
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

546 | P a g e  
www.ijacsa.thesai.org 

Identification and Formal Representation of Change 

Operations in LOINC Evolution 

Anny Kartika Sari 

Department of Computer Science and Electronics 

Universitas Gadjah Mada 

Yogyakarta, Indonesia 

 

 
Abstract—LOINC (Logical Observation Identifiers Names 

and Codes) is one of the standardized health ontologies that is 

widely used by practitioners in the health sector. Like other 

ontologies in health field, LOINC evolves. This research focuses 

on representing formally the conceptual changes in LOINC. Four 

steps are taken to achieve this goal. First, the release of LOINC is 

studied to get an overview of the changes in LOINC. Secondly, 

the change operations that occur in LOINC are classified. Third, 

the changes are represented formally by considering the need to 

keep the history of changes in concepts. Finally, a few algorithms 

are developed to identify changes that occur between two releases 

of LOINC. The evaluation shows that the algorithms are able to 

identify change operations in LOINC with 100% of success rate. 

With a formal representation of changes that occur in LOINC, it 

is expected that adjustments to applications that use LOINC can 

be performed more straightforward. The history of reference to 

concepts in LOINC can also be traced back so that information 
about the changes on the reference can be obtained easily. 

Keywords—LOINC; ontology; evolution; change operation; 

formal representation; health 

I. INTRODUCTION 

At the moment, ontology is used in many areas. Ontology 
is the representation of knowledge in a certain domain of 
interest. Using ontology, knowledge can be represented 
formally to support the processes used in the applications of the 
domain. 

Health is one of the areas that uses ontology intensively. 
Ontology in health is also referred to as terminology. In this 
field, there are several standardized ontologies. The 
development, usage and distribution of each ontology is 
standardized by a specific institution. The main content of each 
ontology is also different, specifically addressed the target of 
the ontology. 

LOINC (Logical Observation Identifiers Names and Codes) 
is one of the standardized ontologies in health that is managed 
by Regenstrief Institute, Inc. LOINC has been used for many 
applications. Firstly, LOINC can be used for universal standard 
to identify medical laboratory observation to achieve the 
semantic uniformity in the observation. For instance, the terms 
used in health archetype, which is discussed in [1] to achieve 
semantic interoperability of Electronic Health Records, can 
refer to LOINC or other terminologies in health domain1. This 

                                                        
1
 https://specifications.openehr.org/releases/RM/Release-

1.0.4/support.html#_terminology_package 

way, if different terms are used in archetype built by other 
health providers, the system can directly look up the referred 
terminology concepts to find the meaning of the corresponding 
terms. Hence, semantic interoperability of the terms used by 
different providers can be achieved. In [2], LOINC is used as 
standardized terminologies. In the paper, the definition of the 
term cephalometric (standardized measurement from the angle 
and distance between specific landmarks of X-ray film that is 
used for orthodontic treatment planning and varied research 
applications) that originates from 10 different standards can be 
unified into single terminology taken from LOINC. 

Another use of LOINC is in information retrieval 
applications. The data in this system is usually organized as a 
document [3]. In addition to ordinary documents, in a Web 
context, HTML pages are considered as documents too. Users 
in the information retrieval application need a specific 
document or several documents that match their needs. A 
collection of keywords is a tool that can represent documents 
desired by users. The user enters the keywords, then the system 
will provide output in the form of documents that correspond 
to the keywords. In this case, each collection of documents in 
the system will be annotated first by words or phrases that can 
describe the contents of the document. The concepts that exist 
in LOINC can be used both as keywords and annotations that 
will be embedded in each document. 

The health sector is a field where knowledge develops 
rapidly. Research in the field of health will always provide 
updates on existing knowledge. Changes to knowledge result in 
changes in ontology. This change is referred to as ontology 
evolution. According to [4], the ontology evolution is a 
modification process on ontology to accommodate new 
information on the domain knowledge. Ontology must always 
be updated to represent current knowledge, otherwise ontology 
becomes outdated. Changes to the ontology will eventually 
cause changes to the applications that utilize the ontology. 

