
(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

1 | P a g e

www.ijacsa.thesai.org

An Enhanced Version of the MCACC to Augment the

Computing Capabilities of Mobile Devices Using

Cloud Computing

Mostafa A. Elgendy

Computer Science

Faculty of Computers and

Informatics

Benha, Egypt

Ahmed Shawish

Scientific Computing

Ain Shams University

Cairo, Egypt

Mahmoud I. Moussa

Computer Science

Faculty of Computers and

Informatics

Benha, Egypt

Abstract—Recently as smartphones have a wide range of

capabilities a lot of heavy applications like gaming, video editing,

and face recognition are now available. However, this kind of

applications need intensive computational power, memory, and

battery. A lot of researches solve this problem by offloading

applications to run on the Cloud due to its intensive storage and

computation resources. Later, some techniques chooses to offload

part of the applications while leaving the rest to be processed on

the smartphone based on one or two metrics like power and CPU

consumption only without any consideration to other important

metrics. Our previously proposed MCACC framework has

introduced a new generation of offloading frameworks that

handle this problem by smartly emerging a group of real-time

metrics like total execution time, energy consumption, remaining

battery, memory, and security into the offloading decision. In this

paper, we introduce an enhanced version of the MCACC

framework that can now smartly operate under low bandwidth

network scenario in addition to its existing capabilities. In this

framework, any mobile application is divided into a group of

services, and then each of them is either executed locally on the

mobile or remotely on the Cloud through a dynamic offloading

decision model. The extensive simulation studies show that both

heavy and light applications can benefit from the proposed

framework while saving energy and improving performance

compare to previous counterparts. The enhanced MCACC turns

the smartphones to be smarter as the offloading decision is taken

without any user interference.

Keywords—smartphones; android; offloading; mobile Cloud

computing; battery; security

I. INTRODUCTION

Recently smartphones are becoming popular. Studies
showed that more than 56% of users in the world use
smartphone [5]. More than 53% percent of smartphone owners
used the Android OS [6]. Smartphones have a wide range of
capabilities like, Wi-Fi, cameras, storage, GPS and speed
processors. As a result, developers are building more complex
mobile applications such as into heavy applications such as
natural language translators, speech recognizers, optical
character recognizers, image processors and search, online
games, video processing and editing, navigation, face
recognition and augmented reality.

As applications become more complex, it consumes most
of the mobile devices resources such as battery, memory, and
computational power. Mobile applications can augment their
capabilities with unlimited computing power and storage space
by offloading some services to run on the Cloud; as result
saving time and computation power which are called mobile
Cloud computing [1 - 3].

A mobile Cloud computing survey show a lot of work done
in this field. Some solutions considered an application as a
single unit that cannot be decomposed into multiple methods
and must be run either on the Cloud or locally [9], while others
like [7] always offload services to execute on the Cloud all the
time without taking any decisions as in. Some other solutions
use a simple offloading model which take parameters like
power and CPU consumption in their offloading decision as in
[8-10]. Later, our proposed Mobile Capabilities Augmentation
using Cloud Computing (MCACC) framework [11] has
introduced a new generation of offloading frameworks that
handle this problem by smartly emerging a group of real-time
metrics like total execution time, energy consumption,
remaining battery, memory, and security into the offloading
decision. Its extensive simulation studies showed its capability
to handle heavy applications by efficiently utilize the available
smartphone resources and offload only when necessary based
on realistic decision metrics.

In this paper, we introduce an enhanced version of the
MCACC framework that can now smartly operate under low
bandwidth network scenario in addition to its existing
capabilities. In this framework, any mobile application is
divided into a group of services, and then each of them is either
executed locally on the mobile or remotely on the Cloud based
on a dynamic offloading decision model. In case of low
bandwidth scenario, the offloading decision is taken based on
real-time comparisons between being executed locally, or
compressed and then offloaded, or offloaded directly without
compression.

The extensive simulation studies show that both heavy and
light applications can benefit from the proposed framework
even under low bandwidth scenario, while saving energy and
improving performance compare to its previous counterparts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

2 | P a g e

www.ijacsa.thesai.org

Now, Android developers can use our proposed MCACC
very easily by adding the MCACC library into their projects
and by adding the MCACC builders to the project building
process.

In this paper, we provide a detailed description of the whole
MCACC framework with its new enhancement as a complete
solution. The rest of the paper organized as follows. Section II
introduces the background and shows related work. Section III
describes the MCACC framework. Section IV discusses the
results of the extensive simulation studies. The paper is finally
concluded and future work is presented in Section V.

II. BACKGROUD

This section provides a comprehensive background on the
mobile environment and application development process. In
addition, it provides to a complete review on the related work
done in the offloading context.

