
Advancing Research Infrastructure Using OpenStack

Ibad Kureshi, Carl Pulley, John Brennan, Violeta Holmes, Stephen Bonner, Yvonne James
School of Computing and Engineering

University of Huddersfield
Huddersfield, UK HD1 3DH

Email: hpc-rg@hud.ac.uk

Abstract—Cloud computing, which evolved from grid com-
puting, virtualisation and automation, has a potential to deliver
a variety of services to the end user via the Internet. Using the
Web to deliver Infrastructure, Software and Platform as a Service
(SaaS/PaaS) has benefits of reducing the cost of investment in
internal resources of an organisation. It also provides greater
flexibility and scalability in the utilisation of the resources.
There are different cloud deployment models - public, private,
community and hybrid clouds. This paper presents the results of
research and development work in deploying a private cloud using
OpenStack at the University of Huddersfield, UK, integrated into
the University campus Grid QGG.

The aim of our research is to use a private cloud to improve
the High Performance Computing (HPC) research infrastructure.
This will lead to a flexible and scalable resource for research,
teaching and assessment. As a result of our work we have
deployed private QGG-cloud and devised a decision matrix and
mechanisms required to expand HPC clusters into the cloud
maximising the resource utilisation efficiency of the cloud.

As part of teaching and assessment of computing courses an
Automated Formative Assessment (AFA) system was implemented
in the QGG-Cloud. The system utilises the cloud’s flexibility
and scalability to assign and reconfigure required resources
for different tasks in the AFA. Furthermore, the throughput
characteristics of assessment workflows were investigated and
analysed so that the requirements for cloud-based provisioning
can be adequately made.

I. INTRODUCTION

Since 2010, the University of Huddersfield has established
a private cloud. The primary aims for this system is to further
the research goals in advanced computer systems. The cloud
was quickly adopted by other academics and this system went
from being a research machine to an integral part of the campus
grid infrastructure. As a whole, this infrastructure is known
as the Queensgate Grid (QGG), and includes: several high
performance computing (HPC) clusters; a render farm; and a
high throughput (HTC) cycle stealing system. Now this private
cloud provides not only Infrastructure as a Service (IaaS) but
platform and software services as well.

Heavily used in delivering courses like ’Network Security’
and ’Operating Systems’, the QGG-Cloud has served as a
’Virtual Laboratory’. With minimal hardware and very little
technician time, the students were provided with a learning
environment to meet their academic needs. Different flavours
of the Microsoft Windows R©and Linux operating systems were
delivered over IP. This has meant that: the technicians do not
have to exhaust time dual/triple booting lab machines; students
can be given access to many different operating systems;
and with more enhanced access privileges than if they were

using a physical machine plugged into the University network.
Previously the specialist labs that could dual/triple boot were
not available out of hours, due to their physical locations, but
using the QGG-Cloud students can get access to their learning
environment from the 24 hours labs within the library [1].

To help researchers and students undertaking research
projects, different applications are placed in the cloud as
snapshots of typical lab PCs. This system of creating snapshots
also ensures backward compatibility of software. Even if new
versions of the software or operating systems are released,
researchers can still recreate previous conditions when proofing
their prior research. Delivering Software as a Service in this
manner allows the users to get different (in most cases higher)
hardware specifications to do their science. Provisioning faster
CPU’s or larger memory configurations ensures the University
and research capital is not wasted on an endless cycle of
purchases. For most of their lifetime the cutting edge desktop
machines are either idle, not being used for their intended
purpose or not being used to their maximum capability [2]. The
approach of centrally providing high memory type configura-
tions leads to better access for all users within the institution,
improved utilisation and better management of power hungry
devices.

The QGG-Cloud in its current incarnation is an Open Stack
Grizzly deployment using RDO over CentOS 6.4 [3]. The
central head or access node provisions images on quad socket
AMD based servers. These servers have 4GB of RAM per
core. The system can provide up to 96 standard m2.medium
configurations. Internally the cloud has two gigabit networks
and externally is linked to the University’s 10 gigabit research
computing network.

In this paper we expand on work described in the paper
’Using OpenStack to Improve Student Experience in an H.E.
Environment’[1]. In the previous work we briefly described
how the private IaaS cloud supported our existing research
computing infrastructure by providing machine configurations
not available in the traditional HPC clusters. In Section II,
of this paper, we describe how the challenges of dynamically
surging our traditional HPC workloads to the cloud have been
met. The ability to dynamically scale beyond the rigid hard-
ware of the clusters was achieved by making enhancements
to the open-source HPC batch system TORQUE and the job
scheduler MAUI.

