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Abstract—When teams interact for cooperation or negotiation, 

there are unique dynamics that occur depending on the 

conditions. In this paper, a multi-agent system is used under the 

restrain of a network structure to model two teams of agents 

interacting for a common consensus, however with the presence 

of stubborn agents. The networks used were a minimum 

dumbbell network and two scale-free networks joined together. 

The network topology, which is a global characteristic, along 

with the presence of conflicting stubborn agents, can cause 

various conditions that affect teamwork in cooperation or 

negotiation. Notable characteristics revealed are boundary role 

persons (BRPs), lack of unity, need for a third party moderator, 

coalition formation, and loyalty of the BRP dependent on the 

distance from the core ideology of the team. Both local and global 

characteristics of network structures contribute to such 

phenomenon. The modeling method and corresponding 

simulation results provide valuable insight for predicting possible 

social dynamics and outcome when planning 

cooperation/negotiation tactics. 
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I. INTRODUCTION 

A. Team dynamics and consensus 

The success of an organization depends on how effective its 
team of agents operate, whether in business or in other social 
settings. Thus, it is natural for organizational managers to have 
an interest in understanding group dynamics. A team, as 
opposed to an individual, is a conglomeration of diverse talents 
and perspectives, and allows distribution of tasks for efficient 
operations [1, 2]. Formation of a robust team with diverse 
agents is especially valued today in business to cope with 
rapidly changing technological and global markets [3, 4]. 
However, because of its collective nature of talents and 
personalities, a team of agents may be exposed to internal 
conflict and noise in addition to external ones during 
cooperation or negotiation with another team of agents. Such 
perturbations can result in unintended consensus dynamics 
within the team. How does the formation of consensus opinion 
depend on the locations of stubborn agents in the social 
network? We would like to be able to predict the outcomes 
such that we can control or avoid certain situations during the 
formation of consensus. 

To have a holistic view of team dynamics, a manager must 
consider the micro and macro properties of a team. Micro 

properties considered important are planning, which is sub-
dividing tasks among agents, coordination, which is the 
synchronization of agent actions and its continuous monitoring 
for assessment, and communication, which is information 
exchange among agents [5]. These qualities are micro 
properties since they are defined for and executed by the agents 
that form a team. On the other hand, macro properties are the 
network structure that embeds the agent interactions or patterns 
of relationships within a team [6, 7]. With such network 
topological aspect, the team dynamics is not only determined 
by agent characteristics or local interaction rules, but also 
determined by a global structural restraint. This network 
formed by the agent team can be considered a macro property 
since this property ignores the characteristics of each agent and 
it affects the entire community. For managers and team 
members to understand and predict team consensus dynamics, 
they need to observe and evaluate both their micro and macro 
properties. Failure of such considerations may result in 
disagreements and formations of coalitions that may impede 
the team’s initial goal. 

Consensus dynamics in general have been studied in 
computer science and control theory for a long time [8]. In a 
network of agents, consensus is formed when all of the agents 
agree to a certain parameter state. A consensus algorithm 
performs a consensus procedure where agents exchange their 
parameter status among its local neighbors in the agent 
network so that they may eventually reach an agreement. The 
analytical foundation of consensus problems for networked 
systems was presented by Olfati-Saber and colleagues [9]. The 
consensus problem is also related to synchronization. 
Synchronization phenomena are seen in diverse settings such 
as neurons firing, laser cascades, biological cycles, opinion 
formation, and in chaotic dissipative systems in general. Many 
such phenomena in nature are realized by synchronization in a 
constructive manner. However, forming synchronization in a 
harmful context can cause detrimental effects such as collapse 
of bridges or causing epileptic seizures [10, 11]. In order to 
manage such destructive outcomes by synchronization, 
Louzada [12] studied the use of contrarians to suppress 
undesired synchronization. Contrarians systematically dephase 
from the oscillation of their nearest neighbors. Louzada 
compared the use of contrarians with access to local and global 
information and concluded that contrarians with local 
interactions are enough for the most efficient influence. 
Additionally, when the interacting neighbor number (degree 
distribution) is relatively even and contrarians are placed at 
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highly connected nodes, the synchronization dephasing 
performance is significantly improved. 