A. Mobile environment and Application Development

 Android Architecture: The Android platform is a 1)

software stack that was designed primarily but not exclusively

to support mobile devices such as phones and tablets. This

stack has several layers going all the way from low level

operating system services that manage the device itself up to

sample applications, things like the phone dialer, the context

database, and a web browser. At the bottom, there is a i)

Linux kernel layer- which provides two core services that any

Android computing device will rely on. The first service is

Generic operating system services which contains device

drivers, memory management, process management and

security. The second service is Android specific components

which contains power management, Android shared memory

and Inter Process Communication (IPC). Above that, there

are ii) System libraries- These libraries are typically written

in C and C++ and for that reason they are often referred to as

the native libraries. These native libraries handle a lot of the

core, performance sensitive activities on your device like

quickly rendering web pages and updating the display. Beside

this there is iii) Android runtime system – contains two

components which support writing and running Android

applications. The first component is a core Java libraries that

provides a number of reusable Java building block to allow

developer to write Android applications using Java

programming language. The second component is the Dalvik

Virtual Machine that actually executes Android applications.

Above that, there's a rich iv) Application framework layer-

this exposes the various capabilities of the Android OS for

application developers so that they can use these capabilities

in their applications. These capabilities are like package

manager, window manager, view system, resource manager,

activity manager, Content providers, location manager, and

notification Manager. Finally at the very top, there is v)

Applications - Android comes with some built-in applications

which include things like the Home Screen, the Phone Dialer,

the Web Browser, an Email Reader, and more. One of the

things that are really nice about Android is that none of these

apps is hardcoded into the system [12].

 Android Application Components: In any android 2)

applications the following components make the structure of

it, and these component are Activities, Services, Content

Providers, and Broadcast Receivers, which have their own

specific lifecycle within the system [12]. This study focused on

activities and services as the separation between the them

form a natural basis for MCACC framework.

 Android IPC: When user launch an android application 3)

the operating system starts an activity that presents a

graphical user interface to the user. When this activity is

bound to the running service, it communicates with the service

through IPC, using a predefined interface by the programmer

called AIDL file and a stub/proxy pair generated by the

Android pre-compiler [13]. When an activity tries to call

service method, it uses the proxy object to communicate with

the stub which has the actual implementation of the service as

shown in Fig. 1.

 Android Application Development: Any android 4)

applications have to be written in the Java. When developer

writes android applications and try to build it, the build

process will invoke Android Resource Manager followed by

Android Pre Compiler, then it invoke Java Builder, finally

invoking Package Builder to build a single APK file which can

be installed on any Android device [11].

B. Related Work

A lot of researches have been done on remote execution of
mobile applications services on the Cloud to increase
performance and save mobile power and memory resources
[19] and [20]. These researches are divided into two paths:

 Process and VM Migration: In this approach a full 1)

process or full VM is migrated into the Cloud for processing.

There are some researches done in this approach as follows:
CloneCloud enables unmodified mobile applications

running in an application level virtual machine to seamlessly
offload part of their execution from mobile devices on device
clones operating in a computational Cloud[14]. When running
a complete clone of the smartphone at the remote Cloud
resource, there is cost of keeping the smartphone synchronized
with an application clone in the Cloud; so it’s better to offload
only the needed services to run on the Cloud, Also in low
bandwidth network data can be compressed before offloading
to the Cloud to minimize data transferred over network.
ThinkAir exploits the concept of smartphone virtualization in
the Cloud and provides method-level computation offloading
[15]. ThinkAir creates virtual machines (VMs) of a complete
smartphone system on the Cloud, and provides an online
method-level offloading however it lacks flexibility and control
over offloaded components. Developers organize their
application using Android service design patterns. Also in low
bandwidth network data can be compressed before offloading
to the Cloud to minimize data transferred over network.

 Method Offloading: Another common approach for 2)

remote execution is to partition mobile application into some

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

3 | P a g e

www.ijacsa.thesai.org

services that executes locally on mobile or remotely on the

Cloud and this is called method offloading. There are a lot of

researches which have done in this approach and these will be

described and their drawbacks will be discussed in the

following section.

