
(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

11 | P a g e

www.ijacsa.thesai.org

Design of a Content Addressable Memory-based

Parallel Processor implementing (−1+j)-based Binary

Number System

Tariq Jamil

Department of Electrical and Computer Engineering

Sultan Qaboos University

AlKhod 123, Muscat, OMAN

Abstract—Contrary to the traditional base 2 binary number

system, used in today’s computers, in which a complex number is

represented by two separate binary entities, one for the real part

and one for the imaginary part, Complex Binary Number System

(CBNS), a binary number system with base (−1+j), is used to

represent a given complex number in single binary string format.

In this paper, CBNS is reviewed and arithmetic algorithms for

this number system are presented. The design of a CBNS-based

parallel processor utilizing content-addressable memory for

implementation of associative dataflow concept has been

described and software-related issues have also been explained.

Keywords—binary number; complex binary; parallel

processing; content-addressable; memory; associative dataflow;

compiler; operating system

I. INTRODUCTION

A complex number consists of two components, namely the
real part and the imaginary part, and it represents a point in a
two-dimensional space. The real part is used to plot the
position of the point along the horizontal axis while the
imaginary part represents the position of the same point along
the vertical axis. In today’s computers, a complex number is
stored in base 2 binary representation with both real and
imaginary parts of the number represented individually. Thus,
an arithmetic operation between two complex numbers
becomes the accumulation of results from two sub-arithmetic
operations on each pair of real and imaginary parts of the two
given complex numbers. This increases the execution time of
the arithmetic operations for complex numbers and hence
causes delay in generating the output in computer applications
where complex numbers are frequently used, such as image
processing and signal processing. Efforts to represent the
whole complex number (both real and imaginary parts) as
single binary string date back to 1960s when D. Knuth
proposed an imaginary-base binary number system with base
 [1] and W. Penney attempted to define a number system,
first with base and then by using a complex number
 as the base [2,3]. The main problem encountered
with using these bases at that time was the inability in
formulating an efficient division process and the exorbitant
cost of memory to store long string of binary numbers
representing complex numbers in the new bases. In 1996, V. N.

Stepanenko defined a number system with base √ in which
even powers of the base yielded real numbers and odd powers

of the base resulted in imaginary numbers [4]. Although he was
able to resolve the division problem in his proposed number
system as an “all-in-one” operation, yet in his algorithm,
“everything…reduces to a good choice of an initial
approximation…” in a Newton-Raphson iteration which may
or may not converge. T. Jamil et. al. have revisited Penney’s
proposed -base number system and have done
extensive mathematical analysis of Complex Binary Number
System (CBNS) to establish it as a viable binary number
system for representing complex numbers in the computer
systems [5,6,7]. In 2001/2003, D. Blest and T. Jamil have
presented an efficient division algorithm for complex binary
numbers which has paved the way for implementation of this
unique number system in computer hardware for all types of
arithmetic operations [8,9]. This paper is intended to be a brief
review of the CBNS and then it describes the architecture of an
associative dataflow processor which amalgamates the
parallelism inherent in content-addressable memories with the
complex binary representation of complex numbers, a design
which has been granted an innovation patent by the Australian
Patent Office in 2010 [10].

This paper is organized as follows: In Section II, review of
complex binary number system and algorithms for arithmetic
operations for this number system are presented. In Section III,
the concept of associative dataflow is described, which is
followed by the design of Complex Binary Associative
Dataflow Processor (CBADP) in Section IV. The software
design issues related to CBADP are presented in Section V.
Conclusions and suggestions for further research are outlined
in Section VI. Acknowledgment and references are listed at the
end of this paper.

II. REVIEW OF COMPLEX BINARY NUMBER SYSTEM

(CBNS)

A. Conversion Algorithms [7]

 To represent a given position integer N in CBNS, the
following steps are followed: (i) Express N in terms of
power of 4 using repeated division process. (ii) Convert
the base 4 number to base –4 by
replacing each digit in odd location with
its negative to get .
(iii) Normalize the new number (i.e., get each digit in
the range 0 to 3) by repeatedly adding 4 to the negative

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

12 | P a g e

www.ijacsa.thesai.org

digits and adding a 1 to the digit on its left. If the digit is
4, replace it by a zero and subtract a one from the digit
on its left. (iv) Now replace each digit in base –4
representation with the corresponding four-bit sequence

(0 0000; 1 0001; 2 1100; 3 1101). To convert
a negative integer into CBNS representation, we simply
multiply the representation of the corresponding
positive integer with 11101 (equivalent to –1base –1+j)
according to the multiplication algorithm given in sub-
section B.

 To obtain CBNS representation of imaginary numbers,
we simply multiply the CBNS representation of
corresponding positive number with 11 (equivalent to
(+j) base10) or 111 (equivalent to (–j) base10) according to
the multiplication algorithm given in sub-section B.

 To represent a fraction F in CBNS, we first express the
fraction in terms of powers of ½ = 2–1 such that F = r0 =
f1. 2

–1 + f2. 2
–2 + f3. 2

–3 + f4. 2
–4+ …to machine limit. The

coefficients fi and the remainders ri are given as
follows: Initially, if 2r0 – 1 < 0 then f1 = 0 and set r1 =

2r0 or if 2r0 – 1 0 then f1 = 1 and set r1 = 2r0 – 1.
Then, if 2ri – 1 < 0 then fi+1 = 0 and ri+1 = 2ri or if

2ri – 1 0 then fi+1 = 1 and ri+1 = 2ri – 1. We continue
this process until ri = 0 or the machine limit has been

reached. Then, for fi = 1, we replace its associated 2-i

according to the sequence (2–1 1.11, 2–21.1101,

2–30.000011, 2–4 0.00000001) [for i > 4, refer to
[8]). Note that addition is according to algorithm given
in sub-section B.

 To represent a floating-point number in CBNS, which
consists of both an integer and a fraction, CBNS
representation is obtained by adding the CBNS
representation of each individual part according to the
addition algorithm given in sub-section B. All rules for
obtaining negative integer and positive/negative
imaginary number representations, as discussed
previously, are equally applicable for obtaining
negative floating point and positive/negative imaginary
floating point representations in CBNS.

 To represent a complex number in CBNS, we simply
add the CBNS representation of real part with the
CBNS representation of the imaginary part according to
the addition algorithm given in sub-section B.

B. Arithmetic Algorithms [7]

 To add two complex numbers represented in CBNS
format, the truth table is given as follows: 0 + 0 = 0;
0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 1100. When two numbers
with 1s in position n are added, this results in 1s in
positions n+3 and n+2 and 0s in positions n+1 and n in
the sum. Similar to the ordinary computer rule where
1+111 … (to limit of machine) =0, we have 11 + 111 =
0 [Zero Rule] in CBNS.

 To subtract two complex binary numbers, the truth table
followed is: 0 – 0 = 0 ; 0 – 1 = * ; 1 – 0 = 1 ; 1 – 1 = 0.
For the case where 1 is subtracted from 0 (the * case in
the rules), the following algorithm is applied: Given our

minuend is: anan-1an-2…ak+4ak+3ak+2ak+1ak0 ak-

1…a3a2a1a0 and subtrahend is: bnbn-1bn-2

…bk+4bk+3bk+2bk+11bk-1…b3b2b1b0. Then, the result of
subtracting 1 from 0 is obtained by changing:
ak → ak + 1, ak+1→ ak+1 (unchanged), ak+2→ ak+2 + 1,
ak+3→ ak+3 + 1, ak+4→ ak+4 + 1, and bk→ 0.

 To multiply two complex binary numbers, we follow
the same method that we use for traditional binary
numbers, except that while adding intermediate
summands, addition algorithm outlined previously in
this sub-section is used. The Zero Rule plays an
important role in speeding up the result of the
multiplication operation.

 To perform the division of two complex numbers
represented in CBNS, we take the reciprocal of the
denominator and multiply it with the numerator as per
algorithm described above. The reciprocal of the
complex number is estimated using the following
algorithm: Given , we start with our initial

approximation of by setting where
 is obtained from the representation of such that

 ∑
 in which and

for . The successive approximations are then
obtained by . If the values of do
not converge, we correct our initial approximation of

by setting which will definitely
converge [9].

III. ASSOCIATIVE DATAFLOW CONCEPT (ADC)

The associative dataflow concept is, in fact, an extension of
the traditional concept of dataflow and is obtained by
elimination of tokens generated during dataflow processing. In
traditional dataflow, a computer program is represented as a
graph consisting of nodes (representing instructions) and arcs
(representing data dependencies between the nodes) [11]. The
operands and their control information are conveyed from one
node to another in data packets called tokens. The process of
determining the executability of instructions is through
matching of the tokens which is done sequentially and
considered as a major bottleneck in degrading the performance
of dataflow systems. The ADC eliminates the need for token
generation and matching in dataflow systems and thus, by
removing this bottleneck, the performance of the system
improves.

In ADC, a dataflow graph is executed in two phases,
namely the search phase and the execution phase. During the
search phase, the dataflow graph can be assumed to be upside-
down wherein the node(s) at the top-level is the parent and the
nodes at the lower level, connected to the parent through arcs,
are the children. The objective of the search phase is for each
parent to search for its children. Since this search is conducted
using content-addressable memory (also called associative
memory, hence the name associative dataflow) which has
parallel search capabilities, the search phase is conducted much
faster compared to the sequential token-matching done in
conventional dataflow paradigm. As a result of conducting the
search phase, each node (i.e., the instruction) of the dataflow
graph (i.e., the program) knows what its operands are (i.e.,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

13 | P a g e

www.ijacsa.thesai.org

data), where they are located (i.e., location of data), and also
the destination node for the result. During the execution phase,
instructions are carried out as in traditional dataflow computer
systems.

To better understand the concept of parent and children
nodes, consider a simple dataflow graph to compute
X = a+b+c+d (Fig.1). The search phase of the associative
dataflow concept requires that the given dataflow graph be
turned upside-down in order for each parent to search for its
children. The inverted dataflow graph to allow progress of this
search phase is shown in Fig. 2, wherein the node at the top
(N3) is at level 0, and the nodes N1 and N2 are at level 1. Node
at level 0, i.e., N3, is the parent of the nodes at level 1, i.e., N1
and N2, or in other words, the nodes N1 and N2 at level 1 are
the children of the node N3 at level 0. Similarly, operands'
pairs (a,b) and (c,d) are the children of the nodes N1 and N2
respectively.

 Dataflow graph to compute X=a+b+c+d Fig. 1.

 Dataflow graph to compute X=a+b+c+d inverted to allow progress of Fig. 2.

search phase

 In traditional dataflow machine, execution of dataflow
graph given in Fig. 1 would require 3 ALU Execution Times

(one for each node N1, N2, N3) plus 1 Token Matching Time
(at node N3) plus 1 Memory Fetch Time (at Node N3). In
associative dataflow machine, the Fig. 1 dataflow graph would
need only Total Search Time + Total Execution Time. It has
been shown in [11] that associative dataflow processor, based
on ADC, has much better peak and benchmark performance
figures compared to typical dataflow machines.

Considering that CBNS provides an efficient format for
representing data and ADC exhibits a promising future for
parallel processing, it was natural for researchers to consider
amalgamating the two ideas into designing of a Complex
Binary Associative Dataflow Processor (CBADP) which takes
advantage of the best features found in both concepts.

IV. COMPLEX BINARY ASSOCIATIVE DATAFLOW

PROCESSOR (CBADP)

The schematic block diagram of a CBADP is given in
Fig. 3 [12]. Each component of the diagram is described in the
following sub-sections.