As one of the ontologies in the health field, LOINC also 
experienced the same evolution. Every month, there is a new 
release of LOINC that contains changes to it. These changes 
will affect all applications that refer to LOINC concepts. For 
example, annotations on documents based on LOINC concept 
must also be adjusted so that the referenced concepts still exist 
in the latest version of LOINC, not the old concepts that might 
have been deleted because of changes to LOINC. 

As LOINC continues to develop, there is a possibility that 
changes to a concept do not only happen once during its 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

547 | P a g e  
www.ijacsa.thesai.org 

lifetime. If this happens, applications that use LOINC as a 
reference should keep a history of changes that occur in the 
corresponding concept. In this way, if a backward trace is 
needed about why a reference changes, the application can 
look at the history of the concepts it refers to. This is possible if 
the evolution of the concepts in LOINC is formally 
represented. 

Unfortunately, there has been no research discussing the 
formalization of evolution in LOINC. There have been several 
studies that discuss the formalization of ontology, e.g. [5-7]. 
However, none has focused on formalization of evolution in 
LOINC. The absence of this formalization will lead to the 
difficulty of adjustments that must be made to the application 
when there is a change in a LOINC concept. So far, there are 
no guidelines for making these adjustments. Institutions that 
use LOINC must adjust individually. For institutions that have 
been using LOINC for a long time, this may not be a problem 
because they are already experienced in doing so, but for 
institutions that use LOINC only currently, this could be an 
unexpected problem. In addition, it will be difficult to 
backtrack the changes if the history of the changes is not 
maintained. This is supported by the fact that the latest version 
of LOINC only mentions changes that occur in that version 
compared to the previous version. Hence, the changes that 
occur in previous versions are not contained in the latest 
version. 

This research focuses on the formal representation of 
changes in the evolution of LOINC. This representation will be 
useful to understand the changes in LOINC concepts. In 
addition, with this formal representation, the history of 
reference concepts in LOINC can be traced back. Thus, 
information about changes in references can be stored by the 
applications that use LOINC. Furthermore, the representation 
of LOINC changes is used to develop algorithms that can 
identify changes that occur between two versions of LOINC. 

The rest of the paper is organized as follows. Chapter II 
discusses related work, followed by formal representation of 
LOINC in Chapter III. Classification of change operations is 
presented in Chapter IV, while Chapter V discusses the formal 
representation of change operations. Chapter VI addresses the 
method to maintain the history of the changes. Algorithms to 
identify change operations are described in Chapter VII. This is 
followed by Chapter VIII that includes Evaluation and 
Discussion. Chapter IX concludes this paper. 

II. RELATED WORK 

According to [8], there are 6 phases in ontology evolution 
which include change capturing, change representation, 
semantics of change, change implementation, change 
propagation and change validation. The process is simplified in 
[9] by dividing it into 3 phases, namely change representation 
ontology, ontology change manipulation, and ontology change 
propagation. In terms of the ontology domain, the study in [10] 
discusses existing work in biomedical evolution in detail. 
However, this research focuses on one phase only, namely 
change representation ontology. 

Ontology change representation is a phase on ontology 
evolution that discusses how to represent changes in ontology. 

Change representation should be done in a formal way so that 
changes can be manipulated and propagated to the application 
that uses the ontology. Several studies related to the 
representation of changes in ontology are summarized as 
follows. 

In [11] a formal method called RLR (Represent, Legitimate 
and Reproduce) is presented. The method is proposed to 
analyze and support evolution management and changes in 
ontology in the biomedical field. The focus of this research is 
on the phase of representation. To represent changes, 
Description Logic (DL) is used. The method is based on a 
discrete state model and uses category theory for representation 
with diagrams. This method is applied to Fungal Web 
Ontology which is a formal ontology on the fungal domain 
genomics. 

A representation scheme called CHO (Change History 
Ontology) is defined in [6]. There are two basic elements of 
CHO, namely the OntologyChange class and the ChangeSet 
class. The OntologyChange class contains a sub-class called 
Atomic-Change, which represents all classes, properties, 
individuals and constraints at the atomic level. The ChangeSet 
class is responsible for managing changes to ontologies and 
arranging them in time-indexed form. 

