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Abstract—Contrary to the traditional base 2 binary number 

system, used in today’s computers, in which a complex number is 

represented by two separate binary entities, one for the real part 

and one for the imaginary part, Complex Binary Number System 

(CBNS), a binary number system with base (−1+j), is used to 

represent a given complex number in single binary string format. 

In this paper, CBNS is reviewed and arithmetic algorithms for 

this number system are presented. The design of a CBNS-based 

parallel processor utilizing content-addressable memory for 

implementation of associative dataflow concept has been 

described and software-related issues have also been explained. 
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I. INTRODUCTION 

A complex number consists of two components, namely the 
real part and the imaginary part, and it represents a point in a 
two-dimensional space. The real part is used to plot the 
position of the point along the horizontal axis while the 
imaginary part represents the position of the same point along 
the vertical axis. In today’s computers, a complex number is 
stored in base 2 binary representation with both real and 
imaginary parts of the number represented individually. Thus, 
an arithmetic operation between two complex numbers 
becomes the accumulation of results from two sub-arithmetic 
operations on each pair of real and imaginary parts of the two 
given complex numbers. This increases the execution time of 
the arithmetic operations for complex numbers and hence 
causes delay in generating the output in computer applications 
where complex numbers are frequently used, such as image 
processing and signal processing. Efforts to represent the 
whole complex number (both real and imaginary parts) as 
single binary string date back to 1960s when D. Knuth 
proposed an imaginary-base binary number system with base 
    [1] and W. Penney attempted to define a number system, 
first with base    and then by using a complex number    
       as the base [2,3]. The main problem encountered 
with using these bases at that time was the inability in 
formulating an efficient division process and the exorbitant 
cost of memory to store long string of binary numbers 
representing complex numbers in the new bases. In 1996, V. N.  

Stepanenko defined a number system with base  √  in which 
even powers of the base yielded real numbers and odd powers 

of the base resulted in imaginary numbers [4]. Although he was 
able to resolve the division problem in his proposed number 
system as an “all-in-one” operation, yet in his algorithm, 
“everything…reduces to a good choice of an initial 
approximation…” in a Newton-Raphson iteration which may 
or may not converge. T. Jamil et. al. have revisited Penney’s 
proposed       -base number system and have done 
extensive mathematical analysis of Complex Binary Number 
System (CBNS) to establish it as a viable binary number 
system for representing complex numbers in the computer 
systems [5,6,7]. In 2001/2003, D. Blest and T. Jamil have 
presented an efficient division algorithm for complex binary 
numbers which has paved the way for implementation of this 
unique number system in computer hardware for all types of 
arithmetic operations [8,9]. This paper is intended to be a brief 
review of the CBNS and then it describes the architecture of an 
associative dataflow processor which amalgamates the 
parallelism inherent in content-addressable memories with the 
complex binary representation of complex numbers, a design 
which has been granted an innovation patent by the Australian 
Patent Office in 2010 [10]. 

This paper is organized as follows: In Section II, review of 
complex binary number system and algorithms for arithmetic 
operations for this number system are presented. In Section III, 
the concept of associative dataflow is described, which is 
followed by the design of Complex Binary Associative 
Dataflow Processor (CBADP) in Section IV. The software 
design issues related to CBADP are presented in Section V. 
Conclusions and suggestions for further research are outlined 
in Section VI. Acknowledgment and references are listed at the 
end of this paper. 

II. REVIEW OF COMPLEX BINARY NUMBER SYSTEM 

(CBNS) 

A. Conversion Algorithms [7] 

 To represent a given position integer N in CBNS, the 
following steps are followed: (i) Express N in terms of 
power of 4 using repeated division process. (ii) Convert 
the base 4 number                 to base –4 by 
replacing each digit in odd location            with 
its negative to get                        .      
(iii) Normalize the new number (i.e., get each digit in 
the range 0 to 3) by repeatedly adding 4 to the negative 
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digits and adding a 1 to the digit on its left. If the digit is 
4, replace it by a zero and subtract a one from the digit 
on its left. (iv) Now replace each digit in base –4 
representation with the corresponding four-bit sequence 

(0 0000; 1 0001; 2 1100; 3 1101). To convert 
a negative integer into CBNS representation, we simply 
multiply the representation of the corresponding 
positive integer with 11101 (equivalent to –1base –1+j) 
according to the multiplication algorithm given in sub-
section B. 

 To obtain CBNS representation of imaginary numbers, 
we simply multiply the CBNS representation of 
corresponding positive number with 11 (equivalent to 
(+j) base10 ) or 111 (equivalent to (–j) base10 ) according to 
the multiplication algorithm given in sub-section B. 

 To represent a fraction F in CBNS, we first express the 
fraction in terms of powers of  ½ = 2–1 such that F = r0 = 
f1. 2

–1 + f2. 2
–2 + f3. 2

–3  + f4. 2
–4+ …to machine limit. The 

coefficients fi and the remainders ri are given as 
follows: Initially, if 2r0 – 1 < 0  then f1 = 0 and set r1 = 

2r0  or  if 2r0 – 1  0  then f1 = 1 and set r1 = 2r0 – 1. 
Then, if 2ri – 1 < 0  then fi+1 = 0 and ri+1 = 2ri   or if       

2ri – 1  0  then fi+1 = 1 and ri+1 = 2ri – 1. We continue 
this process until ri = 0 or the machine limit has been 

reached. Then, for fi = 1, we replace its associated 2-i 

according to the sequence (2–1 1.11, 2–21.1101,               

2–30.000011, 2–4 0.00000001)  [for  i > 4, refer to 
[8]). Note that addition is according to algorithm given 
in sub-section B. 

 To represent a floating-point number in CBNS, which 
consists of both an integer and a fraction, CBNS 
representation is obtained by adding the CBNS 
representation of each individual part according to the 
addition algorithm given in sub-section B. All rules for 
obtaining negative integer and positive/negative 
imaginary number representations, as discussed 
previously, are equally applicable for obtaining 
negative floating point and positive/negative imaginary 
floating point representations in CBNS. 

 To represent a complex number in CBNS, we simply 
add the CBNS representation of real part with the 
CBNS representation of the imaginary part according to 
the addition algorithm given in sub-section B. 

B. Arithmetic Algorithms [7] 

 To add two complex numbers represented in CBNS 
format, the truth table is given as follows: 0 + 0 = 0;      
0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 1100. When two numbers 
with 1s in position n are added, this results in 1s in 
positions n+3 and n+2 and 0s in positions n+1 and n in 
the sum. Similar to the ordinary computer rule where 
1+111 … (to limit of machine) =0, we have 11 + 111 = 
0 [Zero Rule] in CBNS.   

 To subtract two complex binary numbers, the truth table 
followed is: 0 – 0 = 0 ; 0 – 1 = * ; 1 – 0 = 1 ; 1 – 1 = 0. 
For the case where 1 is subtracted from 0 (the * case in 
the rules), the following algorithm is applied: Given our 

minuend is: anan-1an-2…ak+4ak+3ak+2ak+1ak0     ak-

1…a3a2a1a0 and subtrahend is: bnbn-1bn-2 

…bk+4bk+3bk+2bk+11bk-1…b3b2b1b0. Then, the result of 
subtracting 1 from 0 is obtained by changing:               
ak → ak + 1, ak+1→ ak+1 (unchanged), ak+2→ ak+2 + 1, 
ak+3→ ak+3 + 1, ak+4→ ak+4 + 1, and bk→ 0.  

 To multiply two complex binary numbers, we follow 
the same method that we use for traditional binary 
numbers, except that while adding intermediate 
summands, addition algorithm outlined previously in 
this sub-section is used. The Zero Rule plays an 
important role in speeding up the result of the 
multiplication operation. 

 To perform the division of two complex numbers 
represented in CBNS, we take the reciprocal of the 
denominator and multiply it with the numerator as per 
algorithm described above. The reciprocal of the 
complex number is estimated using the following 
algorithm: Given       , we start with our initial 

approximation of   by setting              where 
  is obtained from the representation of   such that 

   ∑            
     in which      and       

for    . The successive approximations are then 
obtained by                . If the values of   do 
not converge, we correct our initial approximation of   

by setting               which will definitely 
converge [9].  

III. ASSOCIATIVE DATAFLOW CONCEPT (ADC) 

The associative dataflow concept is, in fact, an extension of 
the traditional concept of dataflow and is obtained by 
elimination of tokens generated during dataflow processing. In 
traditional dataflow, a computer program is represented as a 
graph consisting of nodes (representing instructions) and arcs 
(representing data dependencies between the nodes) [11]. The 
operands and their control information are conveyed from one 
node to another in data packets called tokens. The process of 
determining the executability of instructions is through 
matching of the tokens which is done sequentially and 
considered as a major bottleneck in degrading the performance 
of dataflow systems. The ADC eliminates the need for token 
generation and matching in dataflow systems and thus, by 
removing this bottleneck, the performance of the system 
improves. 

In ADC, a dataflow graph is executed in two phases, 
namely the search phase and the execution phase. During the 
search phase, the dataflow graph can be assumed to be upside-
down wherein the node(s) at the top-level is the parent and the 
nodes at the lower level, connected to the parent through arcs, 
are the children. The objective of the search phase is for each 
parent to search for its children. Since this search is conducted 
using content-addressable memory (also called associative 
memory, hence the name associative dataflow) which has 
parallel search capabilities, the search phase is conducted much 
faster compared to the sequential token-matching done in 
conventional dataflow paradigm. As a result of conducting the 
search phase, each node (i.e., the instruction) of the dataflow 
graph (i.e., the program) knows what its operands are (i.e., 
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data), where they are located (i.e., location of data), and also 
the destination node for the result. During the execution phase, 
instructions are carried out as in traditional dataflow computer 
systems. 

To better understand the concept of parent and children 
nodes, consider a simple dataflow graph to compute                 
X = a+b+c+d (Fig.1). The search phase of the associative 
dataflow concept requires that the given dataflow graph be 
turned upside-down in order for each parent to search for its 
children. The inverted dataflow graph to allow progress of this 
search phase is shown in Fig. 2, wherein the node at the top 
(N3) is at level 0, and the nodes N1 and N2 are at level 1. Node 
at level 0, i.e., N3, is the parent of the nodes at level 1, i.e., N1 
and N2, or in other words, the nodes N1 and N2 at level 1 are 
the children of the node N3 at level 0.  Similarly, operands' 
pairs (a,b) and (c,d) are the children of the nodes N1 and N2 
respectively. 

 

 Dataflow graph to compute X=a+b+c+d Fig. 1.

 

 

 Dataflow graph to compute X=a+b+c+d inverted to allow progress of Fig. 2.

search phase 

   In traditional dataflow machine, execution of dataflow 
graph given in Fig. 1 would require 3 ALU Execution Times 

(one for each node N1, N2, N3) plus 1 Token Matching Time 
(at node N3) plus 1 Memory Fetch Time (at Node N3). In 
associative dataflow machine, the Fig. 1 dataflow graph would 
need only Total Search Time + Total Execution Time. It has 
been shown in [11] that associative dataflow processor, based 
on ADC, has much better peak and benchmark performance 
figures compared to typical dataflow machines. 

Considering that CBNS provides an efficient format for 
representing data and ADC exhibits a promising future for 
parallel processing, it was natural for researchers to consider 
amalgamating the two ideas into designing of a Complex 
Binary Associative Dataflow Processor (CBADP) which takes 
advantage of the best features found in both concepts. 

IV. COMPLEX BINARY ASSOCIATIVE DATAFLOW 

PROCESSOR (CBADP) 

The schematic block diagram of a CBADP is given in    
Fig. 3 [12]. Each component of the diagram is described in the 
following sub-sections. 

A. Associative Memory 

An associative memory, also known as content-addressable 
memory (CAM), is defined as a collection of storage elements, 
called associative cells, which are accessed in parallel on the 
basis of data contents rather than by specific address or 
location.  Each associative cell has the hardware capability to 
store and search its contents, in parallel, against the input data, 
and then indicate a match or mismatch by the state of a flip-
flop. CBADP associative memory consists of a comparand 
register which contains the data to be compared against the 
contents of the memory array, a mask register used to mask off 
portions of the data word(s) which do not participate in the 
operations, a memory array containing a collection of memory 
cells providing storage and search medium for the data, and a 
responder indicating success or failure of a search operation. 

There are two types of nodes in a dataflow graph, namely 
the action-node responsible for executing arithmetic or logic 
operation on the operands, and the control-node responsible for 
transferring the task of operation execution to some specific 
node when a certain condition is satisfied, as in case of branch 
operations. Depending upon the type of node, an associative 
memory word for action-node is of 80-bits length while a 
control-node word is of 18-bit length. Details about the format 
of the memory word can be found in [11]. Total number of 
words in the memory array are fixed at 64 to allow for up to 16 
levels of dataflow graph with no more than four nodes per 
level. 

B. Complex Binary Processing Unit 

This unit is composed of four arithmetic and logic units to 
allow for up to four parallel operations corresponding to each 
node in a given level of the dataflow graph. Note that each 
CBALU is capable of handling arithmetic and logic operations 
in CBNS format, according to the algorithms described in 
Section II. Detailed designs of arithmetic circuits can be found 
in [13,14,15,16,17]. Currently, the instruction set of CBADP is 
composed of 21 instructions but there is a possibility of it to be 
extended to a total of up to 64 different instructions. 

+ +

+

a b c d

X

N1 N2

N3

+

+ +

a b c d

N3

N1 N2

Level 0

Level 1
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 Schematic block diagram of Complex Binary Associative Dataflow Processor (CBADP) Fig. 3.

C. Level Incrementer/Decrementer Unit 

To allow for 16 levels within a dataflow graph, a 4-bit level 
incrementer/decrementer unit is used to facilitate incrementing 
of the level number of the dataflow graph by one during the 
search phase and decrementing of the level number by one 
during the execution phase. Levels are labelled from top-to-
bottom of the dataflow graph in descending order. Since, 
during the search phase, the graph is assumed to be upside-
down, parent nodes are at the lower level and they are 
searching for children nodes which are at the higher level. This 
requires incrementing of the level number in the associative 
memory word as the search progresses. During the execution 
phase, the data is passed from nodes at higher level to the 
nodes at the lower level which requires decrementing of the 
level numbers as the execution phase continues. Given input E 
such that level incrementer/decrementer unit increments when 
E=0 and decrements when E=1, and current level number 
given by XOX1X2X3, the new level number L0L1L2L3 is given 
by the following Boolean equations: 

. : Logic AND 

+: Logic OR  

 Xi^: Logic NOT  

@:  Logic XOR 

L0 =  E.[X0^.X1^.X2^.X3^  +  X0.X2] 

         +  E^.[X0^.X1.X2.X3  +  X0.X1^] 

         +  X0.[X1.X2^  +  X1^.X3  +  X2.X3^]  (1) 

 

L1 = E.[X1.X2  +  X1^.X2^.X3^] 

         +  E^.[X1.X2^  +  X1^.X2.X3] 

         +  X1.[X2 @ X3]                                        (2) 

 

L2 = E @ X2 @ X3                                         (3)

    

L3 = X3^                                                             (4)

  

D. Control Unit 

Independent hardwired control units for search phase 
(CU_SP) and execution phase (CU_EP) have been designed 
for CBADP. A Hardware Programming Language (AHPL) has 
been used to write a total of 24 control sequences for CU_SP 
and 23 control sequences for CU_EP. Details of control unit 
design are presented in [11]. 

E. Counter 

This is a 6-bit up-down counter to keep track of up to 64 
nodes which may be present in a dataflow graph to be executed 
on CBADP. Given input x1=0 such that the counter counts up 
by one from its current state x2x3x4x5x6x7 to the next state 
y0y1y2y3y4y5, and counts down when  x1=1, the Boolean 
equations for the next state are given as follows: 

Counter 

Counter-value Register  
Level Register  

Associative  
Memory 

Control Unit  

 
Complex Binary Processing Unit 

Level  
Incrementer/  
Decrementer  

Unit 

Complex Binary  
Associative Dataflow 

Processor  
 

Input/Output 
System  

CBALU0 CBALU1 

CBALU2 CBALU3 

Flags Registers 
FR0 FR1 FR2 FR3 

Output Registers 
ZR0 ZR1 ZR2 ZR3 

CU_SP CU_EP 
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. : Logic AND 

+: Logic OR  

 Xi^: Logic NOT  

@:  Logic XOR 

 

y
0
 = x1.{x2.[x3 + x5 + x3^.x4^.x7^.(x5^ + x6)] 

+ x2^.x3^.x4^.x5^.x6^.x7^} 

      + x1^.{x2.[x3^ + x4^ + x3.(x4.x6.x7^ + x5.x6^)] 

                  + x2^.x3.x4.x5.x6.x7} 

      + x2.(x4 @ x5)     (5) 

y1
 = x1.{x3.[x4 + x4^.(x5^.x7 + x6.x7^)] 

              + x3^.x4^.x5^.x6^.x7^} 

     + x1^.{x3.[x4^ + x5.x6^ + x4.x6.x7^] 

                + x2.x4.x5.x6.x7} 

     + x3.(x4 @ x5)    (6) 

y2
 = x1.(x4.x6 + x4^.x5^.x6^.x7^) 

    + x1^.(x4.x5^ + x4^.x5.x6.x7) 

    + x4.(x5.x6^ + x5^.x7 + x6.x7^)    (7) 

y3
 = x1.(x5 @ x6^.x7^)  

    + x1^.{x5.x6^ + x6.[x5 @ x7]}   (8) 

y4
 = x1 @ x6 @ x7    (9) 

y5
 = x7^      (10) 

F. Counter-value Register 

This register (6-bit) is used to store the counter value at the 
completion of each successful search phase. This information 
is then used by the operating system in formulating an efficient 
execution phase for the given dataflow graph. 

G. Level Register 

This 4-bit register holds information about the maximum 
level number in the given dataflow graph. The control unit uses 
this information to ensure that all levels of the graph have been 
searched and executed. 

H. Flags Registers 

There are four of these registers corresponding to each 
CBALU in the complex binary processing unit. Each register 
holds carry, zero, negative, and overflow flags. 

I. Output Registers 

There are four of these registers corresponding to the output 

produced by each CBALU. These registers are accessed by the 
Input/Output System which forms the interface to the outside 
world. 

V. CBADP SOFTWARE DESIGN ISSUES 

There is a natural communication gap between man and 
machine. Computer hardware operates at a very atomic level in 
terms of bits and bytes, whereas people tend to express 
themselves in terms of natural languages such as English or in 
mathematical notation.  This communication gap is bridged by 
means of an artificial language which allows the man to 
express himself with a well-defined set of words, sentences, 
and formulas that can be "understood" by a computer.   

To achieve this interaction, the human is supplied with a 
user's manual which explains the constructs and meanings 
allowed by the language, and the computer is supplied with the 
software by which it can take a stream of bits representing the 
commands or programs written in the language by the human 
and translate this input into the internal bit patterns required to 
carry out the human's intent. 

A. Compiler 

A compiler takes as input a source program and produces 
as output an equivalent sequence of machine instructions.  This 
process is so complex that it is not reasonable, either from a 
logical point of view or from an implementation point of view, 
to consider the compilation process as occurring in one single 
step. Not long ago, compilers were considered almost 
impossible programs to write. The design of a compiler for 
CBADP is required to follow the same phases as the ones used 
today for the design of any other type of compiler, namely 
lexical analysis, syntax analysis, intermediate code generation, 
code optimization, and then code generation. The programmer 
will be able to write programs in one of the high-level 
languages, such as C, Pascal, or Fortran, and then using the 
CBADP compiler, the source code will be converted to the 
machine instructions (in terms of 0 and 1), which will be fed to 
the hardware components within the complex binary 
associative dataflow processor for onward processing and 
execution. 

