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Abstract—Fuzzy C-Means (FCM) is widely accepted as a 

clustering technique. However, it cannot often manage different 

uncertainties associated with data. Interval Type-2 Fuzzy C-

Means (IT2FCM) is an improvement over FCM since it can 

model and minimize the effect of uncertainty efficiently. 

However, IT2FCM for large data often gets trapped in local 

optima and fails to find optimal cluster centers. To overcome this 

challenge an Ant Colony-based Optimization (ACO) is proposed. 

Another challenge encountered is determining the number of 

clusters to perform clustering. Subtractive clustering (SC) is an 

efficient technique to estimate appropriate number of clusters. 

Though for large datasets the convergence rate of ACO and SC 

becomes high and thus, it becomes challenging to cluster data 

and evaluate correct number of clusters. To encounter the 

challenges of large dataset, Multi-Round Sampling (MRS) 

technique is proposed. IT2FCM-ACO with SC and MRS 

technique performs clustering on subsets of data and determines 

suitable cluster centers and cluster number. The obtained 

clusters are then extended to the entire dataset. This eliminates 

the need for IT2FCM to work on the complete dataset. Thus, the 

objective of this paper is to optimize IT2FCM using ACO 

algorithm and to estimate the optimal number of clusters using 

SC while employing MRS to handle the challenges of voluminous 

data. Results obtained from several clustering evaluation 

measures shows the improved performance of IT2FCM-ACO-

MRS compared to ITFCM-ACO and IT2FCM. Speed up for 

different sample size of dataset is computed and is found that 

IT2FCM-ACO-MRS is ≈1–5 times faster than IT2FCM and 

IT2FCM-ACO for medium datasets whereas for large datasets it 

is reported to be ≈ 30–150 times faster. 

Keywords—Interval type-2 fuzzy c-means; ant colony 

optimization; subtractive clustering; multi-round sampling 

I. INTRODUCTION 

Clustering is the process of assigning a homogenous group 
of objects into subsets called clusters so that objects in each 
cluster are more similar to each other than objects from 
different clusters based on the values of their attributes [1]. 
Clustering technique has been studied extensively in various 
research areas like data mining [2, 3], pattern recognition [4], 
machine learning [5], image segmentation [6], semantic 
clustering [7] and membership function generation [8], [9]. 
Clustering is mainly divided into two main groups: 
hierarchical and partitioning algorithms. Partitioning 
clustering algorithms have been widely applied because of its 
efficiency and applicability for large data sets. The fuzzy 

clustering algorithm is currently widespread partitioning 
clustering algorithm. The FCM [10, 11] is commonly used 
technique for fuzzy clustering analysis because of its 
capability to handle uncertainty.  FCM assign data object 
partially to multiple clusters with certain degree of 
membership and handle overlapping partitions. The degree of 
membership in fuzzy clusters depends on the closeness of the 
data object to the cluster centres. Although FCM is good in 
data clustering and has been the base for developing other 
clustering algorithms but is very susceptible to noise and 
incapable of handling large number of uncertainties associated 
with data set. 

To tackle the issue of FCM algorithm efficiently, Hwang 
and Rhee proposed the combined use of Interval Type-2 
Fuzzy logic technique [12] and FCM algorithm resulting in 
Interval Type-2 Fuzzy C-Means [13]. IT2FCM is an 
improvement over FCM that can model and minimize the 
effect of uncertainty more efficiently. The working principle 
of IT2FCM is like FCM. IT2FCM minimizes an objective 
function using an Alternating Optimization (AO) technique. 
IT2FCM randomly initializes either the membership matrix or 
cluster centres. Due to random initialization IT2FCM often 
gets trapped into local optimal solution and fails to return 
optimal values of cluster centroids [14–17]. It is also 
computationally expensive in terms of time and space for 
generating clusters for large datasets [18, 19]. 

The probability of finding global optima can be increased 
using bio-inspired metaheuristic techniques such as 
population, swarm-based or nature inspired algorithms. 
Several optimization techniques have been proposed to solve 
the problem at hand, but the focus of research has been FCM 
clustering algorithm while limited study has been found for 
optimizing IT2FCM. In this paper, an Ant Colony-based 
Optimization (ACO) technique has been proposed to optimize 
IT2FCM. ACO algorithm is a swarm-intelligence based bio-
inspired technique that has been widely and successfully used 
for combinatorial optimization problems. ACO is based on the 
foraging behaviour of ants. ACO mimics the ability of indirect 
communication of ants to find the shortest path to food source 
by means of chemical pheromone trails. This characteristic of 
ants is exploited in ACO to solve various discrete optimization 
problem [20, 21]. Because of this inherent property of ACO, it 
has been used efficiently in FCM clustering to solve the 
problem of global optima [22, 23]. However, ACO 
optimization algorithm has not been introduced to solve the 
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problem of IT2FCM algorithm. The use of ACO technique in 
IT2FCM is considered, owing to its ability for fast discovery 
of good solutions in discrete optimization problems and due to 
its adaptive nature in dynamic environment. 

IT2FCM requires to input pre-estimated number of 
clusters “c” to perform clustering on the given dataset. To 
obtain the desirable cluster partitions in a given data, 
commonly c is set manually which is very subjective and 
arbitrary process. Several approaches have been proposed to 
select appropriate value of c.  A rule of thumb was proposed 
where c ≤ N

1/2
, N is the data size and c are determined based 

on expert’s knowledge [24]. Another method is to determine c 
using cluster validity index such as Davies-Bouldin, Xie-Beni, 
and Dunn indices [19]. Subtractive clustering is another 
prevalent method to determine cluster number [24]. SC 
proposed by Chiu is a fast, one pass algorithm that can 
estimate the number of clusters c in a given dataset [25]. The 
value of c evaluated using SC method can be used to initialize 
IT2FCM. This will eliminate the task of manually feeding the 
number of clusters to the IT2FCM algorithm. However, for 
large data the convergence rate of SC is high and therefore it 
becomes very time consuming to determine number of 
clusters. 

