important rules
from it. Memory interface is identified as a potential
bottleneck in the design. The work of [22] is an extension of
[21]. In [21], only design has been proposed whereas in [22],
synthesis, simulation and implementation on SPARTAN 3E
board of Xilinx is presented. They minimized the
discernibility matrix by obtaining a reduced discernibility
function. The outputs of system are small logical functions

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

21 | P a g e

www.ijarai.thesai.org

representing important decision rules. Authors have developed
a co- processor, which will be interacting with memory for
data retrieval and storage purpose. The system depends on
external data source for creation of large logical functions
from data base for correct operation and algorithm is based on
approximation technique. Their co-processor is capable of
dealing with objects of size 1000,000 and 2032 attributes.
They have dealt with binary attributes, leaving discretization
process, a task for future development. They have shown that
their proposed processor is ten times faster than PC, though
the clock frequency is about 70 times slower. There is no
discussion on time complexity and space complexity.
However, their algorithm is based on computing discernibility
matrix and discernibility function, whose time complexity will
no longer be less than O (|U|2|A|2).

E. G. Sun’s FPGA implementation of RST

G. Sun in his paper [23] has implemented Rough set
theory algorithms on FPGA in 2011. Author has provided a
new and effective method for hardware fault diagnosis and
verified the effectiveness of method through simulation. He
has made use of genetic algorithm along with rough set theory
and presented a case study of nonlinear aircraft model. He
implemented discretization block, based on dependency
degree. The breakpoints are deleted based on dependency
degree. The reducts are calculated using genetic algorithm.
The simulation results using Modelsim for discretization and
attribute reduction has been presented. The algorithms are not
purely based on RST; rather it is hybridization of rough set
with genetic algorithms.

F. Maciej Kopczynski ´s et al. computation of reduct and

core on FPGA

Maciej Kopczynski et al. in their paper [24 - 26] presented

reduct and core generation algorithm based on discernibility
matrix. They have presented hardware solution architecture
for binary decision table. They have discussed architecture of
discernibility and reduct block. They used VHDL simulator
and the development board equipped with an Altera FPGA
during the research. The reduct generation algorithm is simple
and based on attribute count frequency [25]. The algorithm
gives super reduct, however it does not discusses the case of
breaking tie between two attributes having the same count
value. They have also compared the time required for
execution of reduct and core generation on software and
hardware for varying size of database. They have randomly
generated the binary database. Their results show a significant
increase in the speed of data processing. In [26], they have
shown three variants of discernibility matrix implementation.
Authors have shown time required for computing reducts and
cores for all three methods. The issue of dealing with larger
databases is not handled.

G. K.S.Tiwari’s et.al. Hardware Implementation

Tiwari et.al in their work [27] presented architecture for
computing reduct using binary discernibility matrix. They
have used Xilinx software and Spartan 3 FPGA. They have
proposed a Rough Set Machine which generates rules for
classification applications. The classification task concentrates
on predicting the value of the decision class for an object
among a predefined set of classes’ values. This rough set
machine uses the concept of discernibility matrix for
calculating the reduct, and using these reduct it generates the
rules which are used for classifying the objects. The Reduct
block is synthesized and downloaded on FPGA in [28]. The
architecture of binary discernibility matrix is shown in fig.8.
In [29]; Quick reduct algorithm is used for computation of
reduct for a medical database.

Fig. 7. Kanasugi’s Proposed Block Diagram of Rough Set Processor.

 Adress Bus

Main

Memory

Core-Selector

Covering-Unit

Reconstruction-Unit

Register

Internal-Memory

Controller

Memory-Manager

Control Bus Data Bus

Data

Bus

Adress

Bus

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

22 | P a g e

www.ijarai.thesai.org

Fig. 8. Binary discernibility Matrix

TABLE V. SUMMARY

Sr.No. Authors Year Brief Summary

1

Mieczyslaw
Muraszkiewicz,
 and Henryk
Rybinski

1994
Concept is based on Indiscernibility
relation, Lower and upper approximation

2 Lewis et.al 1999
Self-learning hardware model based on
cellular concept, Implementation done
Xilinx board.

3 Kanasugi 2001
Algorithm is based on Discernibility
matrix

4 Z.Pawlak 2004

Decision Flow graph used for representing
tables.