The classification of change operations in health ontologies 
is discussed in [7]. In the research, change operations are 
classified into 2 types. The first type is basic operation which is 
only based on a list of changes that are already available in 
release ontology. The second type is semantic operation, which 
is an operation that has a complete definition that can be a 
combination of one or more basic operations. Both operations 
are represented formally with mathematical representations. In 
addition, algorithms are also prepared to identify semantic 
operations based on a list of basic operations. 

Several studies on LOINC discuss the use of LOINC. In 
[11], a method is developed to evaluate the consistency and 
utilization of LOINC in different institutions, and to evaluate 
the level of interoperability that can be achieved by using 
LOINC as a standard code for data exchange. There are 
variations in the use of LOINC in data exchange, which shows 
that the interoperability between different institutions does not 
fully exist. To improve semantic interoperability, identification 
and correction of knowledge that is contradictory to LOINC is 
needed. 

Research in [12] attempts to overcome difficulties in 
achieving semantic interoperability because of the use of 
different languages. In this study LOINC is translated into 
Italian. In addition, a tool is built that can find a unique list of 
LOINC Parts from a given set of LOINC terms. 

Research on LOINC in [2], [13], [14] and [15] address the 
use of LOINC as a way to achieve semantic interoperability 
and its application in several case studies. In [2] the definition 
of the term cephalometric using LOINC terminology is brought 
to overcome differences in terms from 10 different standards. 
The case study of LOINC application for documents in hospital 
information systems is reviewed in [13], while a pilot project to 
standardize local laboratory data on Indian Health Service 
(IHS) medical facilities is conducted in [14] by mapping names 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

548 | P a g e  
www.ijacsa.thesai.org 

of laboratory test into terms in LOINC. In [15], a process of 
"enhancing" local test names is developed by incorporating 
information required for LOINC mapping into the test names 
themselves. 

None of the above studies specifically addresses the change 
operations in LOINC. In fact, the structure of LOINC can be 
considered as unique because it is not the same as the structure 
of general ontologies. The essence of ontology is concept, 
whereas in LOINC there are 6 fields which describe a 
particular term. Thus, we need a special representation for 
LOINC that can be used as a basis for the formal 
representations of concept changes in LOINC. This research 
focuses on the formal representation of LOINC and the 
representation of change operations that occur in LOINC 
concepts. 

III. FORMAL REPRESENTATION OF LOINC 

There are 2 fundamental differences between LOINC and 
the formal definition of ontology in general, as follows: 

1) In LOINC and other ontologies in health field, there is 

no definition of instance. This is different from the general 

definition of an ontology that include instance as a component 

of the ontology. For example, the definition of ontology in 

Davis et al. [16] and [17] includes instances as elements of 

ontology. In [18] it is suggested that in SNOMED CT, as one 

of the ontologies in health field, instance of a concept is one of 

the three possible entities: a stand-alone object without clinical 

context, artifact contained in the patient's electronic medical 

record, or the patient himself or clinical situation. These three 

elements are not found in LOINC because LOINC only 

contains concepts. The real object of the concept is not defined 

in LOINC. 

2) LOINC represents concepts into 6 dimensions, which 

together provide an overview of a concept. Concept definition 

can be easily equated with concept definition in ontology. 

However, the six dimensions cannot be compared to object 

property or data property. Thus, a special representation is 

needed for the six dimensions of the LOINC concept. 

Based on the above reasons, in this study, a formal 
definition for LOINC will be carried out specifically, which 
adopts the definition of ontology in the health field in [7] with 
adjustments to LOINC characteristics. The following is a 
formal definition of LOINC. 

Definition 1. LOINC  Ontology 

OL ≡ <C, Co, P, T, Sy, Sc, M, R> is LOINC ontology with: 

 C: set of Concepts, referring to LOINC concepts. 