In this paper, instead of contrarians that desynchronize with 
its neighbors, the presence of stubborn agents that refuse to 
form consensus with the rest of the agents in the network is 
considered. Consensus formation of agents under the 
restriction of a network is observed. In particular, the network 
used is structured so that it can represent two teams interacting. 
Two stubborn agents with opposing opinions are used to 
represent a disagreement in the network. The terms agent and 
node are often used interchangeably, where an agent may have 
a stronger social/multi-agent system aspect whereas a node 
may have a complex network connotation. 

B. Consensus formation with stubborn agents 

Studies of consensus and synchronization under a network 
structure is important for understanding its dynamics as seen in 
the previous section. However, there is no guarantee that all of 
its agents in the network will cooperate. Some agents may lead 
the team to form a consensus by influencing the rest of the 
agents or some agents may mislead the consensus formation to 
an unintended final state. These situations may occur in diverse 
scenes such as socio-economic situations [13], rendezvous 
strategies [14], average consensus [15], and sensor deployment 
[16]. Gupta [17] studied possible scenarios of agent “failure” in 
the context of distributed algorithms used in the above research 
presented. The first failure condition is a stopping failure [18] 
where an agent blacks out and stops communicating with the 
other agents. The second failure condition is when an agent 
value becomes stuck at a fixed state. Fagnani [19] showed that 
if the rest of the agents are non-stubborn, then the agents would 
converge to this fixed value agent. The third failure condition 
is when an agent continuously changes its state to erroneous 
values at every time step, either intentionally or unintentionally 
[18, 20]. 

In a social context of stubborn agents, Acemoglu [21] 
studied the spread of misinformation by using “forceful” agents 
in an agent value averaging model. Forceful agents are not 
completely stubborn, but under particular conditions they have 
a strong influence on some of their neighbors such that the 
terminal consensus value is diverted from the original 
consensus value without the forceful agents. Spread of 
misinformation is quantified by measuring the magnitude of 
this divergence. Instead of forceful agents, Yildiz [22] 
presented a consensus behavior study with two stubborn agents 
with opposing opinions with different fixed agent values, using 
a classical voter model [23, 24]. In this model, the stubborn 
agent does not affect all of its neighbors, but rather chooses one 
neighbor randomly, and instead of taking an average value 
between the two agents, the neighbor agents adopt their 
neighbor’s value. They found that with the presence of 
opposing stubborn agents, the opinions among the agent 
society disagree and fluctuate. Finally, Acemoglu [25] uses an 
inhomogeneous stochastic gossip model of communication. 
The agents update their belief as a convex combination of their 
own belief and the belief of their neighbor at the same time 
step. In addition to finding that consensus process fluctuates 
and never converges, they demonstrated that in a general 
network topology the intermediate agents between the stubborn 

agents take terminal values which are linear interpolations of 
the two stubborn agents’ beliefs. 

In the three above mentioned investigations, they consider 
dumbbell (barbell) graphs to observe the influence of either 
single, double, and triple stubborn agents on the rest of the 
non-stubborn agents. Their dumbbell graphs have two or three 
cliques of arbitrary agent number. Two small interacting teams 
can be modeled with a dumbbell graph with complete graphs 
connected by bridging agents and a link. The smallest complete 
graphs with three agents are a sufficient condition for a 
negotiation team [26], since working in small teams allow 
more flexibility, agility, and adaptability [27, 28]. Modeling of 
interactions between larger organizations may not be so simple 
due to its hierarchical structure or the involvements of many 
sub-divisions in the organization. However, considering that 
even large organizations would have a small scale working unit 
or a representative team for negotiations [29], a dumbbell 
teamwork interaction model is a reasonable and practical 
consideration. Due to the linking property of a dumbbell graph, 
special roles are played by bridging agents and link. In graph 
theoretical terms, these bridging agents have a higher 
betweenness centrality [30]. In a team cooperation or 
negotiation context, these bridging agents are called boundary 
role persons (BRPs) [31] and have a unique role in the team 
[32]. Later, a modeling of larger teams is also considered by 
using two scale-free networks connected. 

