
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

121 | P a g e

www.ijacsa.thesai.org

Requirements Prioritization and using Iteration Model

for Successful Implementation of Requirements

Muhammad Yaseen
1
, Noraini Ibrahim

2
, Aida Mustapha

3

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia Parit Raya, 86400 Batu Pahat, Johor, Malaysia

Abstract—Requirements prioritization is ranking of software

requirements in particular order. Prioritize requirements are

easy to manage and implement while un-prioritized requirements

are costly and consume much time as total estimation time of

project can exceed. Because all requirements are depended on

each other so total estimation time exceed when requirements

wait for pre-requisite requirements. Priority of requirement also

increases when other requirements wait for it but assigning low

priority to needed requirements will delaying the project.

Iteration model is software engineering (SE) process model in

which all requirements are not developed at one time but are

developed in phases. Only sufficient information or sub-

requirements of particular user requirement (UR) can be needed

for other user requirements (URs) so by implementing only the

sufficient requirements in first phase will reduce waiting time.

Hence total estimation time of the project will also reduce. In this

research work, iteration model approach is used during

prioritization to reduce total estimation time of project and to

assure timely delivery of project. From the results it is concluded

that not all sub-requirements of particular UR get same priority,

but there are only few requirements that are important and

should be given more priority.

Keywords—Requirements prioritization; iteration model; user

requirements; spanning trees; directed acyclic graph

I. INTRODUCTION

Software requirements gathering and management is not
an easy task and needs systematic approaches [14][21].
Requirement prioritization (RP) is an important activity during
requirement management and is defined as is giving order or
importance to requirements. RP helps in better management of
requirements and make it easy for developers to rank
requirements to assure timely delivery of software [1]. RP is
not an easy task, many authors have worked on prioritization
and suggested several techniques. There are four types of
requirements that needs to be prioritize. The goal of every
type of requirement is different. Business requirements (BRs)
deals with benefits and cost issues of requirements. User
requirements (URs) are requirements that come from users
either in the form of features or modules. Functional
requirements (FRs) are core requirements of system. FRs are
the base of URs. FRs are requirements that system must do
and must consist of while non-functional (NFRs) are
supportive requirements that helps in better implementation of
FRs. Techniques like „Cost value ranking‟, „Attribute goal
oriented‟, „Value oriented‟ are suggested for prioritizing BRs
[2][3]. Some of the techniques like „AHP‟, „Binary tree‟,
„value based‟, „genetic algorithm‟, are suitable for prioritizing

URs and FRs [4][5][6] and techniques like „QFD‟,
„Contextual preference based technique‟ are suggested for
NFRs [7][8]. The big challenge for current prioritization
techniques is scalability i.e. inability to handle large set of
requirements [9]. The current techniques are not suitable for
prioritizing FRs from developer‟s perspective i.e. based on
internal structure of requirements.

FRs prioritization from developer‟s perspective is very
necessary for easy management and timely availability of Pre-
requisite requirements. In parallel software development, as
all User requirements (URs) are related to each other, so one
requirement become dependent on others and prioritization
process become necessary.

A. Iteration Model

The basic idea behind this model is to develop a system
through repeated cycles (iteration or phases) and in smaller
portions at a time. Through this model, full software is not
developed on one time, but only skeleton of whole software is
developed and then subsequently requirements are
implemented [10][11]. The first step is analysis phase during
which all requirements are analysed and examined that which
requirements to be implemented first and which should not.
The second phase is the design phase in which proper design
is made.

After the design, requirements are implemented and at the
tested. After integration and deployment, requirements are
analyzed for second iteration and then same process repeat
itself. The detail of iteration model process is shown in Fig. 1.

Fig. 1. Iteration Model Process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

122 | P a g e

www.ijacsa.thesai.org

II. BACKGROUND STUDY

The Analytical Hierarchy Process (AHP) is the most
famous, most used and simplest technique for Requirement
Prioritization (RP). AHP-based prioritization is performed
pairwise by comparing each and every requirement against
each other. For n requirements, then n (n-1)/2 comparisons
will be needed. AHP completes prioritization for each and
every new requirement. For example, if the number of
requirements are ten, then AHP will perform forty-five times
comparisons of the requirements. If the requirements increase
in size, so does the processing time. If the requirements size is
in thousand, there will be 1000*(1000-1)/2 = 499,500
comparisons, which is both very time consuming and difficult
to execute. Because the technique is time consuming, it is not
scalable for big requirements due to the pairwise comparisons
for every requirement [12]. In [13], the proposed framework
arranges requirements on the basis of benefits and cost that
represent requirement dependencies. The work highlighted six
ways of dealing with dependencies. First is, cost and benefit
value for requirements should be fixed value. Secondly, all
requirements should be grouped independently to overcome
the complexity issues during calculations. Third, benefit
should be measured in relative terms such as dollars and time
in hours. Fourth is performing the pairwise comparisons and
finally fifth is the use of discrete values instead of continuous
values like 1, 2, and 3. “Cumulative voting” or “100 dollars
method” is a technique where stakeholders receive 100 dollars
or points and they have to allocate dollars or points on all
possible requirements just like voting mechanism. The
requirement with high polls receive high priority [15].

Group decisions on prioritizing requirements are helpful.
After getting remarks from stakeholders, group of people will
analyze the requirements. At the end, on the basis of group
decision, all the requirements can be prioritized accordingly
[16].

Author presents algorithm of binary tree concept for
requirement prioritization. Requirements are first arrange and
then form a binary tree for that. Using sorting mechanism we
can easily prioritization either in ascending or descending
order all the requirements. Using this technique as compared
to AHP is although difficult in use but very helpful because of
the small number of comparisons as compare to AHP. This
means for projects having many requirements, we can apply
this technique having less amount of comparisons [4].

Value oriented technique focuses on the core value of the
business to rank which requirements are more important from
the other based on business values. Business stakeholders use
simple scale of measuring the values of certain business
requirements but they need a framework that can decide
exactly which requirement is more important than other. In
[16], the business values represent major requirements like
security, customer satisfaction, speed, service, and integrity.
The requirements are arranged from R1 to Rn into a matrix of
business value vs. score. The matrix will produce a total score
for each requirement, which at then sorted as the final list of
prioritized requirements [17].

III. DESIGN OF RESEARCH METHODOLOGY

The detail of research design and methodology is given in
Fig. 2. The purpose of this design is to follow step by step
instruction of prioritization and iteration model. Step by step
process is explained as;

A. Requirements Collection

Gathering software requirements is the core task for any
software construction [18]. Requirements can be collected by
applying elicitation techniques. The collected requirements
need proper management i.e. categorizing requirements and
make relationship between different URs. Proper management
of requirements will help in prioritizing requirements i.e.
which requirements should be implemented first and which
should not.

B. Graph-based Approach

Graph based approach is adopted for representing URs.
Through directed acyclic graph (DAG) requirements are
related to each other as shown in Fig. 3. Graphs are useful for
representing and relating requirements [5]. In many studies,
DAG are used by authors for relating different objects and
entities [19]. From DAG one can easily identify which
requirements are necessary for which other requirements.

Fig. 2. Step by Step Research Design Process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

123 | P a g e

www.ijacsa.thesai.org

Fig. 3. Assigning Priority to Requirements in Graph.

In above graph, R1 is requirement that is needed for R2
and R3. While R4 need R2 for its implementation. This
relation shows that for implementation of R2 and R3, R1
implementation and completion is must.

C. Requirement Prioritization

“Requirement which is pre-requisite for the completion of
other requirement is assigned more priority”. E.g. in Fig. 3.

R5 priority will be higher than R4 while R4 will get high
priority than R2

1) Spanning tree concept: Spanning trees are special sub

graphs of a graph that have several important properties. First,

if T is a spanning tree of graph G, then T must span G,

meaning T must contain every vertex in G. Second, T must be

a sub graph of G. In other words, every edge that is in T must

also appear in G. Third, if every edge in T also exists in G,

then G is identical to T.

Priority of requirement can be found through spanning tree
inside graph. Spanning tree inside graph will show a complete
track for particular requirement through which it is needed to
set of all other requirements.

Spanning trees can be formed either as a result of depth
first searching (DFS) or breadth first searching (BFS). Record
of any visiting node or requirement will be kept on stack.
Using DFS, start traversing full leaves of particular branch.
When dead point reaches, requirements of that branch will be
pop out one by one until it reaches to start point of that branch.
Similar process will be repeated for next branch. Dead point is
that where requirements are no more required further for any
requirement.

Find all possible trees from graph. Starting point will be
the requirement which is required for other requirements such
that the pre requisite requirements will come to the top as
parent and all requirements for which pre requisite
requirements are needed will look like a child‟s and sub
child‟s. E.g. In this directed graph of Fig. 4, all possible
spanning trees are;

Tree 1 will start from R2 and ends with R1 as R1 is not
required for any other requirement.

Tree 2 will start from R4, passes R3 and ends with R1.
Similarly will happen with R5.

Tree 3 will start from R6, now it has three paths, either to
go R3 (using DFS or BFS) and then R1, either to go R7 or
either R8.