 Co: set of Components 

 P: set of Properties 

 T: set of Times 

 Sy: set of Systems (Specimens) 

 Sc: set of Scales 

 M: set Methods 

 R: set of relationship that connects Concept with one of 
dimensions, that is, Component, Property, Time, 
System, Scale, or Method. To form a relationship r = 
(c, rel, d), the set of relationship type Rel is defined. In 
this case, Rel = {rco, rp, rt, rsy, rsc, rm} is a set of 
relationship types, containing various types of 
relationships between Concept and one of the 
dimensions of the LOINC concept. There are 6 
members of Rel, namely rco (relation between concept 
and component), rp (relation between concept and 
property), rt (relation between concept and time), rsy 
(relation between concept and system), rsc (relation 
between concept and scale) ), and rm (relation between 
concept and method). 

In ontology OL, the following constraints must be met. 

 ∀r∈R: r = (c, rel, d), with c∈C, rel∈Rel, and d∈{Co  P 

 T  Sy  Sc  M}            (1) 

 ∀r∈R: rel = rco  d ∈ Co            (2) 

 ∀r∈R: rel = rt d ∈ P                              (3) 

 ∀r∈R: rel = rp  d ∈ T                     (4) 

 ∀r∈R: rel = rsy  d ∈ Sy                      (5) 

 ∀r∈R: rel = rsc  d ∈ Sc                     (6) 

 ∀r∈R: rel = rm  d ∈ M            (7) 

In the definition above, LOINC ontology consists of 8 
tuples, namely the set of concepts C, the set of Component Co, 
the set of Property P, the set of Time T, the set of System Sy, 
the set of Scale Sc, the set of Method M, and the set of 
relationship R. In constraint (1), the definition of a relationship 
r is a tuple (c, rel, d), where rel is the type of relationship 
between c and d. Constraints (2), (3), (4), (5), (6), (7) specify 
the type of d. 

The ontology concepts in LOINC sometimes require more 
detailed information about a concept. In this study, the 
information referred to as attributes. The formal definition of 
attributes is as follows, adopted from [7] with some 
adjustments. 

Definition 2. Set of concept attributes 

Ak ≡ {ax1 (c) = v1, ax2 (c) = v2, ..., axn (c) = vn} is the set of 
attributes for concept c in ontology OL with xi is the atribut 
name and vi is the attribute value for c. Concept c is a concept 
that is included in set C. 

LOINC has determined additional information that can be 
attributed to a concept. In this study, the information is 
represented as an attribute of the concept. The following are 
some of the concept attributes that are part of the definition of a 
concept in the LOINC ontology. 

 name: the name of the concept. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

549 | P a g e  
www.ijacsa.thesai.org 

 code: the code of the concept. 

 class: the class of a concept, which can be selected 
from the choice of existing classes. 

 classtype: the class type of the concept, with values 
from 1 to 4, where 1 = Laboratory class; 2 = Clinical 
class; 3 = Claims attachments; and 4 = Surveys. 

 long_common_name: the long common name of the 
concept. 

 short_name: the short name of the concept. 

 status: indicates the status of the concept, whether 
ACTIVE or INACTIVE. 

 version_first: the version of LOINC where the concept 
was first included in ontology. 

 version_last_changed: the LOINC version where the 
concept is last changed. 

IV. CLASSIFICATION OF CHANGE OPERATIONS IN LOINC 

Change operations in LOINC can be divided into 3, namely 
additions, updates, and deletions. Each type of operation can be 
applied to different entities such as concepts, dimensions and 
relationships. The following is the detail of the change 
operations that are included in LOINC. 

A. Addition Operation 

Addition operations can be performed on the set of concept, 
property, time, system, scale, method, and relationship. 

 Addition to the concept set: Addition to the concept set is 
carried out if there is a new concept included in LOINC 
ontology. 

 Addition to the component set: Addition to the component 
set is done if there is a new component included in LOINC 
ontology. 

 Addition to the property set: Addition to property set is 
performed if there is a new type of property included in 
LOINC ontology, which might be a value from the 
property dimension of a concept. 