With the presence of one or two stubborn agents, the 
following questions are investigated: what is the overall 
dynamics of the society of agents with the presence of stubborn 
agents? How opinion dynamics are affected with the presence 
of two stubborn agents holding completely opposite opinions? 
These are investigated under the constraint of a network 
structure. First, the time progression of the consensus 
formation process or stabilization process (if the dynamics is 
non-convergent) for a minimum dumbbell graph is 
demonstrated. The time progression shows the various patterns 
of approach resulting in diverse final outcomes depending on 
the location of the stubborn agents. Second, the notion of small 
team dynamics is extended to a team with a larger population 
and a greater distance of the BRP from the core ideology 
(stubborn agent) of its team. Two identical scale-free networks 
with a larger population are used instead of minimum complete 
graphs. The final states settle as a linear interpolation of agent 
locations as observed in [25]. However, the time progression 
shows that the consensus is formed among the local tree 
modules first, then a global steady state is reached. The 
presence of two stubborn agents results in the formation of 
coalitions. The model also supports that the farther away 
physically and psychologically the BRP is from the core team 
ideology (stubborn agent), the BRP agent opinion becomes 
closer to its opponent group [33]. 

II. ANALYTICAL FOUNDATION 

A. Consensus protocol 

The average consensus problem makes use of spectral 
graph theory and matrix theory [15, 34, 35]. Consider a 
symmetric (undirected) connected graph G = (V, E) which is 
the network topology that restricts the agent interactions, where  
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V is a set of nodes and E is a set of edges. The linear 
continuous-time consensus protocol used for the network agent 
dynamics is [15, 35], 

 �̇�𝑖 = ∑ 𝛼𝑖𝑗𝑗∈𝑁𝑖
(𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)) 

where xi and xj is the state value of agent i, and its network 
neighbor j respectively, 𝛼𝑖𝑗 is the weight of agent 𝑖 on agent 𝑗, 

Ni is the set of neighbors connected to agent i, and t is time or 
iterations. Here, 𝛼𝑖𝑗 = 𝛼𝑗𝑖  for all 𝑖 , j, since the graph G is 

undirected. Consensus is achieved when the agent values 
converges to a common value based on (1), i.e., 

 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 𝛼 

where n is the total number of agents in the network. When 
there are no stubborn agents or other interferences in the agent 
network, the value taken by (2) can be expressed by the 
following equation, 

 𝛼 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 (0) 

where xi(0) is the initial agent values at t=0. In other words, 
without any bias the consensus converges asymptotically to the 
average of the initial values. The Laplacian matrix  𝐿 of the 
graph network G is explained below. The Laplacian matrix is 
defined as the following, 

 𝐋 = 𝐃 − 𝐀 

where D = diag(𝑑1, 𝑑2, ⋯ , 𝑑𝑛) is the diagonal matrix with 
elements 𝑑𝑖 = ∑ 𝑎𝑖𝑗𝑗  and A is the binary adjacency matrix      

(n×n matrix) with elements 𝑎𝑖𝑗  for all 𝑖 ,𝑗 where 𝑎𝑖𝑗  is 1 if 

agent 𝑖 and agent 𝑗 is connected or 0 if they are disconnected. 
Then the dynamics of the system in (1) can be expressed as 

 �̇� = −𝐋𝑥(𝑡) 

B. Stubborn agents 

The presence of stubborn agents affects the formation of 
consensus, and the deviation of this consensus opinion 
dynamics depends on the network structure and the location of 
the stubborn agents on that structure. Fagnani [19] shows the 
analytical framework of consensus dynamics over networks 
including regular agents and stubborn agents. Consider a 
symmetric connected graph G = (V, E) introduced earlier. 

Separate V = S ∪ R with the understanding that agents in S are 

stubborn agents not changing their state while agents in R are 
regular agents whose state modifies with time according to the 
consensus dynamics. With the presence of stubborn agents, the 
whole consensus dynamics can be described by the relation 

 𝑥(𝑡 +  1)  =  𝑃 𝑥(𝑡) 

When the elements in V are ordered in such a way that 
elements in R come first, the matrix P will exhibit the block 
structure: 

 𝑃 = [
𝑄1 𝑄2

0 𝐼
] 

By splitting the state vector accordingly, x(t) = (xR(t), xS(t)), 
the dynamics shown below is obtained. 