The growing numbers of students enrolling for University
and online programming courses requires the use of auto-
mated evaluation of student assignments in order to meet that
demand. Previous work[1] demonstrated a system (based on
a custom Domain Specific Languages (DSL)) for specifying

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2013

63 | P a g e
www.ijacsa.thesai.org

Fig. 1: Layout of the OpenStack based QGG-Cloud

Automated Feedback Assessments (AFA) and was delivered to
academics using a Platform as a Service. We expand on that
work here by examining an Akka actor[4] implementation of
an assessment workflow. In Section III we use actual student
submissions1 along with the original submission frequency
model, to simulate different loading scenarios for our assess-
ment workflows. In using an actor based implementation, we
additionally investigate the extent to which claims of scaling
and failure resilience hold.

II. SURGE COMPUTING

A. Background

Cloud computing has been described as the next paradigm
in computing. It promises to deliver computing power as the
fourth utility direct to the end user. While large enterprises
have yet to move their IT infrastructure into the cloud, startups
and small businesses have benefited greatly from the cloud.
The shorter barrier to entry means that companies can deliver
their product or enhance their infrastructure as needed [5].

Where small to medium enterprises (SME) have success-
fully employed cloud computing is in scaling their existing
infrastructure, as and when required. Whilst they are still
reliant on some internal resources, in moments of heavy load
the SME can scale their resources within a public cloud. The
companies can therefore guarantee customers a high quality of
service with minimal investment. This form of provisioning is
known as surge computing [6].

Most current work is focused on surging Web 2.0 type
workloads within the cloud [7][8][9]. Using load balancing and
heartbeat monitoring tools, Apache web servers and mySQL
databases are provisioned to meet such high demands.

1Our corpus of student data consists of 2164 submissions made by 163
students over a 210 day period.

There are many proponents of cloud computing whom
additionally advocate migrating high performance computing
workloads to the cloud [10][11][12]. However, there has been
little existing work in creating a HPC Job Manager and Sched-
uler that is truly dynamic and elastic. The HTCondor project
is a dynamic HPC scheduler, but it lacks elasticity, working on
the principle that execution nodes can start up and then connect
to the control node. The control node itself does not ’hunt’ for
execution endpoints. Even with such dynamism HTCondor can
be utilised for HPC type workloads. It has been utilised by
pharmaceutical companies to create large clusters on Amazon
EC2 [13]. The major limit to the dynamism currently provided
is that based on the workload on the head node there is no
mechanism to automatically generate execution endpoints.

Traditional HPC Job managers are very rigid. Job managers
like TORQUE and Grid Engine need to be given endpoint
information, e.g. hostnames or IP addresses, at startup. If
a change is required then the whole job management suite
needs to be restarted. This obviously makes such schedulers in-
elastic. Recently however, IBM (in collaboration with Platform
Computing) have released a version of the Platform LSF that
dynamically creates nodes within elastic environments to meet
such HPC needs. The Enterprise Edition of the MOAB HPC
Suite now also includes dynamic cloud based provisioning
functionality. Penguin Computing too have a cloud based
initiative for enterprise clients [14].

Whereas the previous two solutions are proprietary, our
efforts to surge enable the local HPC have solely utilised open
source GNU/GPL job management systems.

B. Motivation

The University of Huddersfield’s research computing grid
comprises of several high performance compute clusters. They
differ from each other by core speed, interconnect speed, co-
processor availability and memory configurations. On average
most systems have a 2GB RAM per core core memory config-
uration. The maximum available memory configuration is 4GB
RAM per core, but these nodes cap off at 16GB RAM per node
[15]. Researchers at Huddersfield do have access to Shared
Memory Processor (SMP) and POWER systems based high
memory configurations through academic partnerships with
other institutions. Unfortunately, there are some applications
within the QGG that are not able to run on non x86 systems.
Others have license limitations that prevent the software from
being used off-campus. Additionally, there are instances where
researcher generated models can not be partitioned to run on
a distributed memory clusters [16].