Fig.1. An overview of the Android IPC mechanism

Cuckoo proposed a framework that automatically offloads
heavy services to execute on the Cloud. Cuckoo use the very
simple model which always prefers remote execution [7]. It’s
better to use some metrics in taking offloading decision like
service processing time instead of offloading all the time than
always offloading service directly. Also, in low bandwidth
networks the time for communicating and transmit data on
network and execute service on the Cloud is larger than the
time to executing services on mobile, so Cuckoo decide to run
services locally on the mobile. Cuckoo can compress data
before sending to the Cloud, as result saving time in low
bandwidth networks. Another thing, data sent to Cloud must be
protected, so any security technique should be applied for
protection. Eric Chen implements a framework that
automatically offloads heavy tasks to execute on the Cloud [8].
Eric Chen uses total response time, energy consumption and
remaining battery life in deciding whether a task should be
offloaded or not without adding any memory usage
consideration and security to the offloading model. Also in low
bandwidth networks, application can also offload data to the
Cloud by compressing data before offloading which lead to
minimize data transferred over network. Vinod proposed a
model for deciding whether to offloads heavy backend tasks to
execute on the Cloud [9]. Vinod take some considerations like
memory usage consideration and security to the offloading
model. Vinod considered an application as a single unit that
cannot be decomposed into multiple methods and must be run
either on the Cloud or locally. However in some cases it’s
better to offload some methods to execute on the Cloud and run
the others on mobile. Karthik Kumar provides simple analysis
for deciding whether to offload computation to a server or not.
This analysis tries to measure the power of sending
computations to the Cloud and the power of executing
computation on mobile device [1]. Although this analysis
solved the problem, it lack any memory usage consideration
and battery consideration when making analysis. Kumar also
conclude that offloading data intensive tasks to the Cloud
depends on the network bandwidth as if the network is low, it
will better to execute service locally on the mobile and if the
network is high, it will better to execute service remotely on

the Cloud. However in low bandwidth networks application
may get rid of Cloud by compressing data before offloading, as
result execution time and power consumption can be save
Kiran I. Koshy try to measure energy benefits of offloading
tasks from mobile devices to powerful remote servers. Kiran
measured the energy consumed by mobile and added network
energy consumed to it, and measure the energy consumed by
Cloud and compared for deciding whether a task offloading
reduced energy or not [10]. Kiran missed some metrics when
making this investigation like memory usage. Another thing,
data sent to Cloud must be protected, so any security technique
should be applied for protection. Kiran can be improved by
compressing data before offloading to the Cloud in low
bandwidth networks. Phone2Cloud [21] use a naive history
based method to predict average execution time of an
application on smartphone. It monitor network bandwidth and
leverages average CPU workload got from the resource
monitor and input size of the application to predict execution
time using the history log. However in data intensive
application and low bandwidth network, Phone2Cloud always
prefer to run service locally on the mobile. Phone2Cloud can
improve his framework by compressing data before offloading
to the Cloud in low bandwidth networks.

III. PROPOSED FRAMEWORK DESIGN

In this section, the enhanced MCACC architecture is
addressed in detail with its dynamic offloading model. The
process done on the Cloud side and the communication
between the mobile and the cloud is also discussed. Finally,
this section describes the builders added to allow any android
application to make use of our framework.

A. MCACC Architecture

As shown in Fig. 2. MCACC consists of four main
components i) Decision Manager - ii) Offloading Manager -
iii) Execution profile - and iv) Cloud Manager. The first three
components are deployed on the mobile and the Cloud
manager component is deployed on the Cloud. In order to use
MCACC, the application should be structured using android
services pattern. Note that Communication between activities
and services done through stub/proxy generated by Android
pre-compiler.

 Offloading Manager: is responsible for executing the 1)

application services based on the decision taken by Decision

Manager. If the decision is to execute the service locally on

the mobile, then Offloading Manager calls the local service

implementation from the mobile side. However if the decision

is offloading the service for execution on the Cloud, then the

Offloading Manager connect to the Cloud Manager and send

any data needed to execute the service, Then it waits until the

Cloud Manager execute the service on the Cloud and send the

result back to the mobile side. At the end Offloading Manager

is responsible for receiving the returned results and delivering

it to the application.

 Execution Profiler:is a profile created for each service 2)

by Decision Manager at the first of its run to store some data

related to each service like execution time, power

comsumption and memory consumption. It store these data for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

4 | P a g e

www.ijacsa.thesai.org

each service based on executing sample example of the service

in the following three scenarios. The first scenario is when

service executed locally on the mobile. The second

scenario is when service offloaded and executed on the Cloud.

Note in this case it store only Cloud execution time removing

the time to send data over network, as the time of sending data

over network depends on network bandwidth, so it can be

calculated when trying to call the service. The third scenario

is when compressing service data, then offloading it for

execution on the Cloud. In subsequent runs of the Decision

Manager, data stored in Execution Profiler and network

bandwidth will be used in taking the offloading decision.

Fig.2. MCACC Architecture – services like S2 can be offloaded to run on

the Cloud using Offloading Manager and Cloud Manager.

