
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

32 | P a g e

www.ijacsa.thesai.org

Cookies and Sessions: A Study of what they are, how

they can be Stolen and a Discussion on Security

Young B. Choi
1

Department of Engineering & Science

College of Arts & Sciences

Regent University

Virginia Beach, USA

Yin L. Loo
2
, Kenneth LaCroix

3

College of Arts & Sciences

Regent University

Virginia Beach, USA

Abstract—Cookies and sessions are common and vital to a

person’s experience on the Internet. The use of cookies was

originally used to overcome a memoryless protocol while using a

tiny amount of the system’s resources. Cookies make for a

cohesive experience when shopping online, enjoying customized

content, and even receiving personalized advertisements when

casually surfing the Web. However, by design, cookies lack

security. Our research begins by giving a background of cookies

and sessions. It then introduces what session hijacking is, and a

lab was constructed to test and show how a cookie can be stolen

and replayed to gain authenticated access. Finally, the paper

presents various countermeasures for common attacks and tools

checking for authentication cookies vulnerabilities.

Keywords—AED; ARP spoofing; cookies; CSP; CSRF; HSTS;

man-in-the-middle attack; newton; session hijack; web session;

XSS

I. INTRODUCTION

Hypertext Transfer Protocol (HTTP) existed before cookie
and led to the formation of cookies because of its design. On
the Web, HTTP is the bedrock for data communication
between the Web browser (also known as the client) and the
Web server. Upon the click on a link (also known as the
hyperlink or hypertext), the client makes a request to the Web
server. After the client receives a response from the Web
server, it disconnects. Every click on the link, even if it is the
same link, sends a new and unrelated request. This process
describes the “stateless” nature of the requests and the protocol
because the Web server does not remember any of the earlier
requests [5][8].

To overcome this occurrence, Web-based applications use
cookies as a mean to establish state or “create a memory of
where it left off” [6][8]. A cookie, therefore, is simply “a small
piece of information that the server and client pass back and
forth [5][6]. Montulli named the data file cookie because it
functioned very much like the computer term magic cookie
which is a data token that is passed back and forth between two
parties [6][8]. The latest cookie replaces the existing cookie
when there is new or updated information, and this is useful for
the server to return to later [5]. There are other ways to achieve
a stateful connection and using a cookie is one of the simpler
ways. Many sites require a user to log in to experience
customized contents. This is especially true for shopping cart
applications [1]. Cookies are also used to trail users when they

surf [1]. This is helpful for the site administrator to organize
contents in a way that is more accessible to the users [1].

Information stored in cookies can be used to establish Web
sessions; Web sessions are important because they facilitate a
partially permanent information exchange between a browser
and a server across multiple requests and replies [2]. Once a
server authenticates a client, Web sessions are formed and
bound. Subsequently, all requests from the client will include
the cookie as part of an established session [2]. Web sessions
also keep a user signed on to a website. However, due to the
possibility of exposure, it is risky to store session information
directly in a cookie. Instead, a session identifier is used to
allow the web server to access state information when needed.
But, this only improves the security somewhat, as the session
could be transplanted and be used to freely communicate with
the server as an authorized party [1], [6].

II. INTRODUCTION TO LAB: SESSION HIJACKING

In the following sections, a lab is used to test how a session
can be hijacked by Address Resolution Proofing (ARP)
spoofing [6]. Once the attacker has the session id, the attacker
could have authorized access to the server by pretending to the
legitimate user [6]. The lab may be reproduced for educational
purposes because the first-hand experience of a “victim” can
vastly increase the level of security awareness.

ARP translates Internet Protocol (IP) addresses to a
physical machine address. The physical machine address (also
known as the MAC address) is an alphanumeric string that
uniquely identifies the Network Interface Card (NIC). The
MAC address can be changed temporarily using tools that are
available both on the Kali Linux and on Windows [13]. If the
address can be changed, it can be spoofed [13]. Devices on the
network maintain MAC addresses locally and MAC address of
other devices may be learned via ARP requests [12]. Since no
authentication or verification is needed from the requester, the
ARP protocol can be exploited by flooding the network with
false ARP requests.