5
Kanasugi and
Mitsuhiro
Matsumoto

2007
Discernibility matrix based algorithm
proposed and implemented on Spartan 3E
Board.

6 G Sun et. al 2011
Genetic based attribute reduction system;
discretization is based on dependency
approach of RST.

7 K.S.Tiwari et.al

2011
Concept of discernibility matrix used for
generation of reducts and rules.

2012
Pipelining and use of Dual port RAM as a
part of extension.

2013
Quick Reduct algorithm based on
dependency function is implemented and
simulated using ISIM.

8
Maciej
Kopczynski et.
al

2013
Computation of short reduct and core
based on discernibility matrix. Huge
acceleration achieved.

2014
Discernibility matrix built using three
different methods

V. CONCLUSION

In this paper a survey on hardware implementations of
Rough set algorithm is presented. It is summarized in brief in
table 5. A lot of research work is carried out on rough set
theory using software; however hardware implementation is
still not much explored. With exponential growth in quantity
of data collected, its need of hour to process data fast, and
extract meaningful rules from it. FPGA offers a promising
solution to deal with such kind of problems as rough set
algorithms are inherently parallel. Thus these algorithms can
be effectively mapped on FPGA.

REFERENCES

[1] Zdzisław Pawlak, Andrzej Skowron,“Rudiments of rough sets,”
Information Sciences, vol. 177, January 2007, pp. 3-27.

[2] Zdzisław Pawlak , “Rough Sets,” International Journal of Computer and
Information Sciences, vol.11, September 1982, pp. 341–356.

[3] Zdzisław Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publishers, Dordrecht, Boston, London, 1991.

[4] Bart lomiej Predki et al, “ ROSE - Software Implementation of the
Rough Set Theory ,” Rough Sets and Current Trends in Computing, L.
Polkowski and A. Skowron ,Eds., LNCS 1424, Springer-Verlag Berlin
Heidelberg 1998, pp. 605-608

[5] Andrzej Skowron et al. Logic Group, Institute of Mathematics, Warsaw
University, Poland,1994, Accessed Aug. 2010.
http://logic.mimuw.edu.pl/~rses/.

[6] M Kierczak et al., ROSETTA Development Team, 2009, Accessed Aug.
2010. http://www.lcb.uu.se/tools/rosetta/.

[7] B. Walczak, D.L. Massart, “Rough sets theory”, Chemometrics and
Intelligent Laboratory Systems, vol. 47/1, April,1999, pp. 1–16.

[8] Silvia Rissino, Germano Lambert-Torres “Rough Set Theory –
Fundamental Concepts,Principals, Data Extraction, and Applications,”
Data Mining and Knowledge Discovery in Real Life Applications, Julio
Ponce , Adem Karahoca,Eds, I-Tech Education and Publishing,2009

[9] Altera. Accelerating high-performance computing with fpgas. white
paper, Altera, October 2007.

[10] K. Gulati and S. P. Khatri. Hardware Acceleration of EDA Algorithms:
Custom ICs, FPGAs and GPUs. Springer, 2010

[11] D. A. Patterson. Latency lags bandwith. Commun. ACM, 47(10):71–75,
2004

[12] J. Shalf. The new landscape of parallel computer architecture. journal of
Physics, 78, 2007.

[13] J. Carter and K. Rajamani. Designing energy-efficient servers and data
centers. IEEE Computer, 43(7):76–78, 2010

[14] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.
Storaasli. State-of-the-art in heterogeneous computing. Scientific
Programming, pages 1–33, 2010.

[15] Amdahl, Gene M. "Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities, Reprinted from the
AFIPS Conference Proceedings, Vol. 30 (Atlantic City, NJ, Apr. 18–
20), AFIPS Press, Reston, Va., 1967, pp. 483–485, when Dr. Amdahl
was at International Business Machines Corporation, Sunnyvale,
California." Solid-State Circuits Society Newsletter, IEEE 12.3 (2007):
19-20.