In clustering to handle the problem of large data two main 
approaches have been proposed; distributed clustering and 
clustering a sample determined by either progressive or 
random sampling [26]. Both methods offer useful techniques 
to achieve two main objectives: acceleration for loadable data 
and approximation for unloadable data. In this paper, to solve 
the problem of large data and further improve the performance 
of IT2FCM-ACO-SC, MRS technique has been proposed. 
MRS [27]  is a straightforward approach, where samples of 
fixed size are generated using random sampling technique 
without replacement. Using MRS, IT2FCM does not need to 
perform clustering on the entire dataset but rather it obtains 
suitable clusters from samples of data. The results obtained 
from the samples are extended to the entire dataset, providing 
efficiency in terms of time and space. 

The objective of this paper is to optimize IT2FCM using 
ACO to find optimal cluster centroids to improve the quality 
of clustering. SC with IT2FCM-ACO is used to obtain optimal 
number of clusters c. Further, to perform clustering efficiently 
and effectively in timely manner for large data, MRS 
technique is proposed.  The paper is organized as follows: 
Section II discusses the related work; Section III gives an 
overview on background study of IT2FCM and ACO; 
Section IV presents proposed methodology along with their 
algorithms; Section V discusses the results obtained by 
comparing the proposed algorithm IT2FCM-ACO-MRS with 
IT2FCM-ACO and IT2FCM-AO using several evaluation 
metrics. Lastly, Section VI concludes this paper. 

II. RELATED WORK 

In the literature, to optimize fuzzy clustering a variety of 
bio-inspired metaheuristic techniques have been proposed. 
These include population based: genetic algorithm (GA), 
teaching learning-based optimization (TLBO), differential 
evolution (DE); swarm-intelligence based: ant colony 
optimization, particle swarm optimization (PSO), artificial bee 

colony (ABC) and nature-inspired: simulated annealing (SA), 
and tabu search. Among these, ACO optimization algorithm 
has been successfully applied in clustering. A simplified 
version of ACO over original ant system algorithm was 
introduced that was used to solve the problem of Hard C-
means(HCM) and Fuzzy C-means algorithm [23]. In another 
work, FCM-ACO algorithm was proposed for clustering 
suppliers into smaller groups with similar features [22]. All 
the proposed research works are focussed on optimizing FCM 
using ACO algorithm, however, no work has been found for 
IT2FCM. Further, all these studies do not take into 
consideration the volume of data. 

In the context of IT2FCM limited study has been found 
regarding the optimization of IT2FCM to determine optimal 
initial cluster centroids. To overcome the problem of 
sensitivity to initial conditions Nguyen et al. [28] proposed a 
genetic IT2FCM (GIT2FCM) algorithm for the segmentation 
and classification of Multiplex Fluorescent In Situ 
Hybridization (M-FISH) images. It consists of two steps: 
firstly, the population of GA was randomly initialized and 
secondly, the cluster centroids were adjusted using GA based 
on cluster validity index determined by IT2FCM. For 
validation of the proposed method the results were compared 
with FCM, adaptive FCM (AFCM) and IT2FCM and the 
results prove that GA improves the performance of IT2FCM 
by determining appropriate cluster centroids. 

IT2FCM is based on Euclidean norm which may not 
always be suitable for more general clusters. To overcome this 
issue Nguyen et al. [29] proposed an enhancement to IT2FCM 
by implementing multiple kernel-based method i.e. multiple 
kernel IT2FCM (MKIT2FCM). However, similar to IT2FCM, 
it had difficulty in determining the optimal values of cluster 
centres and number of clusters. To encounter these challenges 
the author [15] suggested GA based optimization to determine 
the optimal number of clusters and the initial cluster centroids. 
The result shows that GMKIT2FCM have high clustering 
quality than other algorithms such as KIT2FCM and 
MKIT2FCM. Though, GA is robust and powerful 
optimization algorithm for solving problems in complex 
search space [28]  but often due to random initialization it 
suffers from premature convergence for large datasets [30]. 
Rubio and Castillo [31] implemented PSO optimization 
technique to IT2FCM, to automatically determine optimal 
number of clusters and interval-values of fuzzifier. For cluster 
evaluation, the simulation was conducted on synthetic dataset 
produced by Gaussian Mixture Method. The result shows that 
PSO enhances the performance of IT2FCM by identifying 
correct number of clusters and interval of fuzzification 
exponent. However, all these works do not cover large data 
environment. 

To appropriately cluster large data several algorithms have 
been proposed in fuzzy clustering problem. Some of the 
widely used approaches are multi-round sampling [30], single-
pass FCM (spFCM) [32], online FCM (oFCM) [33], bit-
reduced FCM (brFCM) [34], kernel FCM (kFCM) [35], [36]. 
Among these algorithms, MRS is a fast approach for 
addressing large datasets.  The kernel based FCM are suitable 
for estimating non-spherical clusters, however, it is 
computationally expensive. Similarly, brFCM is not suitable 
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for multi-dimensional dataset.  spFCM, oFCM and its other 
variants suffers from low performance compared to random 
sampling approach. 

III. BACKGROUND STUDY 

A. Interval Type-2 Fuzzy C-Means 

IT2FCM is an objective function-based clustering method 
used to minimize the distance between the input pattern and 
cluster prototype while determining the optimal value of 
cluster centroids and the membership matrix. A fuzzifier 
defines and manages the uncertainty to create an appropriate 
boundary of the fuzzy system. However, one fuzzifier cannot 
handle uncertainty for interval type-2 fuzzy sets; therefore two 
fuzzifier m1 and m2 were defined that represents different 
fuzzy degrees. Since, the fuzzifier value is represented by an 

interval [m1, m2], the membership matrix   ̃  and cluster 

centroids   ̃  must be evaluated for the interval. IT2FCM 

minimizes an objective function  ̃  as shown in (1). 