 Addition to the time set: Addition to time set is carried out 
if there is a new type of interval time included in LOINC 
ontology, which might be a value from the time dimension 
of a concept. 

 Addition to the system set: Addition to system set is 
carried out if there is a new system included in LOINC 
ontology, which might be a value from the system 
dimension of a concept. 

 Addition to the scale set: Addition to scale set is carried 
out if there is a new scale type included in LOINC 
ontology, which might be a value from the scale 
dimension of a concept. 

 Addition to the method set: Addition to method set is 
carried out if there is a new measurement method included 
in LOINC ontology, which might be a value from the 
method dimension of a concept. 

 Addition to the relationship set: Addition to relationship 
set is carried out if there is a new relationship included in 
LOINC ontology, which connects a concept with one of 
the six dimensions. Addition to relationship set will 
definitely occur if the new concept included in ontology. 

B. Update Operation 

Update changes can be made on the set of concepts and 
relationships. 

 Update to a concept: Update to a concept is carried out if 
there is a change to the concept attribute, e.g. name, code, 
long common name, short name, status, and version last 
changed. Update to other attributes do not occur. 

 Update to a relationship: This operation accommodates 
update to the value of concept dimension. Change can 
occur in the value of d of the relationship r = (c, rails, d). 
An example of this change is a change in the method of a 
concept, for instance from the original value Observed 
then updated to Reported. 

C. Deletion Operation 

Deletion operations can be performed on the set of 
property, time, system, scale, and method. However, deletion is 
very rare. The deletion operation is not performed on concepts 
because in LOINC, a concept is never erased. If a concept is 
not used anymore, the status of the concept is set to INACTIVE. 
Deletion operation is not performed to relationship either, 
because a relationship connects a concept to its dimensions. If 
a concept has the status of INACTIVE, the relationship to its 
dimensions still exists. 

Details of each deletion operation is as follows. 

 Deletion of a component: Deletion of a component is done 
if there is a type of component that is not used anymore in 
LOINC ontology. 

 Deletion of a property: Deletion of a property is done if 
there is a type of property that is not used anymore in 
LOINC ontology. 

 Deletion of a time: Deletion of a time is carried out if there 
is a type of time interval excluded from LOINC ontology. 

 Deletion of a system: Deletion of a system is carried out if 
there is a system type that is excluded from LOINC 
ontology. 

 Deletion of a scale: Deletion of a scale is carried out if 
there is a type of scale that is no longer used in LOINC 
ontology. 

 Deletion of a method: Deletion of the method is carried 
out if there is a measurement method that is not used in 
LOINC ontology. 

V. FORMAL REPRESENTATION OF CHANGE OPERATIONS IN 

LOINC 

Update on a LOINC entities produces a change operation 
on the ontology. In this section, the formal definition of 
changed ontology and change operation in LOINC are 
presented before the discussion of each type of change 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

550 | P a g e  
www.ijacsa.thesai.org 

operation. The definitions are adopted from [7] with some 
adjustments. 

Definition 3. Changed ontology 
Given ontology OL ≡ <C, Co, P, T, Sy, Sc, M, R>.  

OL′ is the changed ontology to OL with OL′ ≡ <C’, Co’, P’, 
T’, Sy’, Sc’, M’, R’>, C′ is the changed set of concepts, Co′ is 
the changed set of components, P' is the changed set of 
properties, T' is the changed set of time, Sy' is the changed set 
of systems, Sc' is the changed set of scales, M' is the changed 
set of methods, and R’ is the changed set of relationships. 

Definition 4. Ontology change operation 
Given ontology OL ≡ <C, Co, P, T, Sy, Sc, M, R>.  

Op is a change operation in ontology OL such that if Op is 
executed then ((C′ ← C) ∨ ((Co′ ← Co) ∨ (P’ ← P) ∨ (T’ ← 
T) ∨ (Sy′ ←Sy) ∨ (Sc′ ←Sc) ∨ (M′ ←M) ∨ (R′ ←R)). 