 Decision Manager: uses a dynamic offloading model to 3)

decide at runtime weather the service will be offloaded to the

Cloud – offloaded with or without compression, or executed

locally on the mobile. First it get the network bandwidth, then

it read service stored data about execution time, power

comsumption and memory consumption from the execution

profiler for the three running scenarios. Finally it uses the

offloading model algorithm described in Section B to make an

offloading decision. When it decides to run the application

locally or remotely, it calls Offloading Manager which is

reasonable for service execution.

 Cloud Manager: is reasonable for service execution on 4)

the Cloud. In the first run it receives the Jar file which

contains the remote implementation of all application services

and the needed libraries from Offloading Manager and install

it at the Cloud side. At any time when the Offloading Manager

try to call service from the Cloud, Cloud Manager receive all

required data to execute the service, execute it and return the

result to Offloading Manager.

B. Offloading Model

When an activity invokes a method of a service, the
Android IPC mechanism directs this call through the proxy and
the kernel to the stub. In normal android application the stub
invokes the local implementation of the method and then
returns the result to the proxy. When using the MCACC, the
android application becomes smarter. MCACC uses dynamic
offloading model to evaluate whether it is beneficial to offload
the method to run on the Cloud, compressing it and then
offloading to run on the Cloud, or executing it locally on
mobile. MCACC uses five metrics in taking decision. These
metrics are i) execution time- ii) energy consumption- iii)
remaining battery life - iv) memory usage and v) security.

The execution time metric, dealt with total time required to
perform a task. Let I be the number of instructions involved in
a method invocation, SMobile be the processor speed
(instructions per second) of the mobile and SCloud be the
processor speed on the Cloud. If the amount of data transferred
between mobile and Cloud is D and the network bandwidth is
B, the time it takes to transfer data is D/B. Using these,
MCACC derived the relationship between execution speed and
communication overhead as shown:

Let

 ,

 and

 .from

these we can drive this

If

T=1

else If after compression

T=1

else

T=0 (1)

If the execution time on the mobile is greater than the sum
of the time to send data over network and execution time on
the cloud or if this is true but in the case of compressing data
before sending to the Cloud, then it’s beneficial to offload to
run on the Cloud. Other than theses case it’s better to execute
service locally on the mobile.

The energy consumption metric, dealt with energy
consumption. Let PMobile watt the energy consumed by mobile
for computing per second, PCloud watt the energy consumed by
mobile for being idle until executing service on the cloud per
second and PNet watt for sending and receiving data; then the
energy consumed is watt. If the Cloud
performs the computation, the energy consumed was
 watt for the communication overhead and
 watt. Using these MCACC derived the
relationship between energy consumption on the mobile and
on the Cloud:

If

 P =1

else if after compression

 P =1

else

 p =0 (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

5 | P a g e

www.ijacsa.thesai.org

If the energy consumption on the mobile is greater than the
sum of the energy consumed to send data over network and
execution time on the cloud or if this is true but in the case of
compressing data before sending to the Cloud, then it’s
beneficial to offload to run on the Cloud. Other than theses
case it’s better to execute service locally on the mobile.

The remaining battery metric, dealt with mobile remaining
battery life in decision-making. Let L be the mobile remaining
battery life in watt. If a task couldn’t be completed with the
remaining battery of the mobile or if the remaining battery is
sufficient to upload the input data required to perform the task
on the Cloud, the Cloud can do the task while the mobile's
battery drains out. The Cloud can later return the results to
mobile. This condition expressed by the following metric:

If

 B =1

else if after compression

 B =1

else

 B =0 (3)

If

 B =1

else

 B =B - from previous equation (4)

The memory usage metric, dealt with memory used to
perform a task. Let memavail the memory available on mobile,
memtotal the total memory available and memth is the percentage
of threshold that the process will not exceed. If the service
memory usage exceeded the threshold specified with or
without compression, the service offloaded for execution on
the Cloud and return the results to mobile, otherwise the
service will be executed locally on the mobile. This condition
expressed by the following metric:

From the above equation

If

 M =1

else if after compression

 M =1

else

 M =0 (5)

The security metric that MCACC use when we try to
offload dealt with security used; is the user needs a security on
data before sending to the Cloud, using this metric allows to
encrypt data before sending and decrypt it on the Cloud for
processing. MCACC uses AES technique for encryption and
decryption.

If user need security

 S =0

else

 S =1 (6)

 After calculating T, P, B, M and S from these previous
metrics mobile user can set priorities to each metric using the
following weights wt, wP, wl, and wm, finally the offloading
model decide whether the service will be offloaded to the
Cloud – offloaded with or without compression, or executed
locally on the mobile using the following equation:

Let

If C > 0.5

 Cloud = 1.

else

 Cloud = 0. (7)

 After calculating C from the previous equation and
selecting whether needing security or not. If C is greater than
0.5, then the service will be executed on the Cloud, otherwise
the services will be executed locally on the mobile. When
offloading the service for execution on the Cloud if the user
select security, then data will be encrypted before sending it to
the Cloud.

C. Cloud Side

 Cloud Manager is written with pure Java so any
application can offload its computation to any resource
running a Java Virtual machine; either being machines in a
commercial Cloud such as Amazon EC2 [17] or private
Clouds such as laptops and desktops. MCACC run Cloud
Manager which handles all offloading requests from the
clients, installation of offloaded services and their
initialization, libraries needed and. Finally Cloud Manager
invokes services when Offloading Manager needs to call them.
Note that at first run of user application MCACC sends the jar
file created by Jar Creator to the Cloud.so all mobile services
become available for execution on the Cloud.

D. Communication: IBIS

In order to execute methods on a remote resource, the
phone has to communicate with the Cloud resource. MCACC
used the Ibis communication middleware for this purpose [11].
The Ibis middleware consists of two subsystems, the Ibis
Distributed Deployment System and the Ibis High-
Performance Programming System. MCACC framework has
been implemented on top of the Ibis High Performance
Programming System, which offered an interface for
distributed applications [16].

E. Integration into Build Process

In any Android application the connection between the
activities and AIDL services processed as follow: When an
activity needs to invoke a method in a service, it makes call to
the matching method in the proxy. The proxy is responsible for
connecting to service to call the need method. The proxy
doesn’t connect to service directly but, it connects to stub
which call the local service and return the result to the proxy.
The proxy takes this result and passes it to the caller activity.
The framework is deployed in the application layer without
modifying the underlying Android platform. The framework

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

6 | P a g e

www.ijacsa.thesai.org

provided three Eclipse builders that can be inserted into an
Android project’s build configuration in Eclipse.

 Stub Modifier: The first builder is called the Stub 1)

Modifier and has to be invoked after the Android Pre

Compiler, but before the Java Builder. The Stub Modifier will

rewrite the generated Stub for each AIDL interface, so that at

runtime it connected to the Decision Manager to take

offloading decision whether a method will be invoked locally

on mobile or remotely on the Cloud.

 Remote Creator: The second builder called Remote 2)

Creator used to derive a dummy remote implementation from

the available AIDL interface for each service. Now the

application with two copies of a service during the build

process: i) the first copy of the service added by Android

called the local service that executes on the mobile. -ii) the

second copy of the service added by framework using Remote

Creator and contains the same implementation as the local

services and called remote service. This second copy will be

executed on the Cloud, so developer can change its

implementation to use all Cloud resources like parallel

processing.

 Jar Creator: The third builder called Jar Creator used 3)

to build a Java Archive File (jar) which contains the remote

implementation and all needed libraries. This jar file will be

installed on the Cloud. The Remote Creator and the Jar

Creator have to be invoked after the Java Builder, but before

the Package Builder, so that the jar will be part of the Android

Package file that results from the build process as shown in

Fig. 3.

IV. SIMULATION STUDIES

To evaluate the MCACC framework, a face detection
application was used. It is an application that allow user to
select image from gallery or to take real-time one, then the
application execute face detection service locally on mobile or
remotely on the cloud using the proposed enhanced MCACC
framework. After that detection service return an array of all
detected faces. Finally the application use this array to draws a
rectangle around each detected face as shown in Fig.4. This
application uses JavaCV library to detect image faces. JavaCV
is a wrapper that allows accessing the OpenCV library directly
from within Java Virtual Machine (JVM) and Android
platform.

A. Simulation Setup

Hardware: On the mobile side a Samsung Galaxy S
Advance GT-I9070 mobile was used. The mobile uses Android
operating system in version 4.1.2, integrates with Wi-Fi
interface, and a battery capacity of 1500mAh. It has CPU with
1 GHz, 1.97 GB system storage and 3.92 GB USB storage at
3.7 volts. On the Cloud side a laptop with a core I3 2.13
processor, 4 Giga Ram acted as a Cloud provider. We evaluate
the execution time, power consumption and CPU consumption
for our application. To measure the power consumption, CPU
consumption, and used memory a software called little eye
V2.4.0.0 is used [18].

Fig.3. A schematic overview of how components integrate into the default

build process.