B. Operating System 

An operating system is a program that acts as an 
intermediary between the user of a computer and the computer 
hardware, and its purpose is to provide an environment in 
which the user can execute programs [18]. An abstract view of 
a CBADP system is given in Fig. 4. 

The CBADP provides the basic computing resources 
(associative memory, processing unit, registers) which are 
managed by the CBADP operating system, according to the 
user programs, which are written in some high-level language 
(such as C, Fortran, or Pascal) and have been converted into 
machine language using the CBADP compiler. 
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 Abstract view of CBADP system Fig. 4.

The CBADP operating system has several important 
functions for smooth and efficient processing of the user 
programs, and these are: 

 Based on the information provided by the CBADP 
compiler about the given dataflow graph, design an 
efficient search phase for the program. 

 Provide the system call to the CU_SP (control unit for 
search phase) for initiating the search phase of the 
dataflow graph. 

 Acknowledge and handle any interrupts generated 
during the search phase to keep track of the information 
about the nodes (of dataflow graph) and their specific 
locations within the associative memory where they 
have been stored.  

 Based on the information gathered during the search 
phase, design an efficient execution phase for the given 
dataflow graph. 

 Provide the system call to the CU_EP (control unit for 
execution phase) for initiating the execution phase of 
the dataflow graph. 

 Acknowledge and handle any interrupts generated 
during the execution phase to keep track of the 
information about the nodes (of dataflow graph) and 
their execution status in the system.  In case of branch 
operations, enable or inhibit the appropriate control-
node depending upon whether the branch condition has 
been satisfied or not. 

 Provide synchronization mechanism between the four 
arithmetic and logic units contained within the 

processing unit of the CBADP so that the instructions 
are executed in proper order. 

For best CBADP performance, the ideal operating system 
should have multitasking capabilities so that more than one 
dataflow graph can be processed at a given time if the 
necessary resources, such as CBALUs and registers, are 
available.  For example, to achieve maximum utilization of the 
complex binary processing unit, all four of the CBALUs must 
be kept busy all the time.  If there are less than four nodes at 
any given level for execution, the multitasking operating 
system can assign the idle ALU(s) to another dataflow program 
which can run in parallel with the current dataflow program.  
In case of more than one dataflow program being processed on 
the ADP, the protection becomes an important issue to be 
addressed.  That is, steps need to be taken to ensure that the 
proper execution of one graph does not interfere with the 
proper execution of the other dataflow graph(s) in the system.   

VI. CONCLUSIONS AND FURTHER RESEARCH 

The design of a content-addressable memory-based 
associative dataflow processor, for which an Australian 
Innovation Patent has been granted, has been presented in this 
paper. Work on establishing complex binary number system as 
a natural enhancement of traditional binary number system is 
still in progress and the given complex binary associative 
dataflow processor design is still undergoing improvements 
and implementation optimization for field-programmable gate 
arrays (FPGAs). An avenue of further research in this area 
would be to incorporate CBNS in an image processor design or 
a digital signal processor design, two of the well-known areas 
where complex numbers are widely used, and then compare 
their performances with the processors implementing base 2 
binary number system. Incorporating cache memories within 
the CBADP and then determining statistical performance 
analysis of such a system will be a valuable contribution to this 
area of engineering. These days, efforts are underway to design 
computer systems which mimic human brain. Since human 
brain behaves very much like associative memory, a content-
addressable parallel processor system, such as CBADP, may 
provide a useful tool for research in this area of interest to both 
medicine and engineering. The design of an operating system 
for CBADP is another interesting area of further research in 
this realm of computer engineering.  
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