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Abstract—Alert correlation analyzes the alerts from one or
more Collaborative Intrusion Detection Systems (CIDSs) to
produce a concise overview of security-related activity on the
network. The correlation process consists of multiple components,
each responsible for a different aspect of the overall correlation
goal. The sequential order of the correlation components affects
the correlation process performance. Furthermore, the total time
needed for the whole process depends on the number of processed
alerts in each component. This paper presents an innovative alert
correlation framework that minimizes the number of processed
alerts on each component and thus reducing the correlation
processing time. By reordering the components, the introduced
correlation model reduces the number of processed alerts as early
as possible by discarding the irrelevant, unreal and false alerts
in the early phases of the correlation process. A new component,
shushing the alerts, is added to deal with the unrelated and false
positive alerts. A modified algorithm for fusing the alerts is
outlined. The intruders’ intention is grouped into attack scenarios
and thus used to detect future attacks. DARPA 2000 intrusion
detection scenario specific datasets and a testbed network were
used to evaluate the innovative alert correlation model. Compar-
isons with a previous correlation system were performed. The
results of processing these datasets and recognizing the attack
patterns demonstrated the potential of the improved correlation
model and gave favorable results.

Keywords — Alert Correlation, Alert Reduction, Intrusion
Detection Systems, False Alarm Rate

I. INTRODUCTION

Intrusion Detection Systems (IDSs) play an essential role
in minimizing the damage caused by different attacks. On the
other hand, many of the weaknesses in traditional IDSs are due
to the lack of collaborations among different detection mech-
anisms, and between intrusion detection and other network
management operations and security mechanisms. Therefore, a
Collaborative Intrusion Detection System (CIDS) architecture
is introduced. In particular, a Collaborative Intelligent Intru-
sion Detection System (CIIDS) is proposed to include both
misuse- and anomaly-based techniques, since it is concluded
from recent research that the performance of an individual
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detection engine is rarely satisfactory. Employing multiple
IDSs and other security systems gives a better view of the
monitored network. They may cooperate to complement each
other’s coverage. Even when different detection methods are
used, they analyze each other’s alerts and reduce false positive
alerts [1][2]. It has been proven by many researchers that
collaborative approaches are more powerful and give better
performance over individual approaches. In fact, the use of
complementary IDSs is a promising technique as each IDS
implements different detection scheme, algorithms and signa-
tures and therefore gives a more exact and complete view of
suspicious network events. Specifically, two main challenges
in current CIDSs research are highlighted: CIDS architectures
and alert correlation algorithms. Alert correlation in CIDSs
will be more challenging. Deploying multiple IDSs might
generate a huge number of alerts, where many are redundant,
irrelevant and false positive alerts. Hence, data reduction, such
as alert aggregation, alert filtering and false alert reduction,
without losing valuable information is essential. The focus
in this research is on correlation of Collaborative Intelligent
Intrusion Detection System (CIIDS) alerts.

Automation of alert management and analysis is crucial
because of the huge number of alarms, the false positives
and the irrelevant alarms and to study the cause of these
alarms. Thus, there is a need of alert correlation, which is a
process that contains multiple components with the purpose of
analyzing alerts and providing high-level insight view on the
security state of the network surveillance [1][3][4]. Correlation
aims to relate a group of alerts to build a big picture of the
attacks, hence can be used to trace an attack to its source.

The core of this process consists of components that imple-
ment specific function, which operate on different spatial and
temporal properties [5].

The correlation components are effective in achieving alert
reduction and abstraction. Research shows that the effective-
ness of each component depends heavily on the nature of
the data set analyzed [5]. Moreover, the performance of the
correlation process is significantly influenced by the topology
of the network, the characteristics of the attack, and the
available meta-data [6].

Since alerts can refer to different kinds of attacks at different
levels of granularity, the correlation process cannot treat all
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Fig. 1: The Innovative Correlation Model [7].

alerts equally. Instead, it is necessary to have a set of compo-
nents that focus on different aspects of the overall correlation
task. Some components, see Fig.1, e.g. those at the initial and
second units, implement general functionality applicable to all
alerts, independent of their type. Other components (e.g. in the
third unit) are responsible for performing specific correlation
tasks that cannot be generalized for arbitrary alerts, but for
certain class of alerts.

Thus, one cannot, in general, determine a ranking among
components with respect to their effectiveness. Each compo-
nent can contribute to the overall analysis. Therefore, the most
complete set of components should be used [5].

An innovative framework focuses on reordering the corre-
lation components such that redundant, irrelevant and false
alerts are reduced as early as possible thus reducing the
number of processed alerts to enhance the performance. The
unrelated alerts that are not correlated are dealt with in a
separate component, shushing the alerts. Hence, the overall
effectiveness of the correlation process is improved.

II. OVERVIEW OF IMPROVED ALERT CORRELATION
FRAMEWORK

The proposed architecture, see Fig. 1, is composed of
ten components: normalization, preprocessing, prioritization,
alert verification, alert fusion, focus recognition, shushing the

alerts, multi-step correlation, intention recognition, and impact
analysis [7].

In the normalization component, alerts that are generated
by multiple IDSs are collected and stored in a database before
they are modeled and converted into a standard format called
Intrusion Detection Message Exchange Format (IDMEF) [8].
Then data preprocessing is required in order to clean the data,
do feature extraction and selection, and finally deal with any
incomplete or missing data [9][10][11][12].

The filter-based correlation unit either assigns a priority to
each alert or identifies irrelevant alerts. Thus, alerts are ranked
based on their severity level in order to distinguish between the
high and low risks alerts depending on information in the asset
DB. In the alert verification component, alerts are checked to
find out the verifiable alerts, false positives and unverifiable
alerts.

Redundant alerts are fused based on similarity functions [2]
in the alert fusion component in the data reduction unit. This
component combines a series of alerts that refer to attacks
launched by one attacker against a single target. It removes
duplicates created by the independent detection of the same
attack by different sensors, and also correlates alerts that are
caused by an attacker who tests different exploits against a
certain program or that runs the same exploit multiple times
to guess correct values for certain parameters (e.g., the offsets
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and memory addresses for a buffer overflow) [5][6][17].
The alert fusion component method, see algorithm 1 below,

keeps a sliding timewindow of alerts. The alerts within the
timewindow are stored in a time-ordered queue. When a new
alert arrives, it is compared to the alerts in the queue, starting
with the alert with the earliest timestamp.

A fusion match is found if all overlapping attributes are
equal and the new alert is produced by a different sensor.
Here variable fuse in the algorithm is set. The timestamp of
the meta-alert is assigned the earlier of the sub-alerts times.
The later timestamp simply indicates a delayed detection by
the other sensor.

On the other hand, attack threads are constructed by merg-
ing alerts with equivalent source and target attributes that occur
in a certain temporal proximity but the alerts need not be
produced by different sensors. Hence, variable thread is set,
see algorithm Alert Fusion below. The timestamp of the meta-
alert is assigned the earlier of the two start-times and the later
of the two end-times.

Function fuse-merge(alert1, alert2) in algorithm 1 assigns
the different attributes to the meta-alert constructed depending
on whether fuse or thread resulted.

The value of the time window should be a good trade-
off between a small value, which would cause several attack
threads to go undetected, and a larger value, which would slow
down the system by requiring the component to keep a large
number of alerts in the queue.

Following is algorithm 1, the alert fusion component
method.

Algorithm 1:
Alert Fusion
Parameter window-size, fuse-window, thread-window
Global alert-queue, fuse, thread

fuse ← false
thread ← false

fuse(alert)
al ← get a:alert with lowest start-time from alert-queue where
if alert.analyzer ∩ a.analyzer is empty and all overlapping attributes except start-
time, end-time, analyzer, alertid are equal then

fuse
window-size = fuse-window

else
if alert.victimhosts = a.victimhosts and alert.attackerhosts = a.attackerhosts
then

thread
window-size = thread-window

end if
end if
if al¬null then

replace al in alert-queue with fuse-merge(alert, al)
else

add alert to alert-queue
remove all a:alert from alert-queue where
a.start-time < (alert.start-time - window-size)
pass removed alerts to next correlation component

end if

fuse-merge(alert1, alert2)
r ← new alert
r.alertid ← get unique-id()
r.start-time ← min(alert1.start-time, alert2.start-time)
r.reference ← (alert1.alertid ∪ alert2.alertid)
if fuse then

r.end-time ← min(alert1.end-time, alert2.end-time)
for each attr:attribute except start-time, end-time, reference, alertid do

r.attr ← alert1.attr ∪ alert2.attr
end for
fuse ← false

else
if thread then

r.end-time ← max(alert1.end-time, alert2.end-time)
r.analyzer = alert1.analyzer ∪ alert2.analyzer
thread ← false

end if
end if
if alert1.name = alert2.name then

r.name ← alert1.name
else

r.name ← “Attack Thread”
end if
for each attr:attribute except start-time, end-time, reference, analyzer, alertid do

if alert1.attr = alert2.attr then
r.attr ← alert1.attr

else
r.attr ← null

end if
end for
return r

end

In the focus recognition component, alerts are aggregated
then classified using feature similarity. Unrelated and false
alerts tend to be random and will not correlate, hence uncor-
related alerts are removed by shushing the alerts component.
Lastly, multi-step correlation, is expected to achieve substan-
tial improvement in the abstraction level and data reduction
[13]. In this component, priori information of the network
topology, known scenarios, etc are provided by the expert
knowledge DB; hence high level patterns are specified.

In the intention recognition component, relevant behavior
is grouped into attack scenarios to extract attack strategy and
plan recognition.

In the final component, impact analysis, the asset DB is
consulted to determine all services that are dependent on
a specific target. The heartbeat monitor checks whether all
dependent services are still operational. If any service is
failed, this information can be added to the alert as a likely
consequence of the attack [5].

The asset DB stores information about installed network
services, dependencies among services, and their importance
to the overall operation of a network installation. So the DB
does not represent an absolute measure of the importance of
any asset, but rather reflect the subjective view of a security
administrator. It is updated if there is any new information
from the impact analysis or prioritization components.

The knowledge DB is a complete repository including all the
necessary information about attacks, vulnerabilities, and the
topological and configuration information about the protected
networks and hosts.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In order to evaluate the improved alert correlation model
performance, a collection of 10 experiments on DARPA 2000
scenarios datasets and a testbed network dataset have been
carried out. Each component’s function of the innovative alert
correlation framework is explained in details, together with
the implementation of the model based on the improved
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TABLE I: Impact of Preprocessing Component on LLDOS
Scenarios

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 891 922 430 494

Output alerts 886 922 425 489

framework. In the implementation, Microsoft SQL Server
2005 was used as the relational database to store the alert
datasets, the intermediate data, and the analysis results of
each component as well as the correlated alerts. Programs
written in C#, Microsoft Visual Studio 2010, were created
to implement the correlation components’ functionalities. The
alert log files generated by RealSecure IDS of the DARPA
simulation network is used [14] in eight experiments, which
are explained in the next section.

A. Experiments on DARPA 2000 Datasets

DARPA 2000 [15] is a well-known IDS evaluation dataset
created by the MIT Lincoln Laboratory. It consists of two mul-
tistage attack scenarios, namely Lincoln Laboratory DoS Data
Sets Scenario (LLDOS) 1.0 and LLDOS 2.0.2. Each scenario
includes network traffic collected from both the Demilitarized
Zone (DMZ) and the inside part of the evaluation network.
Eight experiments were performed, four on the improved
model and four on the comprehensive approach model.

1) Data Normalization Unit:
• Normalization

The alerts were already normalized, and in IDMEF stan-
dard format [8].

• Preprocessing
In both scenarios, there are 45 features, of which only 7
features were extracted, namely EventID, timesec, SrcI-
PAddress, DestPort, DestIPAddress, OrigEventName, and
SrcPort. The date attribute was represented in date/time
format, and was then converted to time in seconds (rep-
resented as timesec). 5 alerts, representing incomplete
data, were removed in all datasets, except for the inside
segment of scenario 1.0., see Table I.

2) Filter-based Correlation Unit:
The primary goal is to reduce the number of alerts to be

correlated by eliminating false, irrelevant and low risk alerts.
False alerts need to be handled at an early stage as they will
have negative impact on the correlation result, and moreover
the number of processed alerts will be greatly reduced.
• Prioritization

The ranking/priority of alerts of LLDOS scenarios from
[16] is used. Thus low risk alerts are discarded, and only
the medium and high risk alerts are sent to the next
component. Table II shows the implementation results.

• Alert Verification
This requires that the protected assets be available for
real-time verification of the actual exposure of the system

TABLE II: Impact of Prioritization Component on LLDOS
Scenarios

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 886 922 425 489

Output alerts 188 167 54 71

Reduction Rate 78.78% 81.89% 87.29% 85.48%

TABLE III: Impact of Alert Fusion Component on LLDOS
Scenarios

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 188 167 54 71

Output alerts 92 110 34 45

Reduction Rate 51.06% 34.13% 37.04% 36.62%

and/or that a detailed model of the installed network
services be available. Unfortunately, this information is
not available for the data set analyzed and there is no
sufficient information found about the asset DB, so this
component could not be implemented.

3) Data Reduction Unit:
Similar alerts are fused and thus data is reduced by eliminat-

ing data redundancies, and irrelevant, false and unreal alarms
using alert correlation. False alerts are usually less likely to
be correlated using alert correlation.
• Alert Fusion

There were two sensors in DARPA data sets, but all the
alerts generated by one of the sensors contained null and
incomplete values and thus were removed by the prepro-
cessing component. Thus, there were no fusion in the data
set used as all traffic injected into this component were
seen by one sensor, but there were thread reconstruction.
Table III shows the results of the implementation.

• Focus Recognition
This component has the task of identifying hosts that are
either the source or the target of a substantial number of
attacks. This is used to identify Denial-of-Service (DoS)
attacks or port scanning attempts. It aggregates the alerts
associated with single hosts attacking multiple victims
(called a one-to-many scenario) and single victims that
are targeted by multiple attackers (called a many-to-one
scenario).
The one-to-many scenario has two tunable parameters:
the size of the timeout, which is used for the initial
window size, and the minimum number of alerts for a
meta-alert to be generated. On the other hand, the many-
to-one scenario has three tunable parameters: the first two
are the same as for the one-to-many scenario. The third
parameter is the number of meta-alerts required before a
many-to-one alert is labeled as a denial-of-service attack
[5][6][17].
In the carried out experiments, the minimum number of
alerts in a meta-alert was two. We first applied one-
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TABLE IV: Impact of Focus Recognition Component (one-to-
many)

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 92 110 34 45

Output alerts 42 57 23 27

Reduction Rate 56.52% 48.18% 32.35% 40%

TABLE V: Impact of Focus Recognition Component (many-
to-one)

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 42 57 23 27

Output alerts 31 28 5 24

Reduction Rate 26.19% 50.88% 78.26% 11.11%

TABLE VI: Impact of Shushing the alerts Component on
LLDOS Scenarios

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 31 28 5 24

Output alerts 6 7 3 5

Reduction Rate 80.65% 75% 40% 79.17%

TABLE VII: Impact of Multi-step Correlation Component on
LLDOS Scenarios

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 6 7 3 5

Output alerts 6 5 2 4

Reduction Rate 0% 28.57% 33.33% 20%

to-many focus recognition on DARPA datasets, then
followed by many-to-one focus recognition. Some hori-
zontal scan and multi-scan attacks were observed. Tables
IV and V show the reduction rates. DMZ in scenario 2.0.2
shows a great RR as is expected being a multistage attack
scenario.

• Shushing the Alerts
As shown in [18], alert correlation can be used to
differentiate between false and true alerts. False alerts
and unreal alarms tend to be more random than actual
alerts, and are less likely to be correlated. Thus, based on
this founding, we intentionally removed the alerts that are
not correlated in the alert fusion and focus recognition,
resulting in Table VI, which shows great reduction rates.

• Multi-step Correlation
The goal of this component is to identify high-level attack
patterns that are composed of several individual attacks.
The high-level patterns are usually specified using some
form of expert knowledge [2][5][17][19].
Relying on the information in [20], attack patterns are
identified, and used to implement this component result-
ing in Table VII.

4) Intention Recognition:
Intention or plan recognition is the process of inferring

the goals of an intruder by observing his/her actions [21].
It deduces strategies and objectives of attackers based on
attack scenarios that are output by correlation systems. Failed
attacks can be useful to know so to be avoided in the future.
Using alert correlation, the intruders’ relevant behavior can
be grouped into attack scenarios, and later on, their attack
strategy or plan can be extracted and fed back to update the
expert knowledge DB.

Inadequate information of attack strategies or plans of
intruders in the data set used hindered the implementation of
this component.

5) Impact Analysis:
This component contextualizes the alerts with respect to

a specific target network. It combines the alerts from the
previous correlation components with data from an asset DB
and a number of heartbeat monitors to determine the impact of
the detected attacks on the operation of the monitored network
and on the assets that are targeted by the attacker. Thus, it
requires a precise modeling of the relationships among assets
in a protected network and constant health monitoring of those
assets. Hence, insufficient information of asset DB of LLDOS
scenarios deters the implementation.

B. Experiments on Testbed Network

Two Snort 2.9.3.1 IDSs were installed in a Linux machine,
and a Windows XP machine. Attacks were launched remotely
and the alert log files were analyzed. Two experiments were
performed. Tables VIII and IX show the reduction rates using
the improved approach were 96.1% compared to 94.81% using
the comprehensive approach.

C. Summary of Experiments on DARPA 2000 Scenarios

Tables X and XI displays the number of processed alerts
and the total reduction rates using the novel approach and the
Comprehensive approach respectively on each of the LLDOS
scenarios 1.0 and 2.0.2.

Table XII presents a summary of the total alert reduction
for each dataset. Fig. 2 illustrates the effect of the improved
correlation model on LLDOS 1.0 and 2.0.2 scenarios. There
is a substantial drop in the number of alerts in the priority
component for all datasets. Since the processing time is
proportional to the number of processed alerts, hence both Fig.
2 and 3 assured the affirmation of the better performance of
the novel improved model over the Comprehensive approach.

1) Comparison of the Performance of the Improved Model
with the Comprehensive Approach on LLDOS Scenario 1.0:

Tables XIII and XIV show the number of processed alerts
in each component for scenario 1.0 for the improved model
compared to the Comprehensive approach discussed in [5].
Since the processing time is proportional to the number of
processed alerts, hence Fig. 4 shows that the improved model
gives better results.
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TABLE VIII: No. of Processed Alerts and the total RR using Improved Model for the Testbed Network

Prepr. Prio. Fus. 1:M M:1 Shush. Multi total

No. of Alerts 77 44 16 9 6 5 3 159

Reduction Rate 0% 42.86% 63.63% 43.75% 33.33% 16.67% 40% 96.1%

TABLE IX: No. of Processed Alerts and the total RR using Comprehensive Approach for the Testbed Network

Prepr. Fus. 1:M M:1 Multi Prio. total

No. of Alerts 77 40 15 13 12 4 161

Reduction Rate 0% 48.05% 62.5% 13.33% 7.69% 66.67% 94.81%

TABLE X: No. of Processed Alerts and the Total Reduction Rates (RR) using Novel Model for LLDOS Scenarios

Prepr. Prio. Fus. 1:M M:1 Shush. Multi # of Processed Alerts RR

DMZ 1.0 886 188 92 42 31 6 6 1251 99.33.%

Inside 1.0 922 167 110 57 28 7 5 1296 99.46%

DMZ 2.0.2 425 54 34 23 5 3 2 546 99.53%

Inside 2.0.2 489 71 45 27 24 5 4 665 99.19%

TABLE XI: No. of Processed Alerts and the Total Reduction Rates (RR) using Comprehensive Approach for LLDOS Scenarios

Prepr. Fus. 1:M M:1 Multi. Prio. # of Processed Alerts RR

DMZ 1.0 886 619 208 175 118 13 2019 98.54%

Inside 1.0 922 622 193 151 107 16 2011 98.26%

DMZ 2.0.2 425 241 63 46 44 5 824 98.84%

Inside 2.0.2 489 276 71 44 33 7 920 98.57%

Fig. 2: Effect of Improved Correlation Model on LLDOS
Scenarios 1.0 and 2.0.2.

TABLE XII: Total Alert Reduction for the Improved Model

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 891 922 430 494

Output alerts 6 5 2 4

Reduction Rate 99.33.% 99.46% 99.53% 99.19%

TABLE XIII: No. of Processed Alerts using Improved Model
for Scenario 1.0

Prepr Prio Fus 1:M M:1 Shush Multi total

DMZ 886 188 92 42 31 6 6 1251

Inside 922 167 110 57 28 7 5 1296

Fig. 3: Comparison of Processing Time of Improved Cor-
relation Model and Comprehensive Approach on LLDOS
Scenarios 1.0. and 2.0.2

TABLE XIV: No. of Processed Alerts using Comprehensive
Approach for Scenario 1.0

Prepr. Fus. 1:M M:1 Multi. Prio. total

DMZ 886 619 208 175 118 13 2019

Inside 922 622 193 151 107 16 2011

2) Comparison of the Performance of the Improved Model
with the Comprehensive Approach on LLDOS Scenario 2.0.2:
Tables XV and XVI show the number of processed alerts in
each component for scenario 2.0.2 for the improved model
and the Comprehensive approach [5] respectively. The graph
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TABLE XV: No. of Processed Alerts using Improved Model
for Scenario 2.0.2

Prepr Prio Fus 1:M M:1 Shush Multi total

DMZ 425 54 34 23 5 3 2 546

Inside 489 71 45 27 24 5 4 665

TABLE XVI: No. of Processed Alerts using Comprehensive
Approach for Scenario 2.0.2

Prepr. Fus. 1:M M:1 Multi. Prio. total

DMZ 425 241 63 46 44 5 824

Inside 489 276 71 44 33 7 920

of Fig. 5 assured the affirmation of the better performance of
the innovative improved model.

D. Sumnmary of Experiments on Testbed Network

1) Testing the Improved model on a Testbed Network:
The functionality of the improved alert correlation model

was validated by processing this dataset and hence verifying
that the attack patterns were recognized.

2) Comparing the Improved Model with the Comprehensive
Approach using the Testbed Network:

Fig. 6 shows that the total number of processed alerts using
the improved approach is 159 compared to 161 using the
comprehensive approach respectively. The improved approach
shows better results, although slight difference, but confirms
the effectiveness of the improved alert correlation model.

IV. RELATED WORK

Valeur et al in [5] presented a complete comprehensive
set of components. Their experiments demonstrated that the
effectiveness of each component is dependent on the data sets
being analyzed, and each component can contribute to the
overall performance.

Yu et al. presents a collaborative architecture for multiple
IDSs to detect real-time network intrusions.The architecture
is composed of three parts: Collaborative Alert Aggregation,
Knowledge-based Alert Evaluation and Alert Correlation to
cluster and merge alerts from multiple IDS products to achieve
an indirect collaboration among them [22].

Also Depren et al. proposed a novel IIDS architecture utiliz-
ing both anomaly and misuse detection approaches, together
with a decision support system to combine their results [23]. In
the same year, Zhang et al. suggested a distributed IDS based
on Clustering with unlabeled data [24]. Later in that year,
Katti et al. presented the first wide-scale study of correlated
attacks, and their results showed that collaborating IDSs need
to exchange alert information in realtime [25].

Sadoddin and Ghorbani showed an overall view of the
applied techniques which have been used for different as-
pects of correlation. The techniques were presented in the
context of a comprehensive correlation framework. As high-
level comparison between techniques, either competitive or

Fig. 4: Comparison of Processing Time of Improved Correla-
tion Model and Comprehensive Approach on LLDOS Scenario
1.0.

Fig. 5: Comparison of Processing Time of Improved Correla-
tion Model and Comprehensive Approach on LLDOS Scenario
2.0.2.

Fig. 6: Comparison of Processing Time of Improved Corre-
lation Model and Comprehensive Approach on the Testbed
Network
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complementary to each, the pros and cons of the techniques
were described from their point of view [26].

From the analysis in [13], researchers propose an improved
solution for an alert correlation technique based on six capabil-
ities criteria identified which are capabilities to perform alert
reduction, alert clustering, identify multi-step attacks, reduce
false alert, and to detect known and unknown attacks.

In February 2009, Zhou et al. proposed a decentralized,
multi-dimensional alert correlation algorithm for CIDSs. A
two-stage algorithm, implemented in a fully distributed CIDS,
first clusters alerts locally at each IDS, before reporting
significant alert patterns to a global correlation stage [3]. Later
in the same year, Zhou et al. proposed a decentralized, multi-
dimensional alert correlation algorithm for CIDSs. A two-
stage algorithm, implemented in a fully distributed CIDS, first
clusters alerts locally at each IDS, before reporting significant
alert patterns to a global correlation stage. They summarized
the current research directions in detecting coordinated attacks
using CIDSs. In particular, two main challenges in CIDS
research: CIDS architectures and alert correlation algorithms
are highlighted and analyzed [1].

Sadoddin and Ghorbani proposed a framework for real-
time alert correlation which incorporates novel techniques
for aggregating alerts into structured patterns and incremental
mining of frequent structured patterns [27].

In [28], Taha et al presented an agent-based alert correlation
model. A learning agent learns the nature of dataset to select
which components to be used and in which order. They proved
that their method achieved minimum alerts to be processed
on each component, depending on the dataset, and minimum
time for correlation process. Their method differs from ours,
in that they have learning agent, and we specify an order of
the components which gives better performance by processing
less number of alerts, hence minimum correlation time as only
the high risk alerts are processed.

Ghorbani et al in [21] showed an overall view of the applied
techniques which have been used for different components of
an alert correlation framework.

Meinel et al in [29] identified the data storage and process-
ing algorithms to be the most important factors influencing the
performance of clustering and correlation. They proposed and
implemented the utilization of memory-supported algorithms
and a column-oriented DB for correlation and clustering in an
extensible IDS correlation platform.

In October 2011, an alert correlation architecture is pro-
posed by Amiri et al. Their architecture consists of four
important components namely: log management, alert cor-
relation, incident response and knowledge base system. The
proposed architecture uses anomaly-based analysis in the alert
correlation component. They reviewed and compared different
techniques for alert correlation. Their study finally proposes
that a hybrid model of multiple techniques leads to better
performance of alert correlation engine [30].