   ( ̃  ̃)  ∑ ∑    
     

  
   

 
               (1) 

where, m represents the two fuzzifier (m1, m2 >1), uik is the 

membership value of pattern xi for cluster i,    
  is the distance 

between xi and the cluster prototype vk, c number of clusters 

between 2 and n-1, n total number of dataset,  ̃  represents 
membership matrix for the patterns xk across each cluster with 

membership degree uik and  ̃ a matrix of a collection of all 
cluster prototypes vk  

For IT2FCM the region between the upper and lower 
memberships defines the footprint of uncertainty (FOU). 
Lower and upper membership matrices denoted by     and     

given by (2) and (3) represents the lower and upper bound of 
FOU respectively. FOU implies the amount of uncertainty 
involved in the data. In IT2FCM the lower and upper 
membership matrix is randomly initialized in the interval [0,1] 
using Alternating Optimization (AO) method. Then it is used 

to update the lower and upper  ̃  [     ] cluster centroids as 

given by (4). 
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where,    
  ‖     ‖  is the distance between input 

patterns    and cluster centers    (‖ ‖is the Euclidean norm). 

The values obtained for ( ̃,  ̃) are for the interval [m1, m2] 
and therefore, must be type-reduced using (5) and (6) to obtain 
crisp values. This process continues until the cluster centres 
are stable or maximum iteration is reached. 
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              (6) 

The structure of IT2FCM defined in this paper is based on 
the work of Rubio and Castillo [37]. 

B. Ant Colony Optimization 

The fundamental concept of ACO [38] is based on the 
behaviour of ants in pursuit of food. In the real world, despite 
having limited vision, the ants can find the shortest path 
between their colony and the food sources by leaving down 
the pheromone trails along the shortest path. The pheromone 
trail starts to evaporate over time, this being an advantage if 
the path is no longer preferred. 

The ACO algorithm duplicates this behaviour of ants by 
choosing solutions based on pheromones and updating 
pheromones based on the solution quality. Pheromone 
evaporation has the advantage to avoid local optima 
convergence. In this paper, the ACO algorithm proposed by 
Runkler [23] has been referred. The algorithm is described in 
Fig. 1. 

input parameters          

       maximum number of iterations 

   [   ] pheromone evaporation rate 

  size of dataset 

Initialize pheromones pk = 1, k=1, …., n 

for              

repeat 

   randomly set                                

   with probability           ∑   
 
   ⁄  

until solution vector u is feasible 

compute objective function      
for j=1, …., n 

    update pheromone                          

 end for 

end for 

output solution u 

Fig. 1. ACO Algorithm. 

IV. PROPOSED METHODOLOGY 

This section is divided into two subsections to clarify the 
proposed methodology. The first section describes ACO with 
SC to improve search for global optima and estimate cluster 
number in IT2FCM. Next section describes handling of large 
data of IT2FCM-ACO-SC algorithm using MRS technique. 

A. IT2FCM-ACO 

In IT2FCM AO algorithm is used to initialize membership 

matrix  ̃  and update cluster centroids   ̃  for each iteration 

while minimizing the objective function  ̃ . For the proposed 
methodology ACO algorithm based on Fig. 1 is introduced to 
minimize the objective function. Fig. 2, presents the proposed 
algorithm where the two fuzzifier m1 and m2 are considered 
whose value >1. In the proposed algorithm, each data pattern 
represents an ant in the real world and are allocated to one of 
the c clusters. The value of c clusters is predicted using SC 
algorithm. The allocation of data patterns is based on a 
pheromone matrix p. The basic idea is to randomly produce 

lower and upper membership matrix  ̃ , whose expected 
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values correspond to the normalized lower and upper 
pheromone matrix  ̃  [   ]  respectively. This is done by 

adding Gaussian noise with variance σ to the normalized 

matrix  ̃. To keep  ̃   [0,1], the memberships are clipped at 
the borders of the interval [0,1], then normalized and finally 
checked for empty clusters. After initializing membership 

matrix, lower and upper values of cluster centroids   ̃  and 

membership matrix   ̃  are updated and type-reduced to get 

crisp values. Then objective function  ̃ ( ̃  ̃)  is minimized 

and the minimum value of objective function is computed. 
Then pheromone matrix  ̃  is updated using values of 

 ̃  ̃      ̃   in each iteration. The algorithm continues until 
stable value of objective function is obtained or maximum 
iteration is reached. 

B. IT2FCM-ACO with Multi-Round Sampling 

The large dataset X is randomly divided into small 
samples S= {S1, S2, …., Sn} of fixed size. IT2FCM-ACO-SC 
rather than generating clusters for the complete data, performs 
clustering on samples of data. The samples are generated 
without replacement. IT2FCM-ACO is applied on the first 
sample S1 to obtain values of membership matrix       and 

cluster centre      , along with the value of number of clusters 

    using SC. Then, in next iteration IT2FCM-ACO-SC is 

applied on the next sample S2. However, for the next iteration 
sample S2 is combined with S1 for clustering. IT2FCM-ACO 
produces new values of     and    ; however, the values of 

centroids are initialized with the values of cluster centroids 
obtained from previous iteration. Moreover, for each iteration 
of new sample, the cluster number c is determined. The 
algorithm will terminate when the following conditions are 
satisfied: 1) when cluster centres obtained from previous and 
last iteration is less than the value of user-defined threshold 
(Ɛ) 2) the cluster number c does not vary from previous 
iteration. The values of membership matrix (Us) and centroids 
(Vs) obtained from the sample sets are then extended for the 
entire dataset (X). Fig. 3 shows the flowchart of the proposed 
algorithm. 

Initialize X, c, m1, m2  

Compute cluster c using subtractive clustering method 

where X= {x1, x2, ..., xn}- data set, c- cluster number, m1      , m2       

Initialize           

Initialize ACO parameters  

                                

  [   ] evaporation rate of pheromones 

    parameter is considered to avoid division by 0 

    varies the speed of convergence 

min_impro – to check the variation in objective function from previous 

iteration 

The values of the parameters are set based on literature review [23]  

     1000,    0.005,   0.01,   1.0, min_impro= 1e-5  

Initialize pheromone matrix,                              

for t=1 to      do 
repeat 

         for i=1 to n  

      for k=1, …., c 

               randomly set        ∑            
   ⁄  

               if                  end if 

         if                  end if 

         randomly set      
  

∑  
  

        
   ⁄  

         if                  end if 

         if                  end if 
      end for 

      for k=1, …., c 

        ∑    
 
   ⁄  

                     ∑    
 
   ⁄  

     end for 

         end for 

      until ∑           ∑                
      

    

compute centroids for lower      and upper   
 
  limit of the interval 

fuzzy clusters using (4) 

      type reducing the interval of centroids using    
      

 
 

      compute lower       and upper   
  
  membership functions using (2) and 

(3) 

      type reducing the interval of fuzzy partition matrix using     
        

 
 

     calculate objective function  ̃       ∑ ∑    
     

  
   

 
    

if       
  then 

                     
    

end if 

for k=1, …., c 
    for i=1, …., n    

        Update lower(upper) pheromone matrix  ̃ 

                                            ⁄     

         
  

   
  

                            ⁄  

    end for 

end for 

if t > 1, 

      if |           |            , break; end if 

end if 

end for 

Fig. 2. Proposed Algorithm of IT2FCM-ACO. 

 

Fig. 3. Flowchart of Proposed IT2FCM-ACO-MRS Technique. 

Yes 

Start 

Randomly sample dataset to obtain sample 

S1  

Apply IT2FCM-ACO to get  𝑈𝑆  and 𝑉𝑆  and SC 

to obtain 𝑐𝑆  

combine Si + 1 to Si 

Apply IT2FCM-ACO to obtain new values 𝑈𝑆i
 and 

𝑉𝑆i  initialized with 𝑉𝑆𝑖  
 , SC to 𝑐𝑆i 

If  𝑉𝑆𝑖+ 
 𝑉𝑆𝑖  𝜀 

&  𝑐𝑆𝑖+ 
 𝑐𝑆𝑖    

Stop 

No 
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V. RESULTS AND DISCUSSION 

In this section, the computational complexity of the 
proposed algorithm is computed and compared with IT2FCM-
AO. The results obtained from different cluster validity index 
measures for IT2FCM-ACO and IT2FCM-ACO-MRS are 
discussed and compared with IT2FCM-AO. Also, the 
empirical analysis of algorithm efficiency in terms of speed up 
and memory is evaluated. The results reported in this paper 
are averages of 10 simulation runs. The algorithms are 
implemented in MATLAB R2017a on an Intel® Core™ i7 
CPU @ 3.40 GHz with 8GB RAM. 

A. Data Description 

Huber, had proposed a classification of data by size as 
tiny, small, medium, large, huge and monster [39]. Later one 
more column was added and was categorized as very large 
[40]. The classified data set size is described in Table I. This 
has been set as standard to categorize the dataset used in this 
experiment. Table II gives an overview of the dataset used for 
the experiments. 

B. Computational Complexity Analysis of Algorithm 

The performance of an algorithm is evaluated in terms of 
computational complexity, which is the amount of resources 
necessary to execute an algorithm. The complexity of an 
algorithm is often computed in terms of time and space. Both 
complexities are denoted in terms of big-O. 

1) Time complexity: To calculate time complexity only the 

highest order term of the expression is considered while 

ignoring any lower order terms. This is because the highest 

order terms have significant impact for large inputs. To 

determine the time complexity of the proposed method, the 

algorithm IT2FCM-ACO presented in Fig. 2 is divided into 

several steps. In step 1) three nested loops were run to 

initialize the value of lower and upper membership matrix. 

The first loop runs for number of dataset n and the next two 

loops run for cluster number c, time complexity can be 

approximated as O(c
2
.n). In step 2) loop is repeated until sum 

of rows of membership matrix is greater than 1 i.e. loop runs 

for c clusters.  Since step 1 runs inside the loop described at 

step 2 the order of complexity becomes O(c
3
.n).  In 

step 3) cluster centroids are computed for each clusters c using 

n data patterns for d dimension the time complexity becomes 

O(c.n.d). In step 3) membership matrix is updated by 

computing Euclidean distance for n rows, c columns and d 

dimension, therefore, order of complexity is O(c.n.d). In step 

4) objective function is computed for n rows and c columns, 

thereby complexity is computed as O(c.n). In 

step 5) pheromone matrix is calculated thus, time complexity 

is estimated as O(c.n). Now the total computations (Adding all 

the 5 steps O(c
3
.n) + O(c.n.d) + O(c.n.d) + O(c.n) + O(c.n)) 

for single iteration is O(c
3
.n + c.n.d + c.n). Lower order terms 

are ignored. For maximum iteration t the time complexity is 

estimated as O(c3.n + c.n.d).t. If n>>d the order of complexity 

is further reduced to                        . 

TABLE I. HUBER’S CLASSIFICATION OF DATA SIZE 

Bytes 102 104 106 108 1010 1012 10>12 

Size 

description 
tiny small medium large huge monster 

Very 

large 

TABLE II. AN OVERVIEW OF DATASET 

Dataset Size # attributes # examples # classes 

Weather[41] medium 8 18,160 2 

Electricity [42] medium 8 45,312 2 

Sea [41] medium 3 10,00,001 2 

Poker [43] Large 10 10,25,010 10 

Forest [44] Large 54 5,81,012 7 

Airlines [42] Large 7 5,39,384 2 

The time complexity of IT2FCM-AO is approximately 
computed as          . Hence, the convergence rate of 
IT2FCM-ACO is higher to that of IT2FCM-AO. However, the 
higher time complexities of the two methods not necessarily 
results in higher run times. Therefore, the empirical analysis 
of run time and speed up is necessary and are presented in 
later section. For IT2FCM-ACO-MRS the dataset is divided 
into s number of samples, since the algorithm cluster a 
reduced set of data, the big-O time complexity has been 
reduced by s times. Time complexity for IT2FCM-ACO-MRS 
will be equivalent to              . 

2) Space complexity: The complexity is determined by 

ignoring the space used by the inputs to the algorithm. Similar 

to time complexity, only the highest order terms are 

considered while the rest are ignored. For iterative loops, the 

variables or data structures that are declared apart from input 

will contribute to space complexity. To compute the 

complexity, first variables that are declared in the algorithm 

are identified. Seven matrices are found that were used in the 

algorithm for computation; lower and upper membership 

matrices of size (c,n), lower and upper cluster centroids of size 

(c,d), objective function (c,n) and pheromone matrices of 

dimension (c,n). Based on this, space complexity is computed 

as follows                                    
                    . It will be reduced to the 

following form                  . Ignoring the 

constants space complexity will approximate to       
    . The space complexity of IT2FCM-ACO is 

approximately equivalent to IT2FCM-AO.  For IT2FCM-

ACO-MRS samples of fixed size are extracted for each 

iteration. However, the samples are input to the program and 

thus it will not contribute to the space complexity. Since, 

IT2FCM-ACO-MRS converges for s samples of dataset, 

therefore results in reduced space complexity. The space 

complexity is computed as                  
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C. Simulation Results and Analysis 

The performance of algorithms is analysed through several 
cluster validity index measures. These are divided into 
external and internal measures. External measures used in this 
paper are Davies-Bouldin (DB) Index and Dunn Index (DI) 
while external measures used are Purity, Rand Index (RI) and 
Error Rate (ER). 

1) Cluster validity index measures: Through the 

simulation, it was found that determining number of clusters 

by employing SC algorithm is very time consuming for large 

datasets. Therefore, the results reported in Tables III-VII are 

for 20% of total dataset for poker, airlines and forest datasets. 

Table III represents the value of Davies Bouldin (DB) [45] 
index for all the datasets for different algorithms. DB index 
measures how appropriately the data has been partitioned into 
clusters. A good clustering procedure estimates the value of 
DB index as low as possible.  The lower the value of DB 
index indicates the object pairs within the same cluster are as 
close as possible i.e. compact although the clusters are well 
separated. From the table, it can be reported that value of DB 
index of IT2FCM-ACO is lower compared to IT2FCM-AO. 
This indicates that the distance between clusters centroid is 
less which results in low value of inter-cluster distance. Thus, 
it can be concluded that AO algorithm is not able to find 
appropriate cluster centroids. This results in excessive cluster 
overlapping. IT2FCM-ACO-MRS shows better results in most 
of the cases compared to both -ACO and -AO algorithms. 
Thus, proving its superiority over both the algorithms. 
Therefore, employing random sampling plus ACO based 
optimization technique to IT2FCM results in generating 
optimal cluster centroids and reduces the risk of proximity of 
cluster centroids. 

Table IV shows the results of DI [10] which is another 
popular cluster evaluation measure. Higher values of DI 
indicate better clustering in the sense that the clusters are well 
separated and relatively compact. From the table, it is found 
that IT2FCM-ACO achieves high value of DI compared to 
IT2FCM-AO, thus indicates better clustering performance. 
However, IT2FCM-ACO-MRS attains relatively high values 
in comparison to both IT2FCM-ACO and -AO. Therefore, it 
can be concluded that the proposed algorithm partitions the 
data more efficiently and appropriately into clusters. The 
results obtained from both DB and DI shows the significance 
of ACO optimization to IT2FCM with MRS. Since, both the 
indices depend on inter- and intra-cluster distances, which in 
turn depends on the distance of data points from centroid or 
distance between the centroids. Therefore, optimal values of 
centroids are important to evaluate DB and DI. Hence, it can 
be stated that ACO produces optimal values of cluster 
centroids based on the results obtained from the two indices. 

Table V presents the comparison of purity values obtained 
for different algorithms. Purity [46] is a simple cluster 
evaluation measure, that evaluates how close the obtained 
cluster is to the desired pure cluster. Poor clustering has purity 
value close to 0 while perfect clustering has values close to 1. 
The results obtained for IT2FCM-ACO are significantly 
higher compared to IT2FCM-AO. On the other hand, 

IT2FCM-ACO-MRS also shows significant improvement over 
IT2FCM-ACO. 

Table VI compare the results of RI [47] for different 
algorithms. It is a measure of accuracy i.e. how accurately the 
given data points are partitioned into appropriate clusters. The 
value of RI lies between 0 and 1. Closer the value of RI to 1, 
more accurately the data points are clustered.  IT2FCM-ACO 
achieves higher values of RI than IT2FCM-AO. From the 
table, it is observed that for large datasets such as poker, forest 
and airlines IT2FCM-ACO displays higher accuracy than 
medium datasets when compared to IT2FCM-AO. The 
algorithm IT2FCM-ACO-MRS attains high results over the 
other two algorithms. This signifies better clustering 
performance of the IT2FCM-ACO-MRS over IT2FCM-ACO 
and IT2FCM-AO. 

TABLE III. EVALUATION OF DB VALUES FOR DIFFERENT ALGORITHMS 

Dataset IT2FCM-AO IT2FCM-ACO IT2FCM-ACO-MRS 

Weather 0.8698 0.8338 0.8222 

Electricity 2.0197 1.4333 1.4232 

Sea 2.5671 2.4361 2.4293 

Poker 322.48 173.60 165.32 

Forest 438.56 434.33 424.32 

Airlines 0.6962 0.6612 0.6584 

TABLE IV. EVALUATION OF DI VALUES FOR DIFFERENT ALGORITHMS 

Dataset IT2FCM-AO IT2FCM-ACO IT2FCM-ACO-MRS 

Weather 1.8630 1.9637 2.2990 

Electricity 0.5342 1.2210 1.2086 

Sea 0.7775 0.8208 0.9864 

Poker 0.4352    0.9865 1.4235 

Forest 0.0026 0.0047 0.0056 

Airlines 1.5738 1.7899 1.8119 

TABLE V. EVALUATION OF PURITY FOR DIFFERENT ALGORITHMS 

Dataset IT2FCM-AO IT2FCM-ACO IT2FCM-ACO-MRS 

Weather 0.6786 0.6821 0.6836 

Electricity 0.4145 0.4206 0.4269 

Sea 0.7746 0.7865 0.8277 

Poker 0.4229 0.5230 0.5832 

Forest 0.7865 0.8685 0.8620 

Airlines 0.4459 0.5235 0.5330 

TABLE VI. EVALUATION OF RI MEASURE FOR DIFFERENT ALGORITHMS 

Dataset IT2FCM-AO IT2FCM-ACO IT2FCM-ACO-MRS 

Weather 0.8505    0.8539 0.8513    

Electricity 0.9195 0.9286 0.9287 

Sea 0.8073 0.8641 0.8645 

Poker 0.9227    0.9437 0.9558 

Forest 0.7906 0.8368 0.8447 

Airlines 0.8883 0.8903 0.8998 
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TABLE VII. EVALUATION OF ER FOR DIFFERENT ALGORITHMS 

Dataset IT2FCM-AO IT2FCM-ACO IT2FCM-ACO-MRS 

Weather 22.2673 17.625 12.829 

Electricity 8.725 3.393 2.376 

Sea 7.046 6.925 4.622 

Poker 44.459 44.230 32.813 

Forest 38.2526 27.320 22.685 

Airlines 47.051 45.235 23.177 

Table VII illustrates the ER for different algorithms. ER 
gives the number of data points incorrectly assigned to the 
clusters. High value of ER indicates low performance of the 
algorithm while low value of ER indicates high performance 
compared to other algorithms. From the table, it is found that 
the ER obtained for IT2FCM-ACO is smaller than IT2FCM-
AO, however, compared to IT2FCM-ACO-MRS the ER is 
high. Thus, its performance compared to the other two 
algorithms is high. 

2) Computational efficiency analysis of an algorithm: The 

two most common measures to evaluate the algorithm 

efficiency are speed and memory usage. Speedup measures 

the relative performance of two algorithms and is computed in 

terms of practical run time. It is determined as the total 

amount of time spent to execute the function including its 

child functions. Memory usage is the space or the working 

memory (RAM) used by the algorithm. 

Table VIII presents the comparison of run time and 
speedup computed for different algorithms. This table 
discusses the result obtained for IT2FCM-AO, IT2FCM-ACO 
and IT2FCM-ACO-MRS without implementing SC algorithm 
which is used to estimate the required number of clusters. For 
reasonable and easy evaluation of different algorithms, the 
number of clusters is set to 10 for all the datasets. From the 
table, it can be concluded that run time of IT2FCM-ACO is 
high compared to IT2FCM-AO for most of the datasets. As 
the size of data is increasing the run time for IT2FCM-ACO is 
increasing substantially. However, for sea and airlines dataset 
IT2FCM-AO has longer run time than IT2FCM-ACO. During 
simulation, it was found that IT2FCM-ACO converged in few 
iterations (sea, number of iterations t=305; airlines, t=589) 
while IT2FCM-AO (sea, t=562; airlines, t=1000) took larger 
number of iterations to converge.  Also, from Table IX it is 
found that IT2FCM-ACO utilizes maximum memory during 
algorithm run compared to IT2FCM-AO. Therefore, to reduce 
the time and space complexity MRS technique is introduced. 
Since the time and space complexity depend on input size and 
MRS performs clustering on samples obtained from the entire 
dataset, therefore, it reduces the computational burden as well 
improve the cluster quality. This is evident from Tables VIII 
and IX where the run time and memory used by IT2FCM-
ACO-MRS is significantly less compared to the other two 
algorithms. 

The last two columns of Table VIII represent the speed up 
values of IT2FCM-ACO-MRS over IT2FCM-AO and 
IT2FCM-ACO respectively. Speed up S-AO/-ACO-MRS is the ratio 
of IT2FCM-AO and IT2FCM-ACO-MRS while S-ACO/-ACO-MRS 

is the ratio of IT2FCM-ACO and IT2FCM-ACO-MRS. For 

weather and electricity dataset the proposed method is at least 
3 times faster than other two algorithms while for sea and 
poker dataset which is approximately of same dimension the 
speed of  1.6 is reported. For forest and airlines dataset 
(approximately equal number of data points) speed up 
between 4 and 5 is observed. 

Table X evaluates the run time of algorithms for different 
percentage of dataset. These results are obtained by 
implementing SC algorithm to all the three algorithms. It is 
evident from the table that the run time of all the algorithms is 
increasing with the increase in sample size for all the datasets. 
For poker, forest and airlines dataset the run time of IT2FCM-
AO-SC and -ACO-SC is increasing drastically as the size of 
the dataset is increasing. It is interesting to note that for 
medium size datasets (weather, electricity and sea) IT2FCM-
ACO-SC takes longer time to execute compared to IT2FCM-
AO-SC. However, for large datasets (poker, forest, and 
airlines) IT2FCM-ACO-SC takes less time to execute for each 
sample size compared to IT2FCM-AO-SC. Thus, IT2FCM-
ACO-SC converges faster for large datasets in comparison to 
IT2FCM-AO-SC. Still, the run time for large datasets is 
considerably high for both the algorithms. For poker dataset, 
IT2FCM-AO-SC took about 1 hr to execute 20% of the 
complete dataset. For 100% sample size the run time is found 
to be ≈ 26 hours. However, during simulation the algorithm 
was not completely executed, only 60% of the algorithm was 
completed after 16 hours of continuous run of the algorithm. 
Therefore, the program was stopped, and the remaining run 
time was estimated. Similar results were obtained for forest 
dataset where the completion time is estimated to be 36 hours. 
It was found that the significant reason behind the longer run 
time for all the algorithms was high convergence rate of SC 
algorithm for large datasets. This is proven from Table IX 
where algorithms run time without SC for all the datasets is 
within an hour. 