An example scenario has occurred with researchers from
the school of Human and Health Sciences (HHS). Using a
commercial *NIX based rendering package, the researchers
generate high resolution visualisations of blood flow. Under
most conditions the rendering package divides the frames
between nodes and speeds up the render time. However,
for the HHS renders, each single frame can consume more
than the maximum available 16GB of RAM. Due to the
commercial nature of the software package, the application
can not be ported to other architectures, nor can it be deployed
on a partner institutions HPC system. Before HPC and then
cloud deployment of this package, HHS bought 8GB RAM

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2013

64 | P a g e
www.ijacsa.thesai.org

workstations, followed by upgrades to 16GB and then finally
a single 32GB RAM workstation. The purchasing power of
the research group has quite clearly been affected by a single
computational problem.

The purchased workstations are power hungry in an idle
state and, for the majority of the time, are used for standard of-
fice work! Provisioning for such applications within the QGG-
Cloud allows for delivering different hardware configurations
that the researcher could not possibly get under their desk.
The key however is to remove the complexity of the cloud
and to seamlessly integrate this system within the existing
HPC infrastructure so that the researchers workflow is not
significantly disrupted.

C. Implementation

In the initial development, we designed a wrapper script
for PBS/TORQUE (TORQUE being the commonly deployed
batch system within the QGG). Using Python extensions for
Keystone, and a MySQL database to hold configurations, the
wrapper script decides if a job should be directly submitted to
the underlying torque system or surged to the QGG-Cloud.

In section II-C1 we outline the decision making process
undertaken before jobs are surged to the cloud. In section II-C2
we provide detailed explanations for the mechanisms required
to expand the TORQUE cluster into the cloud.

1) Decision Metrics: When a job is submitted to the
cluster, the wrapper intercepts the job file. If the requested
resources (in the job file) match those resources that can be
found within the hardware scope (of the traditional cluster),
then the job carries on through the system as normal. If the
requested resources exceed what is available as bare metal,
then the wrapper begins to provision a node in the cloud.
Using information defined in the configuration database, along
with the status of the load on the cloud, decisions are taken
regarding the provisioning. A flow chart showing the steps is
shown in Figure 2.

If the requested resources can fit on pre-defined cloud
limits, then the wrapper initiates a compute node instance
within the cloud and submits the job to TORQUE, along
with a flag that ensures that this job will be routed to the
new cloud instance. If the requested resources exceed the
limits of the local cloud service, and the user/administrator
has configured credentials to surge to a public cloud, then the
VM is instantiated within the public cloud. In the event that
there are no public cloud credentials, the job is returned to the
user with an error message.

To maximise the utilisation efficiency of the private cloud,
the wrapper is able to create a hardware flavour within cloud.
This flexibility is essential in a private cloud setting. Generally
provision options on clouds tend to be configured in binary
increments. So after a 16GB RAM flavour the next flavour
will have 32GB of RAM. Therefore if a user requests 20GB
of RAM for their simulation there will be 12GB of RAM
booked and not used. It will also limit the total number of
surge instances created.

The following section covers the actual methodology of
implementation for the wrapper.

Fig. 2: Flowchart depicting the decision making process in
HPC Cloud Surging

2) Surge Wrapper for TORQUE: Users on the surge en-
abled HPC system have a custom script named ’qsub’ in
their default paths. This qsub is not the standard TORQUE
submission executable. The script passes the users submission
to the surge wrapper. The surge wrapper parses the arguments
supplied by the user to PBS/TORQUE. If a job is submitted
with more than the job file argument, the wrapper automati-
cally passes the job down to the scheduler. To invoke the surge
a user has to define their job within a PBS job file.

Using PBS based functions, the wrapper queries the un-
derlying HPC system to assess the available capabilities. Once
it has ascertained that the requested resources are not natively
available via TORQUE, it calls the function to surge the job
into the cloud. Using the limits specified by the configura-
tion database, the wrapper then generates a hardware flavour
template. This is injected into OpenStack. The configuration
database holds information such as: how elastic the system is;
the largest flavour instance possible; etc.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2013

65 | P a g e
www.ijacsa.thesai.org

<< OpenStack >>
:Controller

<< Mysql >>
:ConfigStoreWrapper(jobscript):

Resource Query

return(resources) vm:WorkerInstance

Start Instance

Allocate IP

Start Monitor

Start Instance

Update DB

<< PBS >>
:Server

qsub

Monitor(Jobnum,ServerID,Fla
vID):

Job Query

Job State

Job Cleanup
Kill Instance

Handshake

Run Job

Job Status

Fig. 3: Control bus depicting the sequence of events in an HPC Surge

With the hardware flavour injected into the system, the
wrapper starts a virtual machine instance utilising a pre-
configured image. This image mirrors a typical node within the
HPC system. Next, the job script is regenerated with a special
queue name and handed over to TORQUE. The wrapper also
starts a small service to monitor the job’s progress.