 𝑥𝑅(𝑡 + 1) = 𝑄1𝑥𝑅(𝑡) + 𝑄2𝑥𝑆(𝑡)

 𝑥𝑆(𝑡 + 1) = 𝑥𝑆(𝑡) 

Notice that Q1 is a sub-stochastic matrix, i.e., all row sums 
are less than or equal to 1. There is at least one row whose sum 
is strictly less than one, which is the row corresponding to a 
regular agent connected to a stubborn one. Using the 
connectivity of the graph, this easily implies that there exists t 
such that (Q1)

t
 has the property that all its rows have sum 

strictly less than one. This immediately yields that the matrix is 
asymptotically stable. Therefore, 

𝑥𝑅(𝑡) → 𝑥𝑅(∞) for 𝑡 → +∞

with the limit opinions satisfying the relation which is 
equivalent to 

𝑥𝑅(∞) = 𝑄1𝑥𝑅(∞) + 𝑄2𝑥𝑆(0)

 𝑥𝑅(∞) = (𝐼 −  𝑄1)−1𝑄2𝑥𝑆(0) 

Regular agents settle asymptotically to opinions that are the 
convex combinations of the opinions of stubborn agents. The 
above analysis shows, that if all stubborn agents are in the 
same state x, for instance there is just one stubborn agent, then, 
consensus is reached by all agents in the opinion of the 
stubborn agent x. However, typically, consensus is not reached. 
Few examples modeled by simulation are discussed below. 
The initial state value of each agent is set as, 

 𝑥𝑖(0) = 𝑖 (𝑖 = 1, 2, ⋯ , 𝑁). 

When each agent updates her state value according to (1), 
the state of each agent converges to a constant value, which is 
the average of the initial values of all agents. The consensus 
dynamics in (1) converge to the average of the initial states of 
all agents without stubborn agents. Additionally, the consensus 
dynamics profile is different depending on the location of the 
two stubborn agents. 

C. Networks 

 
Fig. 1. A diagram of a dumbbell graph. Each clique is composed of 3 agents. 

The graph contains total of 6 nodes and 7 links.  Since each clique consists of 

a minimum complete graph with 3 nodes, this network is considered a 
minimum dumbbell network 
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In the first experiment, we use a dumbbell network. A 
dumbbell network is a structure with two cliques connected by 
a single link (Fig. 1). “Simplest” here means the network 
consists of minimum number of nodes. The definition of a 
negotiating team is a group of two or more interdependent 
persons who collaborate to achieve a mutual goal through 
negotiation and they all attend the bargaining table [36]. The 
cliques used here consist of three nodes all connected to each 
other to form a complete graph. One arbitrarily node is chosen 
from each clique and these nodes are connected by a bridging 
link. These bridging nodes play a unique role in that they have 
an absolute influence on their own clique and the greatest 
influence to the opposite clique when stubborn agents are 
located at these bridging nodes. 

In the second experiment, two scale-free networks were 
connected. This network was generated to model a greater 
number of nodes and greater distance between the stubborn 
agent and the bridge node. Two identical scale-free networks 
with 50 nodes were generated and the nodes with the least 
closeness centrality or the most “remote” nodes (Fig. 4, node 
50 and 100) were connected. The node chosen for each 
stubborn agent is the highest alpha-centrality [37] for each 
scale-free network (nodes 1 and 51). The overall network 
forms a line network with modular tree structures attached to 
the nodes on the main line network. A line network is the 
simplest structure to model the “psychological distance” 
between the organizational core and the boundary. The entire 
network is symmetric since two identical networks were 
connected at identical locations. 

III. RESULTS 

First, the results from the simplest case of a dumbbell network 
are presented. On the dumbbell network, where agents are 
grouped with their clique network, local consensus is promoted 
in each clique network at first. After that, the global consensus 
is formed via the bridge link as seen in Fig. 2. Progressively 
increasing and evenly spaced initial values are assigned to the 
agents from agent 1through 6 as seen in Fig. 2, except for 
stubborn agents. Stubborn agents are assigned a node value of 
either 0 or 100, two extremely opposite values. Without 
stubborn agents, the agent converges asymptotically, 
eventually reaching a consensus value of the average of agent 
values as indicated in (3). Smaller values are assigned to agents 
in the violet color clique and larger values are assigned to 
agents in the blue color clique in Fig. 1. 

 

Fig. 2. A consensus progression diagram for the dumbbell graph in Fig. 1.  