In Fig. 5, priority of R6 will be greater than R3, R7 and
R8. Priority of R8 will be greater than R9 and similarly R9
priority will be greater than R10, R11 and R12. Priority of
R11 will be greater than R13 and R14. In between R10 and
R11, priority of R10 will be slightly higher than R11 because
it is needed for R11.

2) Assign numerical values to prioritized requirements:

Ranking is technique used to rank requirements either in

ascending or descending order of implementation [6].

Numerical values show the order in which requirements

should be implemented. These values are not fixed, which

means any value can be assigned in certain range. E.g. if 6 is

considered maximum value which is highest priority value

than R6 will be assigned value of 6. The value of R8 shall be

less than 6 e.g. we can assign 5 to R8. Similarly R5 can be

either assigned with value of 6 or 3 as this chain have three

requirements. As R3 is common in both chains, we can either

assign it value 5 or 2. Value 2 will be assigned in case when

R5 is assigned 3. Either we assign 2 or 5, we can‟t implement

requirement before its pre-requisites. The purpose of ranking

is assigning implementation priority such that pre-requisite

requirements will get more priority as compare to other

requirements for which it is needed. This method is simple

and appropriate in case where priority is given on the basis of

its implementation from developer‟s perspective. Similarly all

those requirements that have same implementation priority

can be arranged in same group for simplification [20].

Fig. 4. Directed Graph Connecting Different Requirements.

R1 R2 R4 R5

R6 R7 R8

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

124 | P a g e

www.ijacsa.thesai.org

Fig. 5. Spanning Trees from Graph of Fig. 4.

Fig. 6. Dependency of Sub-Requirements of Two user Requirements.

Fig. 7. Graphical Representation of Requirements for Mobile Shop.

Ra
Ra

R10 R9 R8 R7 R4 R3 R2 R1 R6 R5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

125 | P a g e

www.ijacsa.thesai.org

3) Priority on the basis of importance of requirement:

Although two requirements can have same implementation or

chain priority such as R5 and R6 but for analyst the

importance of one requirement can be greater than other. E.g.

analyst can give more importance to R6 as it is required for

too many other requirements or can give importance to R5 as

this chain have lesser requirements and which can be deployed

in time to user or available for other UR. If user or developer

need a particular requirement earlier than priority should be

assigned to that particular requirement. We can use any of the

existing technique from literature while giving score to

requirements on the basis of its importance. But at the end this

requirement should be implemented in order of its

implementation priority as discussed in section 3.2.

IV. USING ITERATION MODEL

As stated iteration model is SE process model in which all
the features or FRs of particular URs are not developed at one
time but are implemented in different phases. Some important
FRs can be implemented earlier and some can be implemented
latterly in next phases. This model is applicable in that case
where either all features are not required, or budget is too high
that‟s why clients demand only for important features only.

During implementation, one requirement wait for other
requirement and this waiting can delay the project so it will be
better to implement the necessary features or FRs that are
required for other requirements. Developer will not implement
all requirements completely but will implement only
necessary requirements.

During this phase when a team member finishes necessary
FRs and other members start developing their requirements,
the first team member can then implement the FRs in next
phase. The detail of the iteration process is explained as.

In Fig. 6, the two URs, Ra and Rb are related to each other
such that Rb is required for Ra. From Fig. 6 we can see that
not all FRs of Rb are required for Ra but there are some
requirements such as R7 and R8 that are required for Ra.
Similarly not all but some requirements of Ra will be required
for other requirements.

For example, let us suppose, average time of completion of
the four FRs of Rb is 40 hours. Suppose average time
consume by each requirement of Rb is 10 hours then Ra will
wait for 40 hours to Rb. If Rb is implemented and delivers
with R7 and R8 only, then waiting time of Ra will reduce to
20 hours and will be implemented in less time.

V. EXPERIMENT AND RESULTS

In order to validate the significance of iteration model
during requirements implementation, experiment was
conducted on requirements of mobile phones inventory
management system. The presented technique were applied
on requirements collected from mobile sales shop and
represented with directed graph as shown in Fig. 7. Twenty
seven URs were collected from mobile shop using background
study and interview as elicitation technique.

A. Implementation Priority

Priority of requirements can be calculated from its position
in spanning tree as discussed in Section 3.2. Requirements of
particular trees are given below in decreasing order of priority.