The lab is an example of a Man-in-the-Middle attack
(MiTM), where the attacker places himself or herself in
between the victim and the router. See Fig. 1. Using the ARP
spoofing technique, the attacker tricks the victim into thinking
that the requests are coming from the router. Doing so causes
the victim machine to think that the attacker’s machine is the
real router. As a result, all the victim’s network traffic is being

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

33 | P a g e

www.ijacsa.thesai.org

sent to the attacker. The attacker may choose to passively
observe the packets or actively manipulate the packets before
sending the traffic onto the real router.

While a Windows power-user may use commands such as
arp –a to detect an irregularity, it is often hard for a normal user
to realize that he or she is a victim of a MiTM attack. See
Fig. 2 for a screenshot of an attack in action.

Fig. 1. A Diagram Depicting a Man-in-the-Middle Attack.

A. Test Environment

To understand how the cookie works and to test how a
session can be hijacked, virtualization was used to create a lab
to simulate an attack. The software used are Oracle VM
VirtualBox, Microsoft Windows 7, and Kali Linux. Kali Linux
was chosen because it is designed to support educational and
ethical hacking, and it comes with the necessary software to
simulate the attack. pfSsense is an operating system for routers,
it is open source, and it performs Dynamic Host Control
Protocol (DHCP) which made it suitable. A virtualized
instance of pfSense was used for network communications and
it acted as both the virtual router and firewall. The virtualized
routing allowed the network traffic to be analyzed; thus,
providing insight to each step of the attack. See Fig. 3 for a
representation of the testing environment.

B. Environment Installation Notes

The installation of VirtualBox was comparable to the
installation of programs on a computer. During the installation,
VirtualBox installed a separate network adapter to facilitate
communications between the host operating systems and the
guest operating systems. Guest operating systems were
installed next. Although the nature of Windows and Linux
were varied, the process of installation was uncomplicated.
Each virtual machine used the default settings and was set to
allow only internal communication. Upon completion of the
installation and configurations, the session hijack was ready to
be tested.

C. Lab Proceedings

The lab assumed both the Windows 7 victim and the
attacker were on the same network. The attacker shall exploit
the vulnerability in ARP to pretend to be the router. This will
cause the victim to believe the attacker and send all network
traffic to the attacker’s machine. Next, the lab simulated an
attacker using a packet capturing and processing tool to isolate
the session information from a cookie of a victim that was
already authorized, i.e., signed on. Finally, the attacker shall
use the cookie information to exploit an active session. The
steps of intercepting the cookies were as follows: identifying
the target, conducting ARP spoofing, analyzing the packets,
and hijacking the session (or impersonating the victim) [6]. See
Fig. 4.

Fig. 2. Network Diagram of the Simulated Environment.

Fig. 3. ARP Spoofing in Progress (Captured from Wireshark).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

34 | P a g e

www.ijacsa.thesai.org

Fig. 4. Steps in an Attack Process.

III. LAB METHODOLOGY

The lab assumed both the Windows 7 victim and the
attacker were on the same network. The attacker shall exploit
the vulnerability in ARP to pretend to be the router and trick
the victim into sending all the traffic to the attacker [6]. The
attacker must then employ a packet capturing and processing
tool to extract the session information from a cookie of a
victim that was already authorized (or logged on). Finally, the
attacker shall use the cookie information to exploit an active
session. The steps of intercepting the cookies were as follows:
identifying the target, conducting ARP spoofing, analyzing the
packets, and hijacking the session (or impersonating the
victim) [6]. See Fig. 4.

A. Identify the Target

In this step, the attacker identifies a target. The lab assumed
that the network was flooded with false ARP requests by the
attacker. The victim assumed the IP address of 192.168.1.6.

B. Spoof ARP

Kali Linux comes with two methods to perform ARP
spoofing. One way is to use the arpspoof command from a
terminal window of DNSUtils [6]. Before using this method,
install the DNSUtils package by running the command sudo
apt-get install dnsutils [6]. The next method uses a Graphical
User Interface (GUI) application known as Ettercap. Ettercap is
used for scanning for targets and for initiating the spoofing of
ARP addresses [14]. See Fig. 5.

C. Analyze Packets

Wireshark and tcpdump are known as protocol analyzers
and are readily available on the web. The tools are normally
used for debugging network issues by capturing network traffic
from a NIC and inspecting the packets. tcpdump is suitable in
the absence of a GUI or Wireshark. Using the pcap file format,
tcpdump files are readable by Wireshark. In the lab, Wireshark
was used. The NIC was placed in promiscuous mode by
Wireshark because the attacker wants to capture all traffic,
including those not meant for that computer. Fig. 6 shows a
screenshot of an intercepted cookie.

D. Hijack Session

In this step, the attacker had intercepted the right cookie
and made it possible to replay the information in the cookie.
Consequently, it is not necessary for the attacker to know the
credentials to gain authorized access because the cookie
already contains the information of an authenticated session.

Once the target had been identified, the lab test was
successful in showing a session can be hijacked by (1) tricking
the target machine into thinking the attacker is the real router
using ARP spoofing and then sending all the network traffic to
the attacker’s machine, (2) analyzing all the traffic packets to
find a cookie with valid session information, and (3) replay the
cookie to gain authorized access to server resources [6].

Fig. 5. Ettercap Scan Results.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

35 | P a g e

www.ijacsa.thesai.org

Fig. 6. Observing an Intercepted Cookie in Wireshark.

IV. SECURITY OF COOKIES AND SESSIONS

By design, the cookie lacks security features. The cookie
itself is not confidential and does not ensure integrity.
Calzavara et al. correspondingly said that confidentiality and
integrity are two standard security properties of web sessions
and are typically targeted for attacks [2]. A cookie is not
confidential because (1) it is accessible and modifiable by all
the ports from the same server, (2) when a cookie is available
to HTTP and HTTPS schemes, it is also accessible by FTP and
Gopher schemes, and (3) when a resource can be retrieved
from one path, it can also access stored cookies from another
path [1][6]. Integrity cannot be maintained across subdomains
because cookies that are set in one subdomain are
indistinguishable from cookies set by another subdomain and
this allows one subdomain to overwrite the cookies of another
subdomain [1][6]. For example, subdomain A can use the
cookies of subdomain B to initiate an attack against subdomain
B [1][6]. Furthermore, as the lab demonstrated, the cookie
could be stolen easily.

A. Improving the Security of the Cookie

The discussions surrounding the security of cookies is
twofold. One thread centers on improving the security of the
cookie and another focuses on preventing the cookies from
being stolen.

In an effect to improve the security of cookies, the Secure
and HttpOnly attributes were added. The use of the Secure
attribute limits the cookie to secure channels only. Setting this
attribute tells the client to attach the cookie only when the
request is made over Secure Socket Layer/Transport Layer
Security (SSL/TLS). However, a request could still go through
if an attacker sends the request from a secured site.

The use of The HttpOnly attribute limits the cookie to
HTTP request only, i.e., the client will attach the cookie only if
the request is an HTTP request [1]. The attribute was
introduced in 2002 to prevent the use of content injection
attacks to steal authentication cookies [2]. Cross-site scripting
(XSS) attack is the usual form of content injection attack which
exploits a server-side vulnerability that allows an attacker to
trick a user into disclosing sensitive information that is
normally reserved for a legitimate website [7]. Setting the
attribute limits the scope of cookies to Hypertext Transport

Protocol Secure (HTTPS) requests, and it helps to prevent both
the JavaScript from accessing the client-side cookie and the
cookie from accessing non-HTTP APIs [1][3]. However, used
on its own, it does not completely mitigate the dangers of an
XSS attack and only protects against the theft of authentication
cookies [7].

Another defense against XSS is Content Security Policy
(CSP) which is a web security policy from the W3C to allow
developers to specify the sources from which the browser is
allowed to request for the resources embedded in a webpage
[2]. Calzavara et al. say CSP is effective against XSS when
properly configured; however, several challenges persist [2].
For one, it does not prevent general content injection attacks
[2]. For another, a successful policy for legacy applications is
time-consuming to deploy due to the manual whitelisting of
inline scripts and styles and the careful identification of trusted
origins [2]. Finally, the current implementation of CSP is
neither significant nor effective [2].

When a cookie is used for authentication, the client will
always attach the cookie when it requests for resources from
the Web server. The lab demonstrated Cross-site Request
Forgery (CSRF) attack can occur when a stolen authentication
cookie is used to access authorized resources. A bad actor
could use this exploit to make the server carry out malicious
actions.

Instead of storing the authentication information in a
cookie, Barth recommends utilizing the URL as part of the
authorization process [1]. Goodwin and West go further to
define a SameSite attribute as part of their proposal to the
Internet Engineering Task Force (IETF) [4]. By limiting the
scope of the cookie to the originating site, they say that it is
possible to mitigate a CSRF attack [4]. At the point of
submission, the attribute was implemented only in Google
Chrome. As with the Secure and HttpOnly attributes, the rate
of adoption from the different browser varies.

The ARP is a proven protocol in Local Area Networks
(LANs). While there is no foreseeable plan to replace the
protocol, some routers and operating systems allow for static
ARPs to prevent a machine from learning a new MAC address
other than that which was set [11]. Again, the rate of adoption

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 1, 2019

36 | P a g e

www.ijacsa.thesai.org

depends on the proprietors of the routers and such a feature is
likely not offered to consumer networking devices.

Recently, browser-based defenses have promoted as a
helpful mechanism to protect web applications against session
hijacking [3]. It does so by automatically detecting cookies that
contain session information using client-side heuristics and
then protecting the information against theft and unintended
use [3]. The reality as Calzavara et al. found was that simple
heuristics are limited in effectiveness because client
authentication is based on complex and unpredictable usage of
authentication cookies [3].

HTTP Strict Transport Security (HSTS) is a browser
security policy that forces an upgrade of HTTP
communications to protected-domains to HTTPS to prevent a
MiTM from eavesdropping on unencrypted traffic [3].
Regarding HSTS, Calzavara et al. recommend the adoption of
the Secure flag in addition to HSTS to prevent attackers from
taking advantage of subdomain accesses to cause a leakage of
the authentication cookies over HTTP [3]. However, there are
several challenges with HSTS: (1) deploying HSTS requires
careful analysis, and sometimes reorganization, of a site, (2)
the adoption rate of HSTS is low; in 2014, only 3,406 sites out
of about 150,000 popular sites had deployed HSTS, (3) HSTS
may be vulnerable to SSL downgrading attacks, and (4) HSTS
is often misconfigured [9].

B. Tools for Evaluating the Security of Cookies

Mundada et al. say that web developers need better handles
to evaluate the security of the authentication cookies [9]. To
this end, Mundada and team developed Newton: a tool and a
Chrome extension for discovering all authentication cookies
that allow a user to access the respective sub-services
corresponding subordinate service of any site and identifying
authentication cookies vulnerabilities [9]. In their analysis of
149 popular websites, 65 were found with security
vulnerabilities [9]. Out of those, many have acknowledged and
fixed the problem [9]. Mandada et al. believed that the tool
could be widely accepted by developers, testers,
administrators, to even savvy users [9].

Porat, Tikochinski, & Stulman is another team that
developed a tool to check for authorization vulnerabilities on
websites [10]. Authorization Enforcement Detection (AED)
allows the administrator to surf the website normally, while the
AED Proxy intercepts every request and forward it to the Web
server, saving corresponding request/response pairs for
analysis when a cookie is detected [10]. The result of the
analysis is a categorization of authorization as safe, suspicious,
or breach [10].

V. CONCLUSION

Essentially, the HTTP is stateless. Every request is
independent, and the protocol does not remember any past
request. The cookie was introduced as a mechanism that helps
Web servers and applications remember where they left off. It
is simply a small data file that servers and clients can pass back
and forth, and it has no security features. Web sessions use
cookies to establish semi-permanent exchanges between
servers and clients involving multiple requests and responses.