On the system TORQUE is pre-configured to recognise ’n’
number of nodes (where n is equal to the maximum nodes that
can be generated in the cloud). These nodes are locked to the
special queue. So when the wrapper submits the job with the
modified queue, TORQUE waits for the instance in the cloud
to start up and then matches the job to the cloud instance.
From the TORQUE point of view, a job has arrived which can
only be assigned to a particular set of nodes and, one of those
nodes has just become available.

Within the cloud, OpenStack generates a new hardware
flavour and instantiates an image against this flavour. It then
subtracts the requested resources from the pool of resources
the surge can request. This is fed back to the surge wrapper
to ensure the cloud does not get overly subscribed.

Upon completion of the job, the TORQUE MOM demon
becomes idle and, once the job monitoring service detects
this, injects a poison pill to terminate the VM instance. The
custom hardware flavour is additionally removed from the
OpenStack environment. Within TORQUE, the node becomes
offline. Figure 3 depicts the sequence of events that take place
when a job is surged to the private cloud.

Whether being used in a public or private cloud environ-
ment, the systems scalability will always be controlled. In a
public cloud the availability of resources purchased (or some
form of financial cap) will prevent an indiscriminate number of
nodes being spawned. In a private cloud the elasticity itself is
limited. OpenStack controls the number of cores and instances
a user can run through group policies. In OpenStack parlance,
this is know as ’Project Quotas’. In the situation where the
surge ’project’ on OpenStack is out of resources to spawn
a new node, the new job is simply queued. If the new job,
e.g. job-B, can run on already spawned virtual machines,
then job-B is sent to TORQUE in the modified queue. The
monitoring service that is awaiting the completion of already
started/running jobs, is passed the new jobs information. Upon
completion of the running jobs, the monitor refrains from
injecting the poison pill, allowing TORQUE to push job-B
to the now idle node. If the spawned instances do not meet
the requirements of the new job, then job-B is held in a queue
external to TORQUE. Running jobs will terminate as normal,
and instances are brought down returning their resources to
the quota. The job is then reconsidered for execution when
the monitor reports a change to the load on the cloud.

If a requested hardware configuration can never be met,
an error is returned to the user. Information pertaining to the
maximum number of nodes, smallest configuration of nodes,
largest configuration possible, static flavours (if using a public
cloud) and credentials, are available to the wrapper from the
MySQL configurations database.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2013

66 | P a g e
www.ijacsa.thesai.org

Round-robin
Load Balancer

Workflow
Actor

AFA

Workflow
ActorSubmission

Feedback

Remote Compute Node

Workload

Fig. 4: Assessment Workflow

The HPC Surge completed our institutional demands for
Infrastructure as a Service. In the next section we evaluate
the Automated Feedback Assessment framework, which is
delivered to our users as Platform as a Service.

III. AFA WORKFLOWS

In [1] we investigated how the HPC cloud could be used to
automatically generate formative feedback for submitted stu-
dent assessments 2. Using a combination of various technology
stacks (i.e. JClouds, Chef, Apache Camel and Akka actors),
[1] presented a domain specific language (DSL) that:

• could define complex assessment workflows

• was able to support a (extensible) variety of data
collection, analysis and feedback delivery methods

• and simplified the deployment and configuration of the
underlying computing infrastructure.

In this paper, we focus on the assessment workflows that
AFAs encapsulate and investigate their design for throughput
and scalability. Our assessment workflows are profiled using a
corpus of student work3 taken from a real-world (topological
sorting) Java programming exercise.

A. Workflow Design

Assessment workflows are encapsulated by an AFA that
is responsible for managing the consuming of coursework
submissions, their injection into the assessment workflow
and the subsequent processing and delivery of the (workflow
returned) submission feedback[1]. As assessment workflows
are the resource intensive component of an AFA, here we
propose resilient and scalable designs for them.