From the two definitions above, it can be concluded that 
ontology changes are caused by the existence of at least one of 
ontology change operations. Ontology change operations can 
be applied to each ontology entities. However, the type of 
operation for each entity is different. The type and 
representation of change operations in LOINC ontology is 
described as follows. 

D. Operations on Concepts 

In LOINC, concepts can be added or changed. Based on 
this, 8 types of operations to ontology concept are defined as 
follows. Note that each operation will result in the change of 
concept c, which means that the set of concepts C will also 
change. 

1) Concept addition (AddConcept): The concept addition 

operation is an operation carried out to incorporate a new 

concept in LOINC ontology. In other words, the new concept 

is added to the set of concepts C. The formal definition of 

concept addition operation is as follows. 
Definition 5. AddConcept operation 

AddConcept(cnew, OL) ⇔ OL | C ← C ∪ {cnew} 

2) Concept renaming (UpdConceptName): The concept 

renaming operation is an operation performed to change the 

name of the concept to LOINC ontology. In this way, the value 

of the name attributes changes. The formal definition of the 

concept renaming operation is as follows.  
Definition 6. UpdConceptName operation 

UpdConceptName(c, namenew, OL) ⇔ C | name(c) ← 
namenew 

3) Update concept’s code (UpdConceptCode): The 

operation of changing the concept code is an operation carried 

out to change the value of concept code in LOINC ontology. 

The value of the code attribute will change. The formal 

definition of concept code change operation is as follows. 
Definition 7. UpdConceptCode operation 

UpdConceptCode (c, codenew, OL) ⇔ C | code (c) ← 
codenew 

4) Update concept’s long common name 

(UpdConceptLcn): This operation changes the value of a 

concept’s long common name in LOINC ontology. The  formal 

definition of the operation is as follows. 
Definition 8. UpdConceptLcn operation 

UpdConceptLcn (c, lcnnew, OL) ⇔ C | lcn(c) ← lcnnew 

5) Update concept’s short name (UpdConceptSn): This 

operation changes a concept’s short name in LOINC ontology. 

Hence, the value of the short name attribute will be changed. 

The formal definition of the operation is as follows. 
Definition 9. UpdConceptSn Operation 

UpdConceptSn (c, lsnnew, OL) ⇔ C | sn(c) ← snnew 

6) Update concept’s status (UpdConceptStatus): This 

operation will update the status of a concept in LOINC 

ontology. This means that the value of status attribute changes. 

The formal definitions of the operation is as follows. 
Definition 10. UpdConceptStatus Operation 

UpdConceptStatus (c, statusnew, OL) ⇔ C | status(c) ← 
statusnew 

7) Update concept’s version last changed 

(UpdConceptVersion): This operation will update the version 

in which the concept is last changed. In other words, the 

attribute value of version last changed will change. The formal 

definition of the operation is as follows. 
Definition 11. UpdConceptVersion Operation 

UpdConceptLcn (c, versionnew, OL) ⇔ C | version(c) ← 
versionnew 

8. Update concept’s class (UpdConceptClass): This operation 
is to update the class of a concept in LOINC ontology, which 
means that the class attribute values is changed. The formal 
definition of the operation is as follows. 

Definition 12. UpdConceptClass operation 

UpdConceptClass (c, classnew, OL) ⇔ C | class(c) ← 
classnew 

E. Operations on the Dimensions of LOINC  

In LOINC, the value of each of the 6 dimensions, i.e. 
component, property, time, system, scale and method, can be 
added or removed. However, change operations to the 
dimensions are very rare. Nevertheless, the operations need to 
be defined formally. Since the change operations applied to the 
dimensions are very similar, only operations to component 
dimension are presented here. The formal definition of 
operations to other dimensions is basically the same as the 
operations to component. 

1) Component addition (AddComponent): This operation 

will add a new component to LOINC ontology. The new 

component is included in the set of components Co. The formal 

definition of the operation is as follows. 
Definition 13. AddComponent operation 

AddComponent (conew, OL) ⇔ OL | Co ← Co ∪ {conew} 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

551 | P a g e  
www.ijacsa.thesai.org 

2) Component deletion (DelComