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Abstract—Using the EEG Motor Movement/Imagery 

database there is proposed an off-line analysis for a brain 

computer interface (BCI) paradigm. The purpose of the 

quantitative research is to compare classifier in order to 

determinate which of them has highest rates of classification. The 

power spectral density method is used to evaluate the 

(de)synchronizations that appear on Mu rhythm. The features 

extracted from EEG signals are classified using linear 

discriminant classifier (LDA), quadratic classifier (QDA) and 

classifier based on Mahalanobis distance (MD). The differences 

between LDA, QDA and MD are small, but the superiority of 

QDA was sustained by analysis of variance (ANOVA). 
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I. INTRODUCTION 

Brain computer interface (BCI) facilitates a direct 
communication between brain and an external device. The 
system - hardware and software - enables humans to interact 
with their surroundings without involvement of peripheral 
nerves and muscles, by using control signals generated by 
brain activity [1]. The interface enhances the possibility of 
communication for people with severe neuromuscular and 
motor disabilities. The variety of BCI applications includes: 
environmental control, locomotion, entertainment and 
multimedia. 

The artificial intelligence system recognize a certain set of 
patterns in brain signals following the stages: signal 
acquisition, preprocessing, feature extraction, classification 
and the control interface. Different methods such as 
electroencephalogram (EEG), magnetoencephalogram (MEG), 
positron emission tomography (PET), single photon emission 
computed tomography (SPECT) are used in measuring and 
studying the brain activity. The EEG is the most convenient 
method used in BCI systems: because it is non-invasive, it has 
relative low costs, the real-time analysis may be performed 
and can be used in a portable device. EEG based BCIs use a 
set of sensors that pick up the EEG signals from different 
brain areas. 

EEG signals contain a wide range of frequency spectrum. 
The oscillatory activity in the EEG is classified according to 
frequency bands or rhythms: Delta (1-4 Hz), Theta (4-8 Hz), 

Alpha and Mu (8-12 Hz), Beta (13-25 Hz), Gamma (25-40 
Hz) [2]. Mu rhythm (8-12 Hz) is affected by movements or 
movement imagery. 

Preparing a movement or imagining movement can cause 
changes in the sensorimotor rhythms (SMR). The SMR refer 
to oscillations recorded in brain activity concentrated in 
certain frequency bands [3]. 

The event-related desynchronizations (ERD) are changes 
that appear while executing or imagining the movement. ERD 
starts when the subject begins to imagine a movement and 
manifests itself as a power decrease in Mu rhythm band. After 
that, a different phenomenon occurs, event-related 
synchronization (ERS) - an increase in power when the 
subject stops executing or imagining a movement. 

The phenomenon of ERD/ERS related to motor imagery is 
stronger for the contralateral hemisphere and weaker in the 
ipsilateral hemisphere. 

In the section II a presentation of the database is 
completed, how the features are extracted and how the 
statistical methods are applied. The paper ends with a 
conclusion and some recommendations based on our results 
(section III). 

II. METHODOLOGY 

A. Database description 

The EEG Movement/Imagery Database (eegmmidb) was 
downloaded from www.physionet.org [4].  It contains 
recordings from 109 subjects, who executed real or imagined 
tasks. The EEG signals were recorded using International 
System 10-20 with 64 electrodes placed on the scalp. Subjects 
43, 84, 88, 89, 92 and 100 were excluded because the 
contained recordings are not reliable for further processing. 
We have considered only FC1, FC2, FC3, FC4, C1, C2, C3, 
C4, CP1, CP2, CP3, CP4 electrodes, reported in the literature 
for enhancing Mu desynchronization. Every subject performed 
14 experimental tasks: 2 runs of 1 minute for relaxation (one 
with eyes closed and one with eyes open) and 4 runs of 2 
minutes for each of the following tasks: opening and closing 
left/right fist when a target appears on the screen followed by 
relaxation, imagining opening and closing left/right fist, 
opening and closing both fists, imagining opening and closing 
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both fists.  In order to implement the proposed methods, there 
were used the first two sets described above. 

Each signal is coded as follows: T0 corresponds to the 
resting period, T1 corresponds to movement/movement 
imagery left wrist, T2 corresponds to onset of motion (real or 
imagined) of the right wrist. The EEG signals are sampled at 
160 Hz.  There are three trials for wrist movement (named 3, 
7, 11) and other three for wrist movement imagery (named 4, 
8, 12). 

B. Data Processing 

Signals loaded from database are filtered with a 8-12 Hz 
band pass filter corresponding to the Mu rhythm frequency 
range.  No artifact rejection or corrections were performed. 
We selected segments from the EEG signals (2 s after the 
stimulus appearance) according to annotation for each mental 
task (T2, T1) extracting the information corresponding to 
right/left wrist movement. For the relaxation period (T0) 
sequences of 2 s following right/left wrist movement are 
extracted. 

The most widely used methods for EEG signal feature 
extractions are based on frequency analysis, for example 
discrete Fourier transform (DFT) or power spectral density 
(PSD). We use a method based on PSD to find the 
desynchronization during movement. Power spectral densities 
were calculated for all the useful mentioned channels and for 
all trials 3, 7, 11 which correspond to right/left wrist 
movement. The average of these trials was calculated using 
pwelch function from Matlab with a Hanning window [5].  
The same procedure was applied both for computing the PSD 
during the movement period, denoted by PSDMOVEMENT and 
for the relaxation period which comes after right wrist 
movement and left wrist movement respectively, denoted by 
PSDREST. The resulted value, denoted by ERD, is used to 
assess the desynchronization/synchronization which appears 
on the pair of electrodes during right or left wrist movement. 

    
                   

       
                                       (1) 

The feature vector was formed from each pair of 
electrodes on the left/right hemisphere in the following way: 
ERD calculated for right wrist movement for the signal 
recorded from left hemisphere ( FC1, FC3, C1, C3, CP1 or 
CP3), ERD calculated for left wrist movement for the paired 
electrode  from left hemisphere ( FC2, FC4, C2, C4, CP2 or 
CP4), ERD calculated for left wrist movement for the 
electrode from left hemisphere, ERD calculated for left wrist 
movement for the electrode from right hemisphere. 

C. Classifiers 

Linear discriminant analysis (LDA) is one of the most 
popular classification algorithms for BCI application, and has 
been successfully used in a large number of BCI systems such 
as motor imagery based BCI, P300 speller and steady state 
visual evoked potentials based BCI [6]. In essence, LDA 
linearly transforms data from a high dimensional space to a 
low dimensional space, and finally the decision is made in the 
low dimensional space, thus the definition of the decision 
boundary plays an important role on the recognition 
performance [7]. 

Linear classifier is suitable for offline and online BCIs. 
Moreover, LDA, is simple to use and provides satisfactory 
results whether we are referring to a large or small databases. 

Quadratic discriminant analysis (QDA) is closely related 
to LDA, where it is assumed that the measurements from each 
class are normally distributed. QDA makes no assumption that 
the covariance of each of the classes are identical [8]. 
Although it is not reported and used as much as linear 
classifier in BCI systems, the quadratic classifier reported 
satisfactory and encouraging results. 

Mahalanobis distance (MD) is a statistical distance 
function. In mathematical terms, the Mahalanobis distance is 
equal to the Euclidean distance when the covariance matrix is 
the unit matrix. The use of the Mahalanobis distance removes 
several of the limitation of linear classifiers based on 
Euclidean metric, since it automatically account for  the 
scaling of the coordinate axes, as well as for the correlation 
between the different considered features [9].  Mahalanobis 
classifier is simple but at the same time robust and leads to 
good results, as shown in [10]. Despite its good performance, 
it is still rarely used in the literature on brain computer 
interfaces. 

Classifiers LDA, QDA and MD were used for all six pairs 
of electrodes. The steps described above were also 
accomplished for the trials corresponding to right/left imagery 
of wrist movement. The classification error obtained for the 
test set was surveyed for all the subjects, for movement/ 
imagery of movement, pair of electrodes and classifier. 

D. Statistical Analysis 

A two-way Analysis of Variance (ANOVA) was 
performed using  Statistical Package for the Social Sciences 
(SPSS) [10] on the error values obtained on 
movement/movement imagery. The first main factor was 
CLASSIFIERS with levels LDA, QDA, and MD, while the 
second main factor was ELECTRODES with levels FC1-FC2, 
FC3-FC4, C1-C2, C3-C4, CP1-CP2, CP3-CP4. The Levene 
test was used for testing homogeneity of variances and the 
Tukey’s test was used as post-hoc test at the 2% level of 
significance. 

III. RESULTS 

Table 1 shows the means of error rates for all subjects, 
classifiers and pair of electrodes. 

TABLE I.  MEAN OF TEST ERROR RATE PERFORMANCE FOR CLASSIFIERS 
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LDA 14,96 15,53 15,59 16,18 17,12 17,44 

QDA 11,31 12,62 11,92 12,26 11,81 13,32 

MD 15,05 15,91 15,12 17,26 16,38 17,62 

Movement 

Imagery 

LDA 13,63 15,19 19,85 17,17 18,02 17,46 

QDA 12,82 12,80 15,12 14,29 14,15 15,05 

MD 15,16 15,19 18,48 16,49 17,75 17,76 
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For movement, the smallest error of 11,31% was obtained 
with the quadratic classifier for FC3-FC4, while the largest 
error 17,62% was obtained with the classifier based on 
Mahalanobis distance for C3-C4. 

For the imaginary of movement there were attained the 
following errors: the lowest, 12,82%, with the quadratic 
classifier for FC1 - FC2 and 19,85%, the highest value with 
classifier LDA for C3-C4. High errors could be explained  due 
to the imperfect contact of the electrodes on the scalp or as the 
Mu rhythm could not be developed as specified in [11]. 

On 58% of 103 analyzed subjects the smallest 
classification errors were obtained for wrist movement, 27% 
of subjects were able to perform better the imposed task for 
imagining motor movement than movement. Small errors 
were achieved for movement as well as imagining the 
movement  for 15% of subjects. 

The errors obtained after applying the quadratic classifier 
were better than those obtained using linear classifier and 
classifier based on Mahalanobis distance, both for real and 
imagined motor task. Differences between results for LDA 
classifier and MD classifier are very small (Fig. 1). 

 

Fig. 1. The error rate for movement and movement imagery using LDA, 

QDA and MD 

We have selected the subjects who attained, even with the 
quadratic classifier, low classification rates when the EEG 
signal was passed through a 8-12 Hz band-pass filter. We 
suppose that these subjects could elicit low or high Beta 
rhythm instead of Mu rhythm. So, for these subjects only the 
data were filtered with a 13-18 Hz eighth order Butterworth 
band pass filter. Filtering on 13-18 Hz was performed on 
subjects 2, 21, 36, 42, 54, 64, 74, 78, 82, 87, 102, 106. The 
errors achieved for subject 54 are shown in Table 2. For 
subject 54, as he attained the best results, the errors decrease 
significantly if the filter is on 13-18 Hz instead on 8-12 Hz. 
We can conclude that subject 54 achieved low Beta rhythm. 
Beta rhythm was also developed by subjects 21, 74, 82, 102. 
The results show that frequency band other than that of the 
Mu range may contain useful information. Notable changes on 
errors were not found for the other seven subjects on 13-18 Hz 
or 19-26 Hz. In conclusion these subjects could not attain low 
Beta rhythm or high Beta rhythm. 

TABLE II.  THE ERRORS FOR SUBJECT 54 WHEN THE SIGNALS ARE BAND 

PASS FILTERED ON 8-12HZ AND ON 13-18HZ 
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MD 38,89 5,56 44,44 5,56 44,44 5,56 
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LDA 61,11 16,67 61,11 22,22 50,00 27,78 

QDA 27,78 16,67 22,22 22,22 50,00 27,78 

MD 44,44 22,22 44,44 22,22 44,44 33,33 
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LDA 61,11 5,56 61,11 0,00 61,11 5,56 
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MD 61,11 11,11 61,11 16,67 61,11 16,67 
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LDA 50,00 5,56 61,11 5,56 61,11 22,22 

QDA 50,00 5,56 11,11 5,56 61,11 22,22 

MD 50,00 11,11 44,44 5,56 61,11 22,22 

8 

LDA 50,00 50,00 61,11 16,67 61,11 44,44 

QDA 44,44 44,44 61,11 16,67 61,11 44,44 

MD 55,56 38,89 61,11 16,67 61,11 38,89 

12 

LDA 50,00 5,56 44,44 27,78 61,11 33,33 

QDA 50,00 5,56 27,78 22,22 52,22 38,89 

MD 50,00 11,11 55,56 27,78 50,00 33,33 

TABLE III.  THE ERRORS FOR SUBJECTS 2, 74, 87 ON TEST AND TRAINING 
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Test 

Data 
0.93 8.02 4.01 5.25 12.04 10.80 

Training 

Data 
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87 

Test 

Data 
22.84 23.15 21.91 28.70 19.44 29.94 

Training 

Data 
19.14 21.60 17.90 23.77 19.16 21.30 

Table 3 shows the results we had for training and test data 
for subjects 2, 74 and 87 on pairs of electrodes FC3-FC4, 
FC1-FC2, C3-C4, C1-C2, CP3-CP4, CP1-CP2. At subject 87 
and 2 the errors are higher on test data, then those obtained on  
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training data and there are consistent for all paired of 
electrodes. The errors obtained on training data for pairs FC3-
FC4, C3-C4 at subject 74 are higher that errors achieved on 
the others pairs if electrodes. 

The ANOVA demonstrated that the use of different 
classifiers improves the error values. The p-value obtained for 
CLASSIFIERS was 0.001 for movement and 0.002 for 
movement imagery. On ELECTRODES the p-value was 0.001 
for both tasks. 

No interactions between CLASSIFIERS x ELECTRODES 
was found (p=0.815 for movement and p=0.649 for movement 
imagery). 

Since differences were found in between classifiers, we 
performed the post-hoc statistical analysis comparison 
(Turkey test) to determine which classifier is the best.  The 
tests shown that the classification rates obtained for 
movement/movement imagery with quadratic classifier are 
higher than those obtained with LDA and MD.  At the α = 
0.02 significance level, there is not enough evidence to 
conclude that the used electrodes have a significant interaction 
effect on errors obtained for both tasks. 

In Table 4 are depicted the differences between p values 
obtained with different post hoc tests for classifiers LDA, 
QDA  and DM. Differences between p values obtained with 
Tukey and Scheffe test are small. The ratio for movement is 
0.836/0.850 and for movement imagery 0.965/0.968. Thus, we 
are confident 98% that with classifier QDA we attained small 
error that when using LDA and MD classifier. The use of 
LDA and MD will yield to higher errors since they are similar 
(Table 4). Although Scheffe procedure is most popular due its 
conservatism and flexibility, leads to type II errors. Tukey 
procedure is used mostly for means comparison and leads to 
type I erors. 

TABLE IV.  CLASSIFIER COMPARISON WITH POST HOC TESTS SCHEFFE AND 

TUKEY 

Post Hoc 

Tests 

Clasifiers 

Comparison 

p value 

Movement 
Movement 

Imagery 

Tukey 

LDA 
QDA 0,000 0,002 

MD 0,836 0,965 

QDA 
LDA 0,000 0,002 

MD 0,000 0,004 

MD 
LDA 0,836 0,965 

QDA 0,000 0,004 

Scheffe 

LDA 
QDA 0,000 0,003 

MD 0,850 0,968 

QDA 
LDA 0,000 0,003 

MD 0,000 0,006 

MD 
LDA 0,850 0,968 

QDA 0,000 0,006 

In [12] and [11], using the same dataset relevant results 
were reported, but also some drawbacks (there are unknown 
the timing between runs, the age of the subjects or if there are 
right or left handed subjects). 

In another work [13] the classification results were 
reported only for 30 subjects and were not applied statistical 
tests. 

In most papers regarding BCI research, the classification is 
performed using a single classifier. A recent trend involves 
using several classifiers. The combination of multiple 
classifiers has the advantage of obtaining lower classification 
errors [6]. 

IV. CONCLUSIONS 

Using power spectral density on the EEG signals contained 
in EEG Motor/ Movement Imagery Dataset we have studied if 
desynchronizations appear in the frequency band 8-12 Hz. The 
classifiers LDA, QDA and MD applied on feature vector were 
used to determine the classification errors for all six pairs of 
electrodes. 

The results of classification errors vary from subject to 
subject. The differences among classifiers as LDA and MD 
are small and reasonable results were attained considering the 
large database (103 subjects were tested). The used method 
showed the best performance for the QDA classifier. The 
performances could be altered because some subjects cannot 
concentrate well in performing each task. Sometimes they can 
be absent-minded, ocular or muscles artifacts can occur or 
they may not have the capacity to imagine movement. 
Movement and imagining involves sustained mental effort. 
Also it is important to notice that the recorders contained in 
database were made on healthy subjects. As some studies 
revealed that the people who suffer different disabilities can 
develop Mu rhythm better than the healthy ones, it is possible 
to get higher classification rates for these persons. 

Future work will be focused on a combination of 
classifiers used in this paper in order to reduce the 
classification error. 
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