B. Result and Discussion

Five images were used in the evaluation of the face
detection application. The application was evaluated three
times. i) First the application was evaluated in a good
bandwidth network under two scenarios; the first one
represents the execution of the face detection service on the
mobile device, while the second one represents the offloading
of the service for execution on the Cloud. ii) Second the
application was evaluated in a low bandwidth network under
three scenarios; the first one represents the execution of the
face detection service on the mobile device, the second
represents the offloading on the Cloud and the third represents
compressing the data before offloading it on the Cloud. and
finally iii) the application was evaluated using more than on
security algorithms under two scenarios; the first one
represents the execution on the mobile device, while the
second one represents the offloading on the Cloud.

Fig.4. Screenshot of face detection application

 Good bandwidth network: Five images were used in 1)

evaluating the face detection application under two scenarios;

the first one represents the execution of the face detection

service on the mobile device, while the second one represents

the offloading of the service for execution on the Cloud.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

7 | P a g e

www.ijacsa.thesai.org

Fig. 5 shows the execution time where the x -axis
represents the size of the images in kilo bytes while the y-axis
represents the processing time in seconds. It can be easily
noted that the increase of image’s size implies a corresponding
increases in the processing time on the mobile device
consuming memory and power resources while in the offload
scenario (i.e., using the Cloud) such resources are relatively
preserved.

For example, the image with size 9830.4 kb takes about 7
seconds to be executed on mobile while it takes about 5 second
to be executed on Cloud. However, it is worth to note that the
time in the offloading scenario Cloud is the sum of the time
needed to send/receive the service to/from the Cloud plus the
execution time there. So the offloading scenario does not only
depends on the Cloud execution time but also depends on the
network bandwidth.

Fig.6. shows the CPU consumption percentage in both
scenarios. The x -axis represents the size of images in kilo
bytes and the y-axis represents the average of CPU
consumption percentage. The result demonstrates the
aggressive consumption of the mobile resources in case of
executing such heavy service. It also shows the efficiency of
the offloading approach to save such resources. For example,
the execution of face detection service on mobile consumed
about 33% of CPU, while this percentage is minimized to 7.5%
in the offloading scenario.

 Fig. 7 and 8. describe the power and memory consumption
in both scenarios, respectively. The x -axis represents the size
of images in kilo bytes and y-axis represents the power and
memory consumed by the mobile. The results of both
experiments match well with the conclusion of the previous
one: offloading is a better choice in case of heavy services.
However, we are not arguing to prove this conclusion, we are
here providing a smart offloading framework that is able to
take the right decision under any circumstance, taking into
consideration all of the above real-time metrics.

Fig.5. Processing time on mobile and on Cloud

Fig.6. CPU consumption percentage on mobile and on Cloud

Fig.7. Power consumption on mobile and on Cloud

Fig.8. Memory consumption on mobile and on Cloud

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

8 | P a g e

www.ijacsa.thesai.org

 Low bandwidth network: In this part the application 1)

is evaluated in a low bandwidth network under three

scenarios; the first one represents the execution of the face

detection service on the mobile device, the second represents

the offloading on the Cloud, and the third represents

compressing the data before offloading.
Fig.9. shows the execution time in the three scenarios in

low bandwidth networks. The x -axis represents the size of the
images in kilo bytes and the y-axis represents the processing
time in seconds. It can be easily noted that the execution time
on the Cloud without compression is greater than execution
time on mobile and on the Cloud with compression as it takes
more time to transfer data through the low bandwidth network.

For example, the image with size 9830.4 kb takes about 12
seconds to be executed on Cloud while it takes about 7 second
when executed on the mobile. Similarly, as the image size
increases, the execution time on the Cloud without
compression increases too in comparison with the other two
scenarios. It is also noted that the execution time on the mobile
is nearly equal to the compression scenario. For example, the
image with size 9830.4 kb takes about 7 second to be executed
on the mobile and almost the same when offloaded on the
Cloud with compression. Accordingly, we conclude that
compressing data and offloading it will give the same
performance as processing the requested service on the mobile;
nevertheless it will save the mobile resources.

Fig.10. shows the CPU consumption percentage in the three
scenarios. The results demonstrate the aggressive consumption
of the mobile resources in case of executing such heavy service
locally on the mobile. It also shows the efficiency of offloading
service to save such resources.

For example an image with size 9830.4 kb consumes about
48% of the mobile CPU in the first scenario while consuming
10% and 16% in the second and third scenarios, respectively. It
also noted that the execution of face detection service on
mobile consumed about 34% of CPU on average, while this
percentage is minimized to 12.45% in the compression
offloading scenario and 7.4 % in the offloading scenario
without compression. Accordingly, it can be concluded that in
low bandwidth networks, if the user priority is to save the
mobile CPU consumption, then it is better to offload service to
the Cloud with or without compression.