1. R4>R5>R7>R11

2. R4>R5>R9

3. R4>R5>R10

4. R4>R5>R8>R13

5. R3>R5>R7>R11

6. R3>R5>R9

7. R3>R5>R10

8. R3>R5>R8>R13

9. R1>R7>R11

10. R1>R11

11. R1>R9

12. R1>R12

13. R2>R8>R13

14. R2>R13

15. R2>R10

16. R2>R14

17. R6>R8>R13

18. R6>R10

TABLE I. REQUIREMENTS DETAIL OF MOBILE SHOP

Functional Requirement Notation Required for Chain priority
Efforts

required

Assign

Team member

Supplier R1 R7,R9,R11,R12 4 10 hrs. A

Customer R2 R8,R10,R13,R14 4 10 hrs. A

Product category R3 R5 4 10 hrs. A

Company R4 R5 4 10 hrs. A

Product R5 R7,R8,R9,R10 3 10 hrs. A

Sale man R6 R8,R10 4 10 hrs. A

Purchase R7 R11 2 30 hrs. B

Sale R8 R13 2 30 hrs. B

Purchase return R9 2 30 hrs. B

Sale return R10 2 30 hrs. B

Supplier debit R11 1 20 hrs. C

Supplier payment R12 3 20 hrs. C

Customer debit R13 1 20 hrs. C

Customer payment R14 3 20 hrs. C

Expenses R15 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

126 | P a g e

www.ijacsa.thesai.org

Fig. 8. Dependency of Requirements on Each Other.

From order of requirements as given in Section 5.1,
implementation priority or chain priority can be assigned to
requirements. Table 1 shows chain priorities of requirements.
Suppose we distribute the requirements into three team‟s
members i.e. A, B, C as shown in Table 1. Column „efforts
required‟ of Table 1 shows the approximated efforts in time
hours required to complete requirement. These efforts/hours‟
time are calculated through time estimation (use case) model.
Different authors in their studies have used use case
estimation technique.

B. Requirements Implementation without Iteration Model

R7, R8, R9, and R10 of B need requirements of A.
Similarly requirements of C also need requirements of A and
B. Time estimation requirements are given as:

Estimation of A=10+10+10+10+10+10= 60 hrs.

Estimation of B= [60] + 30+30+30+30= 180 hrs.

Estimation of C= [60] + [60] + 20+20+20+20= 200 hrs.

Requirements of B actually take 120 hours but due to its
dependency on A, delay of 60 hours occur. Similarly waiting
time of C is 60 hours. Total estimation time will be equal to
maximum time taken among A, B and C which is 200 hours.

C. Requirements Implementation with Iteration Model

Fig. 8 shows URs from Table 1. From Fig. 8, we can see
that not all but few FRs are needed for the implementation
URs.

In Fig. 8, red requirements are those FRs that are required
for other UR which means for implementation of particular

UR, red colour requirements should be implemented first. If
we implement only red colour FRs instead of whole URs then
this pre-requisite UR will be available in less time to other
URs.

After implementing only necessary or required FRs, the
average estimation time for the URs of A will be 5 hours
instead of 10 hrs. Similarly estimation time for the URs of B
will be 15 hours. Thus total estimation times of A, B, C will
now.

A= 5+5+5+5+5+5=30

B= [30] +15+15+15+15=120

C= [30] + [30] +10+10+10+10=100

From above time estimations, we can see that URs of A
are available to B and C on time and similarly URs of B are
also available to C on time.

When B start developing R7, then in parallel A can
implement the remaining FRs for all URs in its second
iteration. But requirements R7, and R8 will not be completely
implemented as they are required for C but will follow
iteration model and will implement only necessary FRs similar
to A. Similarly when C starts implementing requirements,
during this B can implement the remaining FRs for all URs in
second iteration. This parallel development in iteration or
phases will reduce the project delay. Thus after comparing
both results, we can conclude that giving importance or more
priority to necessary FRs reduced delay and assured delivery
of project in less time.

Customer id
Customer name

Contact no

Address
Area

New record

Save record
Delete record

 Searching record

Exit record

Product id

Product name
Price

Company

Category
Quantity

New record

Save record

Delete record

Company id

Name
Address

Contact

New
Save

Delete

Company

reports

Invoice no

Invoice date

Product id

Product name

Sale price

Quantity
Amount

Discount

Total amount
New record

Save record

Edit record
Delete record

Sale reports

Invoice no

Invoice date
Product id

Product name

Sale price
Quantity

Amount

Discount
Total amount

New record

Save record
Edit record

Delete record

Purchase reports

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

127 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

 RP play vital role in managing requirements especially
when requirements are large in size. Requirements of one
module or UR are either dependent or required for the
requirements of other r. This dependency cause delay when
requirements wait for other requirements and some
requirements can wait for too long which can delay the whole
project. If we adopt iteration model concept during
implementation of requirements, some of the necessary
features of requirements can be developed in less estimated
time. In this research work, author says that there are few
needed requirements that are necessary for other requirements,
so instead of implementing all requirements it is better to
implement only the necessary requirements of particular user
requirement. The proposed idea applied on requirements for
mobile shop. The results of with iteration and without iteration
are compared. The decrease in total estimation time shows the
advantages of using iteration model concept during RP and
implementation.