A. Associative Memory

An associative memory, also known as content-addressable
memory (CAM), is defined as a collection of storage elements,
called associative cells, which are accessed in parallel on the
basis of data contents rather than by specific address or
location. Each associative cell has the hardware capability to
store and search its contents, in parallel, against the input data,
and then indicate a match or mismatch by the state of a flip-
flop. CBADP associative memory consists of a comparand
register which contains the data to be compared against the
contents of the memory array, a mask register used to mask off
portions of the data word(s) which do not participate in the
operations, a memory array containing a collection of memory
cells providing storage and search medium for the data, and a
responder indicating success or failure of a search operation.

There are two types of nodes in a dataflow graph, namely
the action-node responsible for executing arithmetic or logic
operation on the operands, and the control-node responsible for
transferring the task of operation execution to some specific
node when a certain condition is satisfied, as in case of branch
operations. Depending upon the type of node, an associative
memory word for action-node is of 80-bits length while a
control-node word is of 18-bit length. Details about the format
of the memory word can be found in [11]. Total number of
words in the memory array are fixed at 64 to allow for up to 16
levels of dataflow graph with no more than four nodes per
level.

B. Complex Binary Processing Unit

This unit is composed of four arithmetic and logic units to
allow for up to four parallel operations corresponding to each
node in a given level of the dataflow graph. Note that each
CBALU is capable of handling arithmetic and logic operations
in CBNS format, according to the algorithms described in
Section II. Detailed designs of arithmetic circuits can be found
in [13,14,15,16,17]. Currently, the instruction set of CBADP is
composed of 21 instructions but there is a possibility of it to be
extended to a total of up to 64 different instructions.

+ +

+

a b c d

X

N1 N2

N3

+

+ +

a b c d

N3

N1 N2

Level 0

Level 1

--

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

14 | P a g e

www.ijacsa.thesai.org

 Schematic block diagram of Complex Binary Associative Dataflow Processor (CBADP) Fig. 3.

C. Level Incrementer/Decrementer Unit

To allow for 16 levels within a dataflow graph, a 4-bit level
incrementer/decrementer unit is used to facilitate incrementing
of the level number of the dataflow graph by one during the
search phase and decrementing of the level number by one
during the execution phase. Levels are labelled from top-to-
bottom of the dataflow graph in descending order. Since,
during the search phase, the graph is assumed to be upside-
down, parent nodes are at the lower level and they are
searching for children nodes which are at the higher level. This
requires incrementing of the level number in the associative
memory word as the search progresses. During the execution
phase, the data is passed from nodes at higher level to the
nodes at the lower level which requires decrementing of the
level numbers as the execution phase continues. Given input E
such that level incrementer/decrementer unit increments when
E=0 and decrements when E=1, and current level number
given by XOX1X2X3, the new level number L0L1L2L3 is given
by the following Boolean equations:

. : Logic AND

+: Logic OR

 Xi^: Logic NOT

@: Logic XOR

L0 = E.[X0^.X1^.X2^.X3^ + X0.X2]

 + E^.[X0^.X1.X2.X3 + X0.X1^]

 + X0.[X1.X2^ + X1^.X3 + X2.X3^] (1)

L1 = E.[X1.X2 + X1^.X2^.X3^]

 + E^.[X1.X2^ + X1^.X2.X3]

 + X1.[X2 @ X3] (2)

L2 = E @ X2 @ X3 (3)

L3 = X3^ (4)

D. Control Unit

Independent hardwired control units for search phase
(CU_SP) and execution phase (CU_EP) have been designed
for CBADP. A Hardware Programming Language (AHPL) has
been used to write a total of 24 control sequences for CU_SP
and 23 control sequences for CU_EP. Details of control unit
design are presented in [11].