[17] investigates how a combination of testing, control-
flow graph similarity matching and software verification can
be used to effectively assess and grade student code. Our work
completes this work by providing a framework within which
their assessment strategy, or workflow, may be run. Unlike
[17], we base our work on a more complex programming
exercise, and so face additional challenges in using software

2All code is open sourced and publicly available from:
http://github.com/carlpulley/cloud-paper.

3The corpus consists of 2164 submissions made by 163 students over the
period of 201 days.

0

20

40

60

80

Dec Jan Feb Mar Apr May Jun Jul
Day of Submission

N
um

be
r

of
 S

ub
m

is
si

on
s

Fig. 5: Student Coursework Submission Frequency

verification. Future work plans to explore the extent to which
we may address these issues using Separation Logic based
solutions such as: jStar[18] and Krakatoa[19].

Figure 4 shows our assessment workflow deployment strat-
egy. Using a round-robin load balancing router, we send mes-
sages (i.e. submissions) to a series of remote cloud compute
nodes. On each cloud compute node, messages are received
and processed by a collection of worker actors that all share
and process the same mailbox (configured via a balancing
dispatcher). After a worker actor has processed a message, it
replies with its result (i.e. feedback) to the message’s original
sender.

On going work is investigating how best to implement
message persistence when cloud compute nodes fail or restart.
Currently, we have used durable mailboxes (implemented using
filesystems) to provide resilience against restarts. Future work
will investigate using event sourcing[20] to rebuild system state
by replaying submission events from message transaction logs.

B. Methodology

Our aim is to investigate the throughput characteristics of
realistic assessment workflows so that requirements for cloud
based provisioning can be adequately made. We first describe
a workflow model and then how we plan to load it with
submission data.

As reported in [17], program based assessments consist
of three workload tasks: testing; control-flow graph similarity
matching; and software verification. The resource requirements
for each of these three tasks are dependent upon the spe-
cific submission and their processing may occur concurrently.
Hence, we approximate our workflow model by simply per-
forming testing only in our simulations. For our simulations,
we configure our experiments to use a single (local) compute
node, with 8 worker balanced workflows.

In order to measure quality of service, we constrain queued
submissions so that they must be processed within a given
time period (we choose a value of 5 minutes). Any feedback
replies generated after the timeout period will be rejected.
We implement this timeout using an Akka actor that proxies

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2013

67 | P a g e
www.ijacsa.thesai.org

●

●

●

●

●

40

60

80

100

0.0 0.1 0.2 0.3 0.4
Load Factor

S
ub

m
is

si
on

s
P

ro
ce

ss
ed

Fig. 6: Load Factor vs Submissions Processed

Load Factor Submissions Processed (%) Avg. Processing Time (s)
0.4 97.0 0.42
0.3 100.0 0.42
0.2 77.4 0.42
0.1 49.5 0.40
0.0 43.6 0.42

TABLE I: Resource Usage Data

the workflow actor using the implicit timeout of an ask or
request/reply message pattern.

Different delivery loads are simulated using the actual
submission frequency (see figure 5) of our real-world student
data scaled with a constant load factor.

For each load factor, profiling experiments were ran for a
fixed time of 15 minutes, with data collected at the termination
of that experiment. All simulation code was ran on a 2.4GHz
Quad-core Intel Xeon Mac Pro with 26GB of RAM, using
a JVM configured with 256MB of stack and 1GB of heap
space. Resource monitoring was performed using the Typesafe
console. All other Akka actor configuration was set to the
default values.

C. Data Analysis

By examining the AFA’s message store, we extract the time
of first submission, the last accepted feedback and the number
of submissions and accepted feedbacks. From this data we can
calculate (see table I) the percentage of submissions processed
(our throughput) and a submissions average processing time (a
quality of service measure).

With a load factor of 0.4, only 97.0% of submissions were
processed. This is an artefact of the time period over which
the experiments were run. If they had been run for a longer
period (e.g. 20 minutes), then existing feedback processing
would have completed and the expected 100% throughput for
this load factor would have been achieved.

Throughout, our average processing time remains reason-
ably constant. Moreover, as we flood the actor queues with
submission messages (i.e. the load factor gets smaller), the
number of successful feedbacks generated decreases. This is
expected behaviour. Using a graph plot of load factor vs

submissions processed (see figure 6), along with an estimate
of acceptable feedback loss and compute node startup time,
we can now predict the point at which more compute nodes
should be launched. By monitoring our feedback message
failure rates, our Akka actor workflow can be configured to
elastically adapt to the changing workflow demands.