ACKNOWLEDGMENT

This work is supported in partial by the Ministry of
Education Malaysia under the Fundamental Research Grant
Scheme (FRGS) Vot 1610.

REFERENCES

[1] M. A. Awais, „Requirements Prioritization : Challenges and Techniques
for Quality Software Development‟, vol. 5, no. 2, pp. 14–21, 2016.

[2] N. Garg, M. Sadiq, and P. Agarwal, „GOASREP : Goal Oriented
Approach for Software Requirements Elicitation and Prioritization
Using Analytic Hierarchy Process‟, pp. 281–287, 2017.

[3] M. A. A. Elsood and H. A. Hefny, „A Goal-Based Technique for
Requirements Prioritization‟, 2014.

[4] R. Beg, R. P. Verma, and A. Joshi, „Reduction in number of
comparisons for requirement prioritization using B-Tree‟, no. March, pp.
6–7, 2009.

[5] P. Tonella, A. Susi, and F. Palma, „Interactive requirements
prioritization using a genetic algorithm‟, Inf. Softw. Technol., vol. 55,
no. 1, pp. 173–187, 2013.

[6] A. K. Massey, P. N. Otto, and A. I. Antón, „Prioritizing Legal

Requirements‟, vol. 1936, no. 111, 2010.

[7] C. E. Otero, E. Dell, A. Qureshi, and L. D. Otero, „A Quality-Based
Requirement Prioritization Framework Using Binary Inputs‟, pp. 0–5,
2010.

[8] F. Dalpiaz, „Contextual Requirements Prioritization and Its Application
to Smart Homes‟, vol. 1, pp. 94–109, 2017.

[9] P. Achimugu, A. Selamat, R. Ibrahim, and M. Naz, „A systematic
literature review of software requirements prioritization research‟, Inf.
Softw. Technol., vol. 56, no. 6, pp. 568–585, 2014.

[10] R. assignment/12. pd. Martin, „Iterative and incremental development
(iid)‟, C++ Rep., vol. 11, no. 2, pp. 26–29, 1999.

[11] M. Alfonso and A. Botia, „An iterative and agile process model for
teaching software engineering‟, 18th Conf. Softw. Eng. Educ. Train., pp.
9–16, 2005.

[12] R. Prioritization and U. Hierarchical, „Requirements Prioritization Using
Hierarchical Dependencies‟, pp. 459–464, 2018.

[13] M. Daneva and A. Herrmann, „Requirements Prioritization Based on
Benefit and Cost Prediction : A Method Classification Framework‟, pp.
240–247, 2008.

[14] M. Yaseen, S. Baseer, and S. Sherin, „Critical challenges for
requirement implementation in context of global software development:
A systematic literature review‟, ICOSST 2015 - 2015 Int. Conf. Open
Source Syst. Technol. Proc., vol. 9, no. 6, pp. 120–125, 2016.

[15] R. M. Liaqat, „A Majority Voting Goal Based Technique for
Requirement Prioritization‟.

[16] A. Felfernig and G. Ninaus, „Group Recommendation Algorithms for
Requirements Prioritization‟, pp. 59–62, 2012.

[17] A. S. Danesh, „Requirements prioritization in on-line banking systems :
using value-oriented framework‟, pp. 158–161, 2009.

[18] M. . Yaseen, S. . Baseer, S. . Ali, S. U. . Khan, and Abdullahb,
„Requirement implementation model (RIM) in the context of global
software development‟, 2015 Int. Conf. Inf. Commun. Technol. ICICT
2015, 2015.

[19] L. Arge and N. Zeh, „I / O-Efficient Strong Connectivity and Depth-First
Search for Directed Planar Graphs‟, 2003.

[20] P. Voola and V. B. A, „Study of aggregation algorithms for aggregating
imprecise software requirements ‟ priorities‟, Eur. J. Oper. Res., vol.
259, no. 3, pp. 1191–1199, 2017.

[21] M. Yaseen, S. Ali, Abdulah and N. Ullah. , „An Improved Framework
for Requirement Implementation in the context of Global Software
Development: A Systematic Literature Review Protocol, International
Journal of Database Theory and Application, Vol.9, No.6 (2016),
pp.161-170.