TABLE VIII. EVALUATION OF RUN TIME AND SPEED UP FOR DIFFERENT 

ALGORITHMS WITHOUT SC 

Dataset 

Execution Time (sec) Speedup  

IT2FCM-

AO΄ 

IT2FCM-

ACO 

IT2FCM-

ACO-MRS 

S-AO/ --

ACO-MRS’ 

S-ACO/-

ACO-MRS 

Weather 9.951 19.356 3.277 3.036 5.906 

Electricity 49.528 58.037 15.503 3.194 3.743 

Sea 99.762 97.965 59.997 1.662 1.632 

Poker 127.249 149.471 76.708 1.658 1.948 

Forest 456.886 479.155 82.685 5.525 5.794 

Airlines 1102.2 1079.23 267.239 4.124 4.038 

TABLE IX. EVALUATION OF MEMORY FOR DIFFERENT ALGORITHMS 

WITHOUT SC 

Dataset 

Memory (MB) 

IT2FCM-AO IT2FCM-ACO 
IT2FCM-ACO-

MRS 

Weather 1232 1236 1221 

Electricity 1358 1380 1266 

Sea 1289 1294 1241 

Poker 2175 2399 1374 

Forest 2133 2254 1564 

Airlines 1635 1737 1323 
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TABLE X. EVALUATION OF RUN TIME FOR DIFFERENT SAMPLE SIZE WITH SC 

Dataset 
Sample Percentage  

  20% 40% 60% 80% 100% 

Weather 

IT2FCM-AO Run Time 

(sec) 
 

1.94 3.74 5.83 16.24 24.86 

IT2FCM-ACO 2.61 4.75 8.59 19.08 26.98 

IT2FCM-ACO-MRS 2.46 2.54 3.90 4.82 8.70 

Electricity 

IT2FCM-AO Run Time 
(sec) 

Run  
 

19.79 44.56 85.05 146.74 184.09 

IT2FCM-ACO 67.27 101.90 104.64 204.84 490.60 

IT2FCM-ACO-MRS 35.37 42.44 70.61 82.41 104.62 

Sea 

IT2FCM-AO Run Time 
(sec) 

 

56.69 146.89 284.73 421.43 590.59 

IT2FCM-ACO 99.31 237.06 415.13 578.48 792.96 

IT2FCM-ACO-MRS 43.47 66.88 96.00 112.25 298.93 

Poker 

IT2FCM-AO Run Time 

(sec) 

 

3954.35 15730.75 45128.56 76832.24 95997.60 

IT2FCM-ACO 3786.06 14730.00 42163.24 74832.54 93484.60 

IT2FCM-ACO-MRS 284.11 385.38 482.70 676.45 822.45 

Forest 

IT2FCM-AO Run Time 

(sec) 
 

3954.35 15730.75 32567.39 47682.38 124658.60 

IT2FCM-ACO 5604.02 20806.38 31826.38 45867.38 100058.60 

IT2FCM-ACO-MRS 125.02 230.85 435.53 572.17 623.85 

Airlines 

IT2FCM-AO Run Time 
(sec) 

 

740.97 3329.33 7635.92 15275.60 21159.17 

IT2FCM-ACO 716.56 3164.48 7351.32 13242.62 20806.38 

IT2FCM-ACO-MRS 26.00 44.71 69.76 133.47 245.25 

Though airlines contain approximately the same number of 
examples as forest, but IT2FCM-AO-SC and -ACO-SC were 
able to execute the entire program in about 5 hrs. Similar 
pattern is observed for sea and poker dataset. The possible 
reason could be the increase in the number of attributes. Forest 
and poker dataset have 10 and 54 attributes respectively while 
sea and airlines contain only 3 and 7 attributes respectively. 
The dimension of the dataset can increase in two directions: 
number of variables and number of examples, thus from the 
results, it is proven that the multi-dimension dataset has 
significant impact on the convergence rate of SC algorithms. 

To overcome the issue of high convergence rate MRS 
technique was proposed. In the proposed technique SC 
evaluates the required number of clusters for samples of 
dataset for each iteration until the program terminates. Hence 
SC does not need to determine the number of clusters for the 
entire dataset. From Table X it is noted that the proposed 
technique shows significant improvement for all the datasets 
compared to other two algorithms. The results are noteworthy 
for large datasets, where IT2FCM-ACO-SC-MRS can execute 
in lesser time. The reason behind the substantial increase in 
the performance of the proposed algorithm is that it can 
generate appropriate clusters within reasonable time for 
samples of data that is extended to the entire dataset without 
the need to perform clustering on the complete dataset. 

Fig. 4 to 9 presents the speed up vs. sample size graph for 
different algorithms. It is evident from the graphs that speed of 

all the algorithms are decreasing as the sample size is 
increasing. In Fig. 4, for weather dataset IT2FCM-AO and -
ACO at 20% sample size is 12 and 10 times faster respectively 
compared to 100%. A sudden decrease in the speed is 
observed from 20% to 40% sample size. For both the 
algorithms the speed has reduced t half compared to 20% 
sample size. The speed is decreasing drastically as the sample 
size is increasing, thus the execution time is increasing 
sharply. However, for IT2FCM-ACO-MRS the speed is 
decreasing steadily. This indicates that there is not much 
increase in the run time from 20% - 100% sample size. 

 

Fig. 4. Speed Up Vs Sample Size Evaluation of Weather Dataset for 

Different Algorithms. 
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In Fig. 5, a similar observation for electricity dataset is 
made. The speed is decreasing substantially for IT2FCM-AO 
and -ACO from 20% to 100% sample size while for IT2FCM-
ACO-MRS the speed is reducing gradually. In Fig. 6, for sea 
dataset IT2FCM-AO, -ACO, -ACO-MRS at 20% sample size 
is 10, 7 and 6 times faster than 100% dataset respectively. For 
-AO and -ACO the decrease in speed is higher related to -
ACO-MRS. For both IT2FCM-AO and -ACO the speed at 
20% reduced from 10 and 7 to 4 and 3 at 40%, respectively. 
Though for IT2FCM-ACO-MRS the speed is decreasing at a 
slow pace compared to other two algorithms. 

In Fig. 7, for poker dataset IT2FCM-AO and -ACO a 
sudden decrease from ≈ 24 to 6 is observed at 20% to 40% 
sample size. This suggests a high increase in run time. 
Although for IT2FCM-ACO-MRS the speed is almost linear 
suggesting with the increase in sample size the speed is 
decreasing consistently. 

Similar observation is made for forest and airlines dataset 
in Fig. 8 and 9, respectively. Thus, it can be stated that for 
most of the datasets the speed of IT2FCM-ACO-MRS is 
consistent i.e. there is no drastic increase in the run time for 
the proposed algorithm. 

 

Fig. 5. Speed up Vs Sample Size Evaluation of Electricity Dataset for 

Different Algorithms. 

 

Fig. 6. Speed Up Vs Sample Size Evaluation of Sea Dataset for Different 

Algorithms. 

 

Fig. 7. Speed Up Vs Sample Size Evaluation of Poker Dataset for Different 

Algorithm. 

 

Fig. 8. Speed up Vs Sample Size Evaluation of Forest Dataset for Different 

Algorithms. 

 

Fig. 9. Speed up Vs Sample Size Evaluation of Airlines Dataset for 

Different Algorithms. 

Table XI mentions the speedup of IT2FCM-ACO-MRS 
over IT2FCM-AO and -ACO for different sample size. For 
weather, electricity and sea dataset IT2FCM-ACO-MRS is ≈ 
1- 5 times faster than other two algorithms. The significant 
increase in the speed is observed for large datasets (poker, 
forest, and airlines). For poker and forest dataset it is seen that 
as the sample size is increasing the speed is also increasing, 
thus, IT2FCM-ACO-MRS is becoming faster compared to 
other two algorithms. For 20%, 40%, 60%, 80% and 100% 
IT2FCM-ACO-MRS is ≈ 13, 40, 90, 110, 116 times faster 
than -AO and -ACO respectively. The same result is found for 
forest and airlines dataset. These results prove the efficiency 
and competence of IT2FCM-ACO-MRS for clustering 
medium and large datasets. 
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TABLE XI. COMPARISON OF SPEED UP OF IT2FCM-ACO-MRS OVER 

IT2FCM-AO AND IT2-FCM-ACO 

Dataset Sample Size 

20% 40% 60% 80% 100% 

Weather 

SIT2FCM-AO 5.223 2.613 1.092 3.371 2.859 

SIT2FCM-ACO 1.060 1.865 2.199 3.962 3.102 

Electricity 

SIT2FCM-AO 0.552 1.031 1.229 1.822 1.764 

SIT2FCM-ACO 1.877 2.357 1.512 2.544 4.701 

Sea 

SIT2FCM-AO 1.304 2.196 2.965 3.754 1.976 

SIT2FCM-ACO 2.284 3.544 4.324 5.153 2.652 

Poker 

SIT2FCM-AO 13.918 40.819 93.492 113.582 116.722 

SIT2FCM-ACO 13.325 38.222 87.349 110.626 112.329 

Forest 

SIT2FCM-AO 31.629 68.143 74.776 83.335 197.8991 

SIT2FCM-ACO 44.824 90.129 73.075 80.163 160.389 

Airlines 

SIT2FCM-AO 28.499 74.468 109.456 114.448 86.277 

SIT2FCM-ACO 27.561 70.780 105.3771 99.216 84.839 

VI. CONCLUSIONS 

This paper presents an improved IT2FCM clustering 
algorithm based on ACO optimization technique. This 
algorithm utilizes the global search property of ACO to 
estimate optimal cluster centres. Thus, overcomes the problem 
of IT2FCM returning locally optimum value. To eliminate the 
issue of manual feeding of cluster numbers SC is implemented 
to IT2FCM-ACO. SC extracts the expected number of clusters 
from the data itself and feed the information to ACO 
algorithm. However, ACO and SC algorithms have high 
convergence rate for large data. Thereby, to solve this issue 
MRS technique is proposed. It gives IT2FCM scalable 
approach as it eliminates the need for availability of entire 
dataset for clustering. Thus, it improves upon the time and 
space complexity of IT2FCM-ACO-SC. 

With reference to DB and DI, it has been proven that 
IT2FCM-ACO-MRS with SC produces compact and well-
separated clusters. The results obtained from purity, RI, and 
ER proves the high clustering performance of the proposed 
algorithm in comparison to IT2FCM-AO and -ACO. Further, 
the computational complexity in terms of time and space of 
the three algorithms are computed. From the result, it is found 
that IT2FCM-ACO-SC has high convergence rate for large 
datasets where it can take about hours to execute. However, 
when implemented with MRS technique it considerably 
reduces the time and space during algorithm run. The results 
obtained for run time and speed up proves the significant 
improvement of IT2FCM-ACO-SC-MRS over IT2FCM-
ACO-SC and IT2FCM-AO-SC for both large and medium 
datasets. Further, the big-O computational analysis of the 
algorithms approves the advantage of combining ACO-SC 
with MRS to generate appropriate number of clusters for large 
data. 

The proposed technique shows significant enhancement 
over traditional clustering technique for large datasets. 
However, for data stream environment where the voluminous 
data may be coming continuously and most likely boundlessly 
over time and may evolve over time. Such data stream 
environment may require incremental approach to capture the 
significance of new incoming data. The incremental technique 
processes data in chunks which improves upon time and space 
complexity. However, MRS method only works upon a 
sample of data and thus, may not be able to partition new 
incoming data into appropriate clusters. Therefore, for future 
work authors propose an incremental approach to IT2FCM-
ACO to capture the characteristics of data stream 
environment. 
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