The initial values assigned to agents in each clique are 0 to 50 to one clique 

and the 51 to100 to the other clique 

With the presence of stubborn agents, three types of 
consensus behavior were noticed for a dumbbell network 
topology with single and double stubborn agents. The first type 
is for a single stubborn agent located at node 1 in Fig. 1 (case 1, 
Fig. 3(a)). This is a trivial solution where all of the agent 
opinions converge to the stubborn agent, regardless of the 
location of the stubborn agent. Such dynamics has been 
analytically modeled by Fagnani [19]. The second type is for 
two stubborn agents in the same clique. There are two 
possibilities for this type. The first possibility is when the 
stubborn agents are located at nodes 2 and 3 so none of the 
stubborn agents are the bridge agent (case 2, Fig. 3(b)). The 
rest of the regular agents from both cliques converge to an 
intermediate value. For the second possibility, the stubborn 
agents are located at nodes 1 and 2, one of the stubborn agents 
being a bridge agent (case 3, Fig. 3(c)). The regular agent 
(agent 3) in the same clique will converge to an intermediate 
value between the two stubborn agents and all of the agents in 
the opposite clique without stubborn agents will converge to 
the bridging stubborn agent node 1. In this case, the regular 
agents trapped between the stubborn agents converge to an 
average value between the two stubborn agent values. 

The third type is again for two stubborn agents, but one 
located in each clique. In general, the regular agents in a clique 
will approach the stubborn agent in their respective cliques, 
however, under the influence of the stubborn agent of the 
opposite clique. When one of the stubborn agents is located at 
node 1 bridge agent (case 4, Fig. 3(d)), this stubborn agent 
shuts out the rest of the agents in its clique from any influence 
from the opposite clique. One could say that the stubborn agent 
at the bridge node “dominates” its clique. Similarly, this 
bridging stubborn agent will influence the agents in the 
opposite clique, where its influence will be the strongest with 
the bridging regular agent node 4, then with indirect and 
reduced influence with agents beyond the bridge agent of the 
opposite clique (agent 6), except for the stubborn agent (agent 
5). In this case, the regular agents with indirect influence 
converge to a value between its stubborn agent (agent 5) and 
the bridging agent (agent 4) as in case 3. 

When the two stubborn agents are located at the bridge 
nodes of their respective cliques, agents 1 and 4 (case 5, Fig. 
3(e)), the regular agents will converge to the stubborn agent of 
their own clique. The regular agents in one clique will never 
reach a consensus with the regular agents in the opposite clique 
and vice versa because all influence from the opposite clique is 
blocked by the stubborn agent at the bridge node of its own 
clique. 

If none of the bridge agents are stubborn (case 6, Fig. 3(f)), 
the regular agents are not topologically restricted to the 
influence of a particular stubborn agent. The bridge agents 
receive the largest influence of the opposite clique and the rest 
of the regular agents converge to a value between their bridge 
agent and the stubborn agent in their clique. The regular agents 
do not converge with the stubborn agent in their clique because 
of the influence of the stubborn agent in the opposite clique. In 
general, when the number of agents in the cliques increases 
while maintaining a complete graph structure, the values of 
regular agents within the clique tend to attract or “bond” closer 
together.
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(a)                                                                                                           (b)

 

(c)                                                                                                      (d)

 

(e)                                                                                                      (f) 

Fig. 3. Graph with the change in the agent value. x-axis is time step and y-axis is node value. Node number for stubborn agents are (a) node 1, (b) nodes 2 and 3, 

(c) nodes 1 and 2, (d) nodes 1 and 5, (e) nodes 1 and 4, and (f) nodes 2 and 5. The node numbers are written on the graph lines 

Not only that, the value of the regular agents, except for the 
bridging agents, converge to a single value. The bridging 
agents of the opposite cliques attract each other so they do not 
converge completely with the rest of the regular agents in their 
respective clique. This is also seen in case 4 (Fig. 3(d)). The 
following is the result from the scale-free network structure 
(Fig. 4). The number of time steps it took for the agent values 

to stabilize (Δxi=10
-9

, which is the difference in the values 

between two time steps) is close to 6,300 time steps  
(Fig. 5). The dynamics with two stubborn agents show that 
consensus is formed locally among the tree module structures 
branching from the “main” link path connecting the two 
stubborn agents (a line network). The branching agent is a hub 
agent for its community. Consensus is formed among such 
local modules first. When there are no stubborn agents, a 
global convergence will follow. 
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Fig. 4. Two scale-free networks connected by the most “remote” nodes. The agents forming local consensus are grouped by the gray dotted line. The stubborn 

agents are marked by the red and blue circles. The red and blue dotted lines are the local consensus initially formed by the tree module community with the 
stubborn agent as the hub. The black arrow shows that the larger consensus community eventually forms a consensus with the stubborn agent community, a 

dynamics which can also be observed in Fig. 5 

However, when there are two stubborn agents located at the 
opposite ends of the line network, local consensus never 
merges together. In fact, the values taken by the local module 
consensus are essentially the hub agent number evenly dividing 
the agent value range (Fig. 5), a linear interpolation indicated 
by [25]. Consequently, the number of consensus settling values 
equals the number of hub agents along the main link path 
between the two stubborn agents, in addition to the two 
stubborn agent values. The order of consensus values 
associated with the hub communities is consistent with its 
order along the main link path that connects the two stubborn 
agents.  

One consensus dynamics to notice is the convergence of 
two tree modules (Fig. 4). Initially, the tree modules of agents 
1 and 2 form a consensus among their own modules. Then as 
time progresses, the consensus of these two modules converges. 
This occurs because agent 1 is a stubborn agent and all agents 
in the agent 2 module are regular agents. Therefore all agents 
in the agent 2 module form a consensus first. Then as time 
passes, they form a consensus with the stubborn agent 1. The 
result in the other half of the scale-free network follows a 
symmetric dynamics with agents 51 and 52. 

 

Fig. 5. Graph with the change in the agent value. x-axis is time step and y-
axis is node value. The node numbers written on the agent values are the 

stubborn agents (1, 51) and the hub agents forming a consensus among their 

tree module along the main link path between the two stubborn agents 

When two stubborn agents are located at the neighboring 
most “remote” linking agents at nodes 50 and 100, the two 
scale-free networks form a consensus only within their network 
community, i.e., the regular agents are attracted to the stubborn 
agent in their own community.  
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This is analogous to case 5 in the dumbbell topology 
dynamics. The value of consensus of each team depends on the 
value of their respective stubborn agent. Due to the limited 
node degree of these stubborn agents (agents 50 and 100), the 
consensus takes almost 10 times longer (about 59,000 time 
steps) than when the stubborn agents are placed at the nodes 
with the highest alpha-centrality (agents 1 and 51). 

IV. DISCUSSION 

This paper investigates the behavior of agents under the 
influence of opposite opinions or conflicting signals. The 
agents are caught between dynamics that aggregate and 
dynamics that are biased. When working in a team, the 
members must cope with both internal and external noise. 
Additionally, such local dynamics are met with the global 
constraint of a network. In the context of team negotiations in 
business or social settings, an analyst needs to take into 
account the impact of the social and organizational 
environments within which agent teamwork dynamics are 
embedded [38]. The agents’ roles, the team characteristics, and 
agent relationship networks are critical sources of influence 
within a negotiations setting in particular [39], but this can be 
applied to other teamwork dynamics as well. 

A. Minimum dumbbell team structure 

The dumbbell network settings can be used to model a 
negotiation or a collaborative situation between two teams of 
agents on a single project. In case 1, a leader with a clear 
objective, vision, and resource can guide the two teams and the 
rest will follow (Fig. 3(a)). In case 2, two of the members of 
the same team may have opposite opinions (two stubborn 
agents), which is an intra-group conflict situation [40] (Fig. 
3(b)). In a real world setting, the teammates are ‘not on the 
same page,’ ‘confused about goals,’ and possess ‘conflicting 
interest within the team’ [26]. This may happen when the 
agents represent different departments and have different goals 
to achieve. Since the members in the teams must maintain their 
respective teams (maintain the clique structure), the rest of the 
agents in both teams take an intermediate opinion and 
collaborate or find a common ground (form a local consensus) 
(Fig. 3(b), agents 1, 4, 5, 6). The solution to such intra-team 
conflict is to have prior preparation for a common agenda [26]. 

In case 3, the team with stubborn agents will be divided in 
3 opinion values, the two stubborn values and the intermediate 
value of the agent that is connected to the two strong opposite 
opinions (Fig. 3(c)). If one of the bridge members has a strong 
vision and leadership (agent 1) and if all the agents in the 
opposite team are regular agents (agents 4, 5, 6), the opposite 
team will form an agreement with the bridging member of the 
team with stubborn agents (agent 1). The bridge agent is 
known as a boundary role person (BRP). Because such BRPs 
are often closer to the opposite team, physically and 
psychologically, they naturally share a relationship with the 
BRPs of the opposite team. This can potentially weaken the 
bond of the BRP with their own team [32]. After all, it is often 
preferable that negotiators have an understanding of and act in 
a way to accommodate the opponent’s needs [31]. The 
influence of the other team is stronger with individualistic 
cultures in the occident than in the collectivist cultures in the 

orient, because BRP of the individualistic cultures are less 
bound to their own team [26]. 

In case 4, one of the bridging members, a BRP, is a 
stubborn agent or a leader (Fig. 3(d), agent 1). However, there 
is a strong opposing opinion in the other team which is not a 
BRP (agent 5). The members of the BRP leader team follow 
the BRP leader. Although the BRP leader’s opinion has an 
influence on the team members of the other team, where the 
strongest influence is on the BRP of the other team and less 
influence on the non-BRP regular agents, the BRP leader 
cannot completely win over all the agents in the other team due 
to the opposition member (agent 5) in the other team. This case 
is a good example to show the extent of influence an agent 
would have depending on the location in a global network 
topology. One stubborn agent is a BRP (agent 1) and the other 
stubborn agent (agent 1) is not. In a team negotiation context, it 
is known that the quality of the negotiation outcome may be in 
favor of the BRP that is closer in psychological distance to the 
core ideologies (stubborn agent) of its own team. Perry [33] 
has concluded that when one of the negotiators is 
psychologically distant from their own team, the bargaining 
outcomes should fall in between the outcomes obtained when 
the negotiators are either close or far away psychologically. 
This outcome can be seen in the time progression of Fig. 3(d). 
Additionally, there is a profound significance to this in a 
corporate setting. As mentioned earlier, a BRP is located in a 
privileged position in that it is the only agent to reach the 
opposite team. Therefore, BRP is an agent that has access to 
internal as well as external (other corporate) information. 
Assume that BRP initially does not have any hierarchical 
authority or a legitimate basis of power. It is just another 
employee. However, during the time of environmental 
turbulence for business, due to its unique position in the 
interaction network of having both internal and external 
information, the BRP has the potential ability to cope with and 
absorb uncertainty, and channel or control the flow of 
information to its own company [41]. Since “power” is defined 
as an inverse of dependency [42], a BRP could gain power 
which initially would not have had if it were not a BRP. In fact, 
the BRP could intentionally generate conflict to maintain the 
company’s dependency on itself and thus keep its power. This 
is seen again later in this paper. 

In case 5, the connecting members of the two teams have 
opposite opinions (Fig. 3(e), agents 1 and 4). Since the regular 
agent members (agents 2, 3, 5, 6) of their respective teams are 
flexible and obedient to their strong leader, the two teams 
would not reach a consensus and therefore could not 
collaborate. This is a situation where the intensity of conflict is 
high. If a consensus of two teams must be achieved, the two 
teams may need a mediator or an arbitrator [43]. Mediation is 
where a third party makes a recommendation that is mutually 
acceptable based on information about the two teams. 
Arbitration is where the two teams commit to following the 
third party recommendation. The arbitrator has enforcing 
means. Both mediators and arbitrators are a third party that 
intervenes in the negotiation process [44]. In case 6, when there 
are oppositions by non-bridge members in each team (Fig. 3(f), 
agents 2 and 5), even though the members are attracted by the 
other team, they would not form a single consensus. Rather, the 
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opinion of the members would range between the two extreme 
opinions, where the intermediate BRPs would receive the 
greatest influence from the other team. Although in case 5 a 
consensus was formed in their respective cliques, the formation 
of coalitions is beginning to appear in case 4 and 6. This is 
more so when we have a tree module line network, which is 
discussed below. 

B. Scale-free network team structure 

So far, a model of interaction of small scale teams was 
considered. The location of stubborn agents and the role of the 
BRP were examined. When the number of agents increases in a 
team, there are two things that can change from a smaller 
group. The first is, as the number of agents increase, there will 
be more opinions and cultures. The second is, the BRP at the 
boundary surface may become more distant from the core 
ideology of their team held by a strong leader (stubborn agent). 

First considering the cultural aspect, when the number of 
cultural diversity increases, the team is exposed to the 
possibility of forming coalitions within the team. Coalition is a 
subunit of a team that is consisted of two or more members 
whose intentions are to fulfill their own goals instead of the 
goals of the host team [45]. Coalition is said to form among 
those who have similar social/cultural traits. Here, 
social/cultural traits are individualism/collectivism, 
masculinity/femininity, etc. [46]. When the team is culturally 
homogeneous or completely heterogeneous, the likelihood of 
coalition formation is less. However, when the diversity of 
cultures is intermediate, a team is exposed to the possibility of 
coalition formation [47]. The presence of a coalition in a team 
can be unproductive because it may cause internal conflict and 
distancing among members [48]. Coalition makes the team 
more complex and unstable. 

Assuming various cultures exist in a team, such cultures 
may be modeled as a sub-modular structure in the overall 
network, as seen in the hub and branch module structure in Fig. 
4. When there are two stubborn agents, the agents and their 
cultural groups positioned between the two stubborn agents 
may hold varying degrees of sentiments depending on their 
location. During the consensus procedure, these network 
modules form a consensus within their cultural module. If there 
are no stubborn agents or if there is a single stubborn agent, 
these modules form a global consensus after they have 
established a local consensus as we have seen in Fig. 2. This 
two stage convergence is seen also for agents not in between, 
but “outside” the two stubborn agents, such as agents 2 and 52 
community who eventually form a consensus with the agents 1 
and 51 community. However, when there are two opposing 
state values (agent 1 and 51), the local culture modules 
between the two stubborn agents never converge with the other 
culture modules due to the influence of the opposing stubborn 
agents. Thus, multiple coalitions are formed within the team. 

Finally, considering the distance of the BRPs from the core 
ideologies of their team, the farther away they are from the 
core and closer to the periphery near their opposite team, there 
is the risk of the negotiation outcome become less attractive for 
its own team where the BRP belongs and more preferable for 
the opposite team. There are two reasons why this may happen. 
First, because of the distance of the BRP from the core, the 

negotiator BRP may have an ambiguous understanding of the 
team’s goal because of conflicting information. The second 
reason is the BRP may set incongruent goals of their team, 
either unintentionally due to lack of information or 
intentionally in order to create uncertainty in the situation so 
that they would be relied upon more by their organization and 
thus gaining more power. The farther away the BRP is from 
the core, this trend is stronger [33]. The terminal values taken 
by the BRP agents in Fig. 5 reflect this situation. The closer the 
BRP is to their opposite team and farther away they are from 
their respective “core” stubborn agent values, the BRP values 
of both teams become closer. 

V. CONCLUSION AND SUMMARY 

A multi-agent system was used to model the interaction of 
agents under the restrain of a team structure. The agents have 
an averaging protocol for consensus formation. However, not 
all agents are cooperative. The team interaction structures used 
were a minimum dumbbell network and two scale-free 
networks connected. All possible outcomes of the minimum 
dumbbell structure with two stubborn agents were interpreted 
in a team cooperation/negotiation setting. As indicated by 
previous literature, the bridging agents or boundary role 
persons have a unique role to serve. Its position on the network 
showed that it has a strong influence over the other agents. 
When stubborn agents are located at both bridging nodes, the 
agents are strongly united with their team that it is 
recommended to involve a third party to moderate or arbitrate. 

The scale-free line network with tree modules showed the 
possibility of coalition formation based on the cultural diversity 
in the team. Such coalition formation dynamics can be seen in 
the way modular networks form a consensus, that local 
consensus is formed first and then a global consensus is 
reached. This shows the influence of both local and global 
topology that influences the overall characteristics of the 
network dynamics. The branching agents from the main line 
nodes can be considered to have the same 
culture/attitude/mentality. This network can also model the 
psychological distance between the boundary role person and 
the core ideology of the team. The farther away they are from 
the core, and more cultural values there are in between, their 
ideology becomes closer to the other team. Such a model can 
be used not only for commercial settings, but also in a political 
setting in society, between two extreme policies. 
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