[16] Mitrion, Low power hybrid computing for efficient software
acceleration,White paper,Mitrionics,2008

[17] S. Che, J. Li, J. Sheaffer, K. Skadron, and J. Lach. Accelerating
compute-intensive applications with gpus and fpgas. In Symposium on
Application Specific Processors, pages 101 –107, 2008.

[18] Pawlak, Z, "Elementary Rough Set Granules: Toward a Rough Set
Processor,” Rough-Neural computing Cognitive Technologies, Dr.. S.K.
Pal et al, Springer 2004, pp.5-13.

[19] Muraszkiewicz, Mieczyslaw, and Henryk Rybinski. "Towards a parallel
rough sets computer." Rough Sets, Fuzzy Sets and Knowledge
Discovery. Springer London, 1994. 434-443.

http://link.springer.com/search?facet-author=%22Mieczyslaw+Muraszkiewicz%22
http://link.springer.com/search?facet-author=%22Mieczyslaw+Muraszkiewicz%22
http://link.springer.com/search?facet-author=%22Henryk+Rybinski%22
http://link.springer.com/search?facet-author=%22Henryk+Rybinski%22

(IJARAI) International Journal of Advanced Research in Artificial Intelligence,

Vol. 3, No.9, 2014

23 | P a g e

www.ijarai.thesai.org

[20] Lewis, M. Perkowski, and L. Jozwiak, “Learning in Hardware:
Architecture and Implementation of an FPGA – Based Rough set
machine,” IEEE, 1999, pp.326-334.

[21] A. Kanasugi, “A Design of architecture for Rough Set Processor”, New
Frontiers in Artificial Intelligence, T Terano et al. ,Ed.,LNCS, vol. 2253,
2001, pp.406-410.

[22] A.Kanasugi and M. Matsumoto, “Design and Implementation of Rough
Rules Generation from Logical Rules on FPGA board”, Rough Sets and
Intelliegent Systems Paradigms, M. Kryszkiewicz et al, Eds,LNCS, vol.
4585, 2007, pp. 594-602.

[23] Guoqiang Sun; Xiaoming Qi; Yuanyuan Zhang, "A FPGA-based
implementation of Rough Set Theory," Control and Decision
Conference (CCDC), 2011 Chinese, vol., no., pp.2561-2564.

[24] Stepaniuk, Jaroslaw, Maciej Kopczynski, and Tomasz Grzes. "The First
Step Toward Processor for Rough Set Methods." Fundamenta
Informaticae 127.1 (2013): 429-443.

[25] Grześ, Tomasz, Maciej Kopczyński, and Jarosław Stepaniuk. "FPGA in

Rough Set Based Core and Reduct Computation." Rough Sets and
Knowledge Technology. Springer Berlin Heidelberg, 2013. 263-270.

[26] Kopczynski, Maciej, Tomasz Grzes, and Jaroslaw Stepaniuk.
"Generating Core in Rough Set Theory: Design and Implementation on
FPGA." Rough Sets and Intelligent Systems Paradigms. Springer
International Publishing, 2014. 209-216.

[27] Tiwari, K. S., and A. G. Kothari. "Architecture and Implementation of
Attribute Reduction Algorithm Using Binary Discernibility
Matrix." Computational Intelligence and Communication Networks
(CICN), 2011 International Conference on. IEEE, 2011.

[28] Tiwari, Kanchan S., Ashwin G. Kothari, and Avinash G. Keskar.
"Reduct generation from binary discernibility matrix: an hardware
approach." International Journal of Future Computer and
Communication 1.3 (2012): 270-272.

[29] Tiwari, Kanchan, Ashwin Kothari, and Riddhi Shah. "FPGA
Implementation of a Reduct Generation Algorithm based on Rough Set
Theory." International Journal of Advanced Electrical and Electronics
Engineering ISSN (Print) : 2278-8948, Volume-2, Issue-6, 2013 [55-61]