When a client is authenticated, a cookie that contains session
information is passed back and forth. An ARP spoofing attack
can hijack this cookie. A virtualized lab using pfSense, Kali
Linux, and Windows 7 simulated the attack successfully. It
demonstrated that the cookie could be stolen, and authenticated
access is possible with the stolen cookie. The positive test
result prompted the questions of how can the security of the
cookie be improved and how can its theft be prevented?
Cookie’s attributes such as Secure, HttpOnly, and Samsite,
were discussed. Also discussed were countermeasures such as
CSP, HSTS, and client-side heuristics against common attacks
like XSS and CSRF. Overall, there is not one solution that will
solve all the issues. Although each solution improves the
security, it comes with its own challenges. Therefore,
researchers have recently developed tools such as Newton and
AED to identify and evaluate cookies vulnerabilities.
Following this research, the next logical step is to consolidate
all the known countermeasures and establish a set of best
practices for securing cookies.

REFERENCES

[1] A. Barth, “HTTP State Management Mechanism,” 2011.

[2] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving
the Web: A Journey into Web Session Security,” in Companion of The
Web Conference 2018 on The Web Conference 2018 - WWW ’18, Lyon,
France, 2018, pp. 451–455.

[3] S. Calzavara, G. Tolomei, A. Casini, M. Bugliesi, and S. Orlando, “A
Supervised Learning Approach to Protect Client Authentication on the
Web,” ACM Transactions on the Web, vol. 9, no. 3, pp. 1–30, Jun. 2015.

[4] M. Goodwin and M. West, “Same-Site Cookies,” 20-Jun-2016. [Online].
Available: https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site-
00. [Accessed: 22-Apr-2017].

[5] D. M. Kristol, “HTTP Cookies: Standards, Privacy, and Politics,”
arXiv:cs/0105018, May 2001.

[6] Y. L. Loo and K. LaCroix, “Cookies and Sessions: A Study of What
They Are, How They Work, and How They Can Be Stolen.” 24-Apr-
2017.

[7] Microsoft, “Mitigating Cross-site Scripting With HTTP-only Cookies.”
[Online]. Available: https://msdn.microsoft.com/en-
us/library/ms533046.aspx. [Accessed: 11-Oct-2018].

[8] L. Montulli, “The reasoning behind Web Cookies,” 14-May-2013.

[9] Y. Mundada, N. Feamster, and B. Krishnamurthy, “Half-Baked Cookies:
Hardening Cookie-Based Authentication for the Modern Web,” in
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security - ASIA CCS ’16, Xi’an, China, 2016, pp. 675–
685.

[10] E. Porat, S. Tikochinski, and A. Stulman, “Authorization Enforcement
Detection,” in Proceedings of the 22nd ACM on Symposium on Access
Control Models and Technologies - SACMAT ’17 Abstracts,
Indianapolis, Indiana, USA, 2017, pp. 179–182.

[11] J. Singh, S. Dhariwal, and R. Kumar, “A Detailed Survey of ARP
Poisoning Detection and Mitigation Techniques,” International Journal
of Control Theory and Applications, vol. 9, Feb. 2017.

[12] J. Singh and V. Grewal, “A Survey of Different Strategies to Pacify
ARP Poisoning Attacks in Wireless Networks,” International Journal of
Computer Applications, vol. 116, pp. 25–28, Apr. 2015.

[13] M. Waliullah, A. B. M. Moniruzzaman, and M. Rahman, “An
Experimental Study Analysis of Security Attacks at IEEE 802.11
Wireless Local Area Network,” International Journal of Future
Generation Communication and Networking, vol. 8, pp. 9–18, Feb.
2015.

[14] A. Yacchirena, D. Alulema, D. Aguilar, D. Morocho, F. Encalada, and
E. Granizo, “Analysis of attack and protection systems in Wi-Fi wireless
networks under the Linux operating system,” in 2016 IEEE
International Conference on Automatica (ICA-ACCA), 2016, pp. 1–7.