E. Counter

This is a 6-bit up-down counter to keep track of up to 64
nodes which may be present in a dataflow graph to be executed
on CBADP. Given input x1=0 such that the counter counts up
by one from its current state x2x3x4x5x6x7 to the next state
y0y1y2y3y4y5, and counts down when x1=1, the Boolean
equations for the next state are given as follows:

Counter

Counter-value Register
Level Register

Associative
Memory

Control Unit

Complex Binary Processing Unit

Level
Incrementer/
Decrementer

Unit

Complex Binary
Associative Dataflow

Processor

Input/Output
System

CBALU0 CBALU1

CBALU2 CBALU3

Flags Registers
FR0 FR1 FR2 FR3

Output Registers
ZR0 ZR1 ZR2 ZR3

CU_SP CU_EP

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

15 | P a g e

www.ijacsa.thesai.org

. : Logic AND

+: Logic OR

 Xi^: Logic NOT

@: Logic XOR

y
0
 = x1.{x2.[x3 + x5 + x3^.x4^.x7^.(x5^ + x6)]

+ x2^.x3^.x4^.x5^.x6^.x7^}

 + x1^.{x2.[x3^ + x4^ + x3.(x4.x6.x7^ + x5.x6^)]

 + x2^.x3.x4.x5.x6.x7}

 + x2.(x4 @ x5) (5)

y1
 = x1.{x3.[x4 + x4^.(x5^.x7 + x6.x7^)]

 + x3^.x4^.x5^.x6^.x7^}

 + x1^.{x3.[x4^ + x5.x6^ + x4.x6.x7^]

 + x2.x4.x5.x6.x7}

 + x3.(x4 @ x5) (6)

y2
 = x1.(x4.x6 + x4^.x5^.x6^.x7^)

 + x1^.(x4.x5^ + x4^.x5.x6.x7)

 + x4.(x5.x6^ + x5^.x7 + x6.x7^) (7)

y3
 = x1.(x5 @ x6^.x7^)

 + x1^.{x5.x6^ + x6.[x5 @ x7]} (8)

y4
 = x1 @ x6 @ x7 (9)

y5
 = x7^ (10)

F. Counter-value Register

This register (6-bit) is used to store the counter value at the
completion of each successful search phase. This information
is then used by the operating system in formulating an efficient
execution phase for the given dataflow graph.

G. Level Register

This 4-bit register holds information about the maximum
level number in the given dataflow graph. The control unit uses
this information to ensure that all levels of the graph have been
searched and executed.

H. Flags Registers

There are four of these registers corresponding to each
CBALU in the complex binary processing unit. Each register
holds carry, zero, negative, and overflow flags.

I. Output Registers

There are four of these registers corresponding to the output

produced by each CBALU. These registers are accessed by the
Input/Output System which forms the interface to the outside
world.

V. CBADP SOFTWARE DESIGN ISSUES

There is a natural communication gap between man and
machine. Computer hardware operates at a very atomic level in
terms of bits and bytes, whereas people tend to express
themselves in terms of natural languages such as English or in
mathematical notation. This communication gap is bridged by
means of an artificial language which allows the man to
express himself with a well-defined set of words, sentences,
and formulas that can be "understood" by a computer.

To achieve this interaction, the human is supplied with a
user's manual which explains the constructs and meanings
allowed by the language, and the computer is supplied with the
software by which it can take a stream of bits representing the
commands or programs written in the language by the human
and translate this input into the internal bit patterns required to
carry out the human's intent.

A. Compiler

A compiler takes as input a source program and produces
as output an equivalent sequence of machine instructions. This
process is so complex that it is not reasonable, either from a
logical point of view or from an implementation point of view,
to consider the compilation process as occurring in one single
step. Not long ago, compilers were considered almost
impossible programs to write. The design of a compiler for
CBADP is required to follow the same phases as the ones used
today for the design of any other type of compiler, namely
lexical analysis, syntax analysis, intermediate code generation,
code optimization, and then code generation. The programmer
will be able to write programs in one of the high-level
languages, such as C, Pascal, or Fortran, and then using the
CBADP compiler, the source code will be converted to the
machine instructions (in terms of 0 and 1), which will be fed to
the hardware components within the complex binary
associative dataflow processor for onward processing and
execution.

B. Operating System

An operating system is a program that acts as an
intermediary between the user of a computer and the computer
hardware, and its purpose is to provide an environment in
which the user can execute programs [18]. An abstract view of
a CBADP system is given in Fig. 4.

The CBADP provides the basic computing resources
(associative memory, processing unit, registers) which are
managed by the CBADP operating system, according to the
user programs, which are written in some high-level language
(such as C, Fortran, or Pascal) and have been converted into
machine language using the CBADP compiler.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

16 | P a g e

www.ijacsa.thesai.org

 Abstract view of CBADP system Fig. 4.

The CBADP operating system has several important
functions for smooth and efficient processing of the user
programs, and these are:

 Based on the information provided by the CBADP
compiler about the given dataflow graph, design an
efficient search phase for the program.

 Provide the system call to the CU_SP (control unit for
search phase) for initiating the search phase of the
dataflow graph.

 Acknowledge and handle any interrupts generated
during the search phase to keep track of the information
about the nodes (of dataflow graph) and their specific
locations within the associative memory where they
have been stored.

 Based on the information gathered during the search
phase, design an efficient execution phase for the given
dataflow graph.

 Provide the system call to the CU_EP (control unit for
execution phase) for initiating the execution phase of
the dataflow graph.

 Acknowledge and handle any interrupts generated
during the execution phase to keep track of the
information about the nodes (of dataflow graph) and
their execution status in the system. In case of branch
operations, enable or inhibit the appropriate control-
node depending upon whether the branch condition has
been satisfied or not.

 Provide synchronization mechanism between the four
arithmetic and logic units contained within the

processing unit of the CBADP so that the instructions
are executed in proper order.

For best CBADP performance, the ideal operating system
should have multitasking capabilities so that more than one
dataflow graph can be processed at a given time if the
necessary resources, such as CBALUs and registers, are
available. For example, to achieve maximum utilization of the
complex binary processing unit, all four of the CBALUs must
be kept busy all the time. If there are less than four nodes at
any given level for execution, the multitasking operating
system can assign the idle ALU(s) to another dataflow program
which can run in parallel with the current dataflow program.
In case of more than one dataflow program being processed on
the ADP, the protection becomes an important issue to be
addressed. That is, steps need to be taken to ensure that the
proper execution of one graph does not interfere with the
proper execution of the other dataflow graph(s) in the system.

VI. CONCLUSIONS AND FURTHER RESEARCH

The design of a content-addressable memory-based
associative dataflow processor, for which an Australian
Innovation Patent has been granted, has been presented in this
paper. Work on establishing complex binary number system as
a natural enhancement of traditional binary number system is
still in progress and the given complex binary associative
dataflow processor design is still undergoing improvements
and implementation optimization for field-programmable gate
arrays (FPGAs). An avenue of further research in this area
would be to incorporate CBNS in an image processor design or
a digital signal processor design, two of the well-known areas
where complex numbers are widely used, and then compare
their performances with the processors implementing base 2
binary number system. Incorporating cache memories within
the CBADP and then determining statistical performance
analysis of such a system will be a valuable contribution to this
area of engineering. These days, efforts are underway to design
computer systems which mimic human brain. Since human
brain behaves very much like associative memory, a content-
addressable parallel processor system, such as CBADP, may
provide a useful tool for research in this area of interest to both
medicine and engineering. The design of an operating system
for CBADP is another interesting area of further research in
this realm of computer engineering.

ACKNOWLEDGMENT

The concept of associative dataflow was developed at the
Florida Institute of Technology (USA) during 1994-1996 when
the author was pursuing doctoral studies there under the
supervision of his research supervisor, Dr. R. G. Deshmukh.
The author gratefully acknowledges the financial support
provided by Sultan Qaboos University (Oman) for the CBNS-
related projects through various research grants over the past
fourteen years. The research collaboration of Neville Holmes,
David Blest, Bassel Arafeh, Amer Al-Habsi, Usman Ali, Amir
Arshad Abdulghani, Ahmad Al-Maashari, and Said Al-Abri
with the author on these projects is greatly appreciated.

REFERENCES

[1] D. Knuth, “An imaginary number system,” Communications of the
ACM, 1960, pp. 245-247.

User

 CBADP compiler

CBADP operating system

Complex Binary

Associative

Dataflow Processor

(CBADP)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Extended Papers from Science and Information Conference 2014

17 | P a g e

www.ijacsa.thesai.org

[2] W. Penney, “A numerical system with a negative base,” Mathematical
Student Journal, May 1964, pp. 1-2.

[3] W. Penney, “A binary system for complex numbers,” Journal of the
ACM, April 1965, pp. 247-248.

[4] V. Stepanenko, “Computer arithmetic of complex numbers,”
Cybernetics and System Analysis, 1996, Vol. 32, No. 4, pp. 585-591.

[5] T. Jamil, N. Holmes, and D. Blest, “Towards implementation of a binary
number system for complex numbers,” Proceedings of the IEEE
SoutheastCon 2000, Nashville, Tennessee (USA), April 7-9, 2000,
pp. 268-274.

[6] T. Jamil, “The complex binary number system – basic arithmetic made
simple,” IEEE Potentials, December 2001/January 2002, Vol. 20, No. 5,
pp. 39-41.

[7] T. Jamil, Complex Binary Number System – Algorithms and Circuits,
Springer, 2013.

[8] D. Blest and T. Jamil, “Efficient division in the binary representation of
complex numbers,” Proceedings of the IEEE SoutheastCon 2001,
Clemson, South Carolina (USA), March 30-April 1, 2001, pp. 188-195.

[9] D. Blest and T. Jamil, “Division in a binary representation for complex
numbers,” International Journal of Mathematical Education in Science
and Technology, 2003, Vol. 34, No. 4, pp. 561-574.

[10] http://pericles.ipaustralia.gov.au/ols/auspat/applicationDetails.do?applic
ationNo=2010100706

[11] T. Jamil, Introduction to Associative Dataflow Processing – From
Concept to Implementation, VDM Verlag, 2010.

[12] T. Jamil, “Design of a complex binary associative dataflow processor,”
Proceedings of the 4th International Conference on Computer
Engineering and Technology, Phuket, Thailand, May 27-28, 2012,
pp. 32-35.

[13] T. Jamil, B. Arafeh, and A. Al-Habsi, “Hardware implementation and
performance evaluation of complex binary adder designs,” Proceedings
of the 7th World Multiconference on Systemics, Cybernetics, and
Informatics (SCI 2003), Orlando, Florida (USA), July 27-30, 2003, Vol.
II, pp. 68-73.

[14] J. Goode, T. Jamil, and D. Callahan, “A simple circuit for adding
complex numbers,” WSEAS Transactions on Information Science and
Applications, July 2004, Vol. 1, No. 1, pp. 61-66.

[15] T. Jamil, A. Abdulghani, A. Al-Maashari, “Design of a nibble-size
subtractor for (-1+j)-base complex binary numbers,” WSEAS
Transactions on Circuits and Systems, July 2004, Vol. 3, No. 5,
pp. 1067-1072.

[16] T. Jamil, A. Al-Maashari, and A. Abdulghani, “Design and
implementation of a nibble-size multiplier for (-1+j)-base complex
binary numbers,” WSEAS Transactions on Circuits and Systems,
November 2005, Vol. 4, No. 11, pp. 1539-1544.

[17] T. Jamil and S. Al-Abri, “Design of a divider circuit for complex binary
numbers,” Proceedings of the World Congress on Engineering and
Computer Science 2010/International Conference on Circuits and
Systems, San Franscico, California (USA), October 20-22, 2010,
Vol. II, pp. 832-837.

[18] A. Silberschatz and P.B. Galvin, Operating System Concepts, Addison-
Wesley Publishing Company, 1994.