IV. FURTHER WORK

One of the biggest shortfalls with present job schedulers
is their rigidity. The TORQUE batch queuing system needs
to know about all execution endpoints and their capabilities
before accepting a job. If a user requests more hardware than
can be provided, the job is not accepted. This is why our
implementation required a wrapper to sit above TORQUE
assessing the requirements of incoming jobs and then provi-
sioning for the demand. Our aim is to integrate the wrapper
into a hybridised version of TORQUE. In this new elastic
TORQUE, a job will not be rejected because of a lack of
resources. Using the same principals of the surge wrapper,
TORQUE will assess if it can initiate a node in the cloud to
provision the required hardware. A job will only be rejected
if the job’s requirements can truly not be met.

The current implementation of the surge tool lacks inter-
operability with other cloud providers and middlewares. The
final version of the wrapper tool will be more modular and
have provisions to plug in to different cloud middlewares and
providers. While current public clouds maybe too costly for
large scale HPC provisioning, the public cloud can be used to
surge time critical workloads to, or to get access to hardware
configurations (such as GPU etc.) that are not available in
house.

Within the University of Huddersfield’s research computing
grid, there is currently research taking place to make tradi-
tional HPC schedulers more intelligent [21]. Using an open-
framework bench-marking suite known as the ’Application and
System Performance Profiler’, job schedulers are being given
more information and are thus more aware of the performance
characteristics of the software being executed on the HPC
clusters. Heuristic information, gathered from previous jobs,
is also being utilised in the scheduling decisions. Using the
dynamic scaling features that the elastic-TORQUE project
provides, the Intelligent scheduler can lead to cloud envi-
ronments being utilised more efficiently for HPC workloads.
Performance profiles will provide the HPC job manager with
estimated resource requirements and the corresponding run
times, so that the scheduler can factor in a new dimension
to its scheduling algorithm: cost. This will truly open up the
cloud for HPC and other research computing enterprises.

V. SUMMARY AND CONCLUSION

Cloud computing has great potential to provide scalable
and flexible computational resources in commercial and aca-
demic environments. However, concerns regarding intellectual
property rights and security risks, combined with the high
cost of acquiring resources through a commercial provision
have stimulated research into private clouds for education and
research institutes.

In this paper we have presented the results of research in
deploying and utilising cloud technology to create the QGG-
Cloud at the University of Huddersfield, UK. This private

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2013

68 | P a g e
www.ijacsa.thesai.org

cloud is deployed as an OpenStack Grizzly using RDO over
CentOS 6.4. It supports users needs for High Performance
Computing resources by providing machine configurations not
available in traditional HPC clusters, delivered as IaaS. To
improve resource utilisation within the cloud we have imple-
mented an HPC job manager and scheduler that are dynamic
and elastic. This was achieved by making an enhancement to
the open-source HPC system TORQUE and the job scheduler
MAUI. Future work will focus on developing an intelligent
scheduler to further improve utilisation of cloud environments
for HPC workloads.

Responding to the demand for quicker and more insight-
ful coursework feedback from computing students, we have
implemented Automated Feedback Assessment (AFA) system
within the university private cloud, delivered as PaaS. Based on
the analysis of student coursework submission frequency, we
have devised assessment workflow deployment strategy and
investigated the throughput characteristics of the workflows.
This has allowed workflows to be configured to elastically
adapt to changing demands, and predict when more computing
nodes should be launched in the cloud.

Building on the University’s existing investment in internal
HPC clusters and campus grid technology, and using open
source cloud software - OpenStack, we have deployed the
QGG-Cloud. This private cloud provides an effective solution
for advancing the HPC research infrastructure and a flexible
and scalable system used for research, teaching and assessment
at the university.

ACKNOWLEDGMENT

The authors would like to acknowledge the use of the
University of Huddersfield computational grid the Queensgate
Grid.