Fig.11. describes the power consumption in the three
scenarios, respectively. The results match well with the
conclusion of the previous one; offloading data to the Cloud or
compressing data and then offloading to the Cloud is a better
choice in case of heavy services if the network bandwidth is
low. the extensive simulation studies report that in low
bandwidth network it is better to compress the data before
offloading to the Cloud.

 Security: the application was evaluated with more than 2)

on security algorithms using two scenarios; the first one

represents the execution on the mobile device, while the

second one represents the offloading on the Cloud.

Fig.9. Processing Time of the application under the three scenarios using

low bandwidth network

Fig.10. CPU Consumption of the application under the three scenarios using

low bandwidth network.

Fig.11. Power Consumption of the application under the three scenarios using

low bandwidth network

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

9 | P a g e

www.ijacsa.thesai.org

Fig.12. shows the execution time when running the
application on the mobile versus a secured offloading. As
usual, the x -axis represents the size of images in kilo bytes and
y-axis represents the processing time in millisecond. It should
be noted here that before offloading the service (i.e., sending
the faces image to be detect on the Cloud) the MCACC will
first encrypt it and then decrypt it after receiving the results
from the Cloud. The results shows that adopting a security
layer on the transmitted data add an overhead on the mobile
resources in order to be encrypt and decrypt. In some case this
processing time is acceptable in small sized images like for
example image of size 360 kb takes (0.583 second) in the
secured offloading scenario while it takes (0.885 second) on
the mobile. In other case like for example image of size 9830.4
kb, it takes (7.49 seconds) in the secured offloading scenario
while it takes (7.012 seconds) on the mobile. It is also worth to
note that the AES technique for encryption and decryption is
better than the Blowfish technique as shown it the figure. We
can easily note the effect of security layer on the offloading
process and how it may affect the processing time on the
mobile.

In general, the extensive simulation studies report that
executing application services on the mobile consumed a lot of
the mobile’s resources which is not acceptable, while
offloading it to the Cloud may save such resources. Also the
results showed that in low bandwidth network, application
services can be offloaded by compressing data before
offloading. The results also showed that when adding a
security layer to the offloading process an additional overhead
should be taken into consideration. On the other hand, it is
worth to note that the proposed framework supports automatic
offloading of multiple Android services based on a group of
realistic metrics inspected instantaneously from the
smartphone. In addition, the with the popular open source
Android framework and the Eclipse development tool. It
provides a simple programming model, familiar to developers.
This model allows developer to use our framework very easily
and adds offloading components automatically.

Fig.12. Processing time on mobile and on Cloud when Appling encryption

techniques

The Proposed MCACC is efficiently solving a group of
drawbacks in the current available techniques. For example, it

overcomes the Clone Cloud [14] deficiency by offloading only
the needed services based on the offload model, and hence
avoids the costly process of keeping the smartphone
synchronized with an application clone in the cloud. Moreover,
by adopting a runtime offloading model based on five metrics,
MCACC is smarter than Cuckoo [7] that uses a very simple
heuristic approach to always send services to be executed on
cloud without any decision. With respect to the solutions
provided by Eric Chen [8], Vinod Namboodiri [9], Karthik
Kumar [1], and Kiran I. Koshy [10] that utilize metrics like
total response time, energy consumption and battery power in
their offloading decision, MCACC is still better as it
additionally utilizes the memory and security metrics. Also
MCACC use cloud also in low bandwidth network by
compressing data before offloading to the Cloud, so saving
mobile resources.

V. CONCLUSION

This paper proposed an enhanced version of the framework
called Mobile Capabilities Augmentation using Cloud
Computing (MCACC) that helps smartphone to handle heavy
applications. The new enhancement extends the previous
framework capabilities to utilize the limited available resources
of the smartphones and smartly offload the services to the
Cloud even under low bandwidth scenario. In this framework,
any mobile application is divided into a group of services, and
then each of these services are either executed locally on the
mobile or remotely on the Cloud using a dynamic offloading
decision model. Here, the decision is based on real-time
metrics: total execution time, energy consumption, remaining
battery, memory, security, and network bandwidth.

The extensive simulation studies report the ability of the
proposed framework to efficiently utilize the available
smartphone’s resources in addition to augmenting them using
the Cloud Computing.Our future work will focus on enabling
parallelization of the offloaded services and minimizing the
security overhead between the mobile and the Cloud.

REFERENCES

[1] K. Kumar, and L.Yung-Hsiang, "Cloud Computing for Mobile Users:
Can Offloading Computation Save Energy?," Computer , vol.43, no.4,
pp.51-56, April 2010 doi: 10.1109/MC.2010.

[2] P. Mell, and G. Timothy, "The NIST definition of Cloud computing,"
NIST special publication, 800(145), 7. 2011.