Early the following year, in April 2012, Njogu et al. pro-
posed a comprehensive approach to address the shortcomings
of the vulnerability based alert management approaches. They

proposed a fast and efficient approach that improves the quality
of alerts as well as reduce the volumes of redundant alerts
generated by signature based IDSs. Their approach has several
components that are presented in three stages: Stage 1 involves
alert pre-processing, correlation of alerts against the meta alert
history and verification of alerts against Enhanced Vulnera-
bility Assessment (EVA) data; Stage 2 involves classification
of alerts based on their alert metrics; and Stage 3 involves
correlation of alerts in order to reduce the redundant and
isolated alerts as well discover the causal relationships in alerts
[31].

In the same month, Soleimani and Ghorbani took a dif-
ferent view and consider alert correlation as the problem
of inferring an intruder’s actions as alert patterns that are
constructed progressively. Their work is based on a multi-
layer episode mining and filtering algorithm. A decision-tree-
based method is used for learning specifications of each attack
pattern and detecting them in alert streams. They also used a
Correlation Weight Matrix (CWM) for encoding correlation
strength between attack types in the attack scenarios. One
of the distinguishing features of their proposed technique
is detecting novel multi-step attack scenarios, using a rule
prediction method. The results have shown that their approach
can effectively discover known and unknown attack strategies
with high accuracy. They actually achieved more than 90%
reduction in the number of discovered patterns while more
than 95% of final patterns were actual patterns. Furthermore,
their rule prediction capability showed a precise forecasting
ability in guessing future alerts [32].

In July 2012, Amaral et al. presented an automated alarm
correlation system composed of three layers, which obtains
raw alarms and presents to network administrator a wide
view of the scenario affected by the volume anomaly. In the
preprocessing layer, the alarm compression is performed using
their spatial and temporal attributes, which are reduced into a
unique alarm named Device Level Alarm (DLA). The corre-
lation layer aims to infer the anomaly propagation path and
its origin and destination using DLAs and network topology
information. The presentation layer provides the visualization
of the path and network elements affected by the anomaly
propagation. Moreover, the Anomaly Propagation View (APV)
is presented, which is a graphical tool developed to provide a
wide visualization of the network status [33].

Lately in September of the same year, Mohamed et al.
constructed a holistic solution that is able to reduce the number
of alerts to be processed and at the same time produced
a high quality attack scenarios that are meaningful to the
administrators in a timely manner. Their proposed framework
and the novel clustering method, architectured solely with
the intention of reducing the amount of alerts generated by
IDS. The clustering method was tested against two datasets; a
globally used dataset, DARPA and a live dataset from a cyber
attack monitoring unit that uses Snort engine to capture the
alerts [34].
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V. CONCLUSION AND FUTURE WORK

This paper presents an innovative alert correlation frame-
work based on a Collaborative Intelligent Intrusion Detection
System (CIIDS) architecture. Alert correlation analyzes the
alerts and aims to relate different alerts to build a big picture of
the attack, thus giving a high-level view of the security status.
The innovative framework attempts to minimize the number
of processed alerts on each component and thus minimizing
the correlation processing time. Hence, the correlation model
components are reordered in such a way that achieves better
performance by processing less number of alerts. It removes
irrelevant, unreal and false alerts in the early phases of the
correlation by reordering the components. Uncorrelated alerts
are also dealt with in a new component, shushing the alerts
in order to discard irrelevant and false positives. Any alert
that is not correlated after being processed by a number of
components is deliberately removed. An algorithm for this new
component is presented. The performance is improved after the
attention is focused on correlating higher severity alerts. High
level patterns are specified in the multi-step component. The
impact of the attack on the network assets and services is also
investigated. Thus by diverting more resources to deal with
high risk/priority alerts to be correlated, the effectiveness of
alert correlation is significantly improved.

Further experiments and comparisons with different datasets
and a real network dataset will be investigated. Several re-
search directions exist. The generation of datasets to be utilized
in evaluations is essential. Furthermore, there is a need for a
mission model and its relationship to the network assets, and
also a health monitoring system to determine the impact of
the attacks on the network. Another research direction is the
investigation of applying soft computing techniques to enhance
the correlation process.
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