REFERENCES

[1] Bonner, Stephen, Pulley, Carl, Kureshi, Ibad, Holmes, Violeta, Brennan,
John and James, Yvonne (2013). Using OpenStack To Improve Student
Experience in an H.E. Environment., Science and Information Confer-
ence 2013, London, pp.888-894. TheSAI

[2] Sundararajan, E.; Tan Bing Yean; Rahmani, M., ”Using computer labs
for distributed computing,”, 2011 International Conference on Electrical
Engineering and Informatics (ICEEI), pp.1,6, 17-19 July 2011

[3] ”Redhat Open Stack” RDO. Redhat, n.d. Web.
http://openstack.redhat.org/.

[4] Wyatt, Derek (2013). Akka Concurrency. Artima Developer.
[5] Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008, November). Cloud

computing and grid computing 360-degree compared. In Grid Computing
Environments Workshop, 2008. GCE’08 (pp. 1-10). IEEE.

[6] Van den Bossche, R., Vanmechelen, K., & Broeckhove, J. (2010, July).
Cost-optimal scheduling in hybrid iaas clouds for deadline constrained
workloads. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on pp. 228-235. IEEE.

[7] Chieu, T. C., Mohindra, A., Karve, A. A., & Segal, A. (2009, October).
Dynamic scaling of web applications in a virtualized cloud computing
environment. In IEEE International Conference on e-Business Engineer-
ing, 2009. ICEBE’09. pp. 281-286. IEEE.

[8] Vaquero, L. M., Rodero-Merino, L., & Buyya, R. (2011). Dynamically
scaling applications in the cloud. ACM SIGCOMM Computer Commu-
nication Review, 41(1), 45-52.

[9] Mao, M., Li, J., & Humphrey, M. (2010, October). Cloud auto-scaling
with deadline and budget constraints. In International Conference on
Grid Computing (GRID), 2010 11th IEEE/ACM. pp. 41-48. IEEE.

[10] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,
Youseff, L., & Zagorodnov, D. (2009, May). The eucalyptus open-source
cloud-computing system. In 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2009. CCGRID’09. pp. 124-131. IEEE.

[11] He, Q., Zhou, S., Kobler, B., Duffy, D., & McGlynn, T. (2010, June).
Case study for running HPC applications in public clouds. In Proceed-
ings of the 19th ACM International Symposium on High Performance
Distributed Computing. pp. 395-401. ACM.

[12] Bientinesi, P., Iakymchuk, R., & Napper, J. (2010). HPC on compet-
itive cloud resources. In Handbook of Cloud Computing. pp. 493-516.
Springer US.

[13] Brodkin, Jon. ”$1,279-per-hour, 30,000-core Cluster Built on Amazon
EC2 Cloud.”, Ars Technica, 20 Sept. 2011. Website

[14] Bernstein, J. McMahon, K. (2012). Computing on DemandHPC as a
Service. Penguin Computing

[15] Kureshi, Ibad. The Queensgate Grid - Systems, HPC Resource Centre
RSS. HPC Research Group, University of Huddersfield, 04 Apr. 2010.
http://hpc.hud.ac.uk/?page id=446.

[16] Kureshi, Ibad. The Queensgate Grid - Applications, HPC Resource
Centre RSS. HPC Research Group, University of Huddersfield, 04 Apr.
2010. http://hpc.hud.ac.uk/?page id=175.

[17] Vujošević-Janičić, Milena, Nikolić, Mladen, Tošić, Dušan and Kuncak,
Viktor (2013). Software Verification and Graph Similarity for Automated
Evaluation of Students’ Assignments. Information and Software Technol-
ogy, Volume 55, Number 6, pp.1004-1016.

[18] Distefano, Dino and Parkinson, Matthew J. (2008). jStar: Towards
Practical Verification for Java. Proceedings of the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and
applications, OOPSLA ’08, pp.213-226.

[19] Filliâtre, Jean-Christophe and Marché, Claude (2007). The
Why/Krakatoa/Caduceus Platform for Deductive Program Verification.
19th International Conference on Computer Aided Verification. Lecture
Notes in Computer Science, Volume 4590, pp.173-177. Springer.

[20] Evans, Eric (2003). Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison Wesley.

[21] Kureshi, I., Holmes, V., & Cooke, D. J. (2012, September). Robust
Mouldable Scheduling Using Application Benchmarking For Elastic
Environments. In Local Proceedings of the Fifth Balkan Conference in
Informatics (No. 920, pp. 51-57). University of Novi Sad, Serbia.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Extended Papers from Science and Information Conference 2013

69 | P a g e
www.ijacsa.thesai.org