[3] D. Kovachev, C. Yiwei, and K. Ralf, "Mobile Cloud Computing: A
Comparison of Application Models, " Computing Research Repository,
abs-1107-4940, 2011.

[4] A. Berl, G. Erol, D. G. Marco, G. Giovanni, D. M. Hermann, Q. D.
Minh, and P. Kostas, "Energy-Efficient Cloud Computing," The
Computer Journal vol. 53, pp. 1045-1051. 2010.

[5] webpage on Smartphone users. [Online]. Available: http://www.go-
gulf.com/blog/smartphone/. 2012.

[6] Hepburn, A. webpage on Android usage. [Online]. Available:
http://www.digitalbuzzblog.com/infographic-2013-mobile-growth-
statistics/. 2013.

[7] R. Kemp, P. Nicholas, K. Thilo, and B. Henri, "Cuckoo: A Computation
Offloading Framework for Smartphones," Mobile Computing,
Applications, and Services., vol. 76, pp. 59-79, 2012.

[8] E. Chen, O. Satoshi, and H. Keitaro, "Offloading Android applications
to the Cloud without customizing Android," in Pervasive Computing
and Communications Workshops IEEE International Conference on, pp.
788-793, 19-23 Mar 2012.

http://www.go-gulf.com/blog/smartphone/
http://www.go-gulf.com/blog/smartphone/
http://www.digitalbuzzblog.com/infographic-2013-mobile-growth-statistics/
http://www.digitalbuzzblog.com/infographic-2013-mobile-growth-statistics/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

10 | P a g e

www.ijacsa.thesai.org

[9] V. Namboodiri, and G. Toolika, "To Cloud or not to Cloud: A mobile
device perspective on energy consumption of applications," in World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2012 IEEE
International Symposium on a, pp. 1-9, 25-28 Jun 2012.

[10] K. I. Koshy, M. J. Andrew, N. Andrew, and O. Michael, "Can Cloud
computing lead to increased sustainability of mobile
devic?," Sustainable Systems and Technology (ISSST), 2012 IEEE
International Symposium on, pp.1-4, 16-18 May 2012.

[11] M. A. Elgendy, S. Ahmed, and I. M. Mahmoud, "MCACC: New
Approach for Augmenting the Computing Capabilities of Mobile
Devices with Cloud Computing", Science and Information Conference
(SAI), pp 79-86, 27-29 Aug 2014.

[12] M. Gargenta, Learning Android Building Applications for the Android
Market, O'Reilly Media, 2011.

[13] Webpage on Android Developer AIDL [Online]. Available:
http://developer.android.com/guide/components/aidl.html. 2013.

[14] B. G. Chun, I. Sunghwan, M. Petros, N. Mayur, and P. Ashwin, "
CloneCloud: elastic execution between mobile device and Cloud, " 6th
conference on Computer systems (EuroSys), pp. 301–314, 2011.

[15] S. Kosta, A. Andrius, H. Pan, M. Richard, and Z. Xinwen, "ThinkAir:
Dynamic resource allocation and parallel execution in the Cloud for

mobile code offloading," INFOCOM, 2012 Proceedings IEEE, pp. 945-
953, 25-30 Mar 2012.

[16] R. V. V. Nieuwpoort, M. Jason, H. Rutger, K. Thilo, and E. B. Henri,
"Ibis: an Efficient Java-based Grid Programming Environment," in Joint
ACM Java Grande - ISCOPE 2002 Conference, pp. 18-27, 2002.

[17] The Amazon Elastic Computing website. [Online]. Available:
http://aws.amazon.com/ec2/. 2013.

[18] The Little eye website. [Online]. Available: http://www.littleeye.co/.
2014.

[19] E. Cuervo, B. Aruna, K. C. Dae, W. Alec, S. Stefan, C. Ranveer, and B.
Paramvir, "MAUI: making smartphones last longer with code offload,"
in International Conference on Mobile Systems, Applications, and
Services, pp. 49-62, 2010.

[20] M. Shiraz, G. Abdullah, H. K. Rashid, and B. Rajkumar, "A Review on
Distributed Application Processing Frameworks in Smart Mobile
Devices for Mobile Cloud Computing," Communications Surveys &
Tutorials, IEEE , vol.15, no. 3, pp. 1294-1313, Third Quarter 2013.

[21] Xia, F., Ding, F., Li, J., Kong, X., Yang, L.T., Ma, J., "Phone2Cloud
Exploiting computa-tion offloading for energy saving on smartphones in
mobile Cloud computing", In: Information Systems Frontiers, vol.16,
no. 1, pp. 95-111, (2014).

http://developer.android.com/guide/components/aidl.html
http://aws.amazon.com/ec2/
http://www.littleeye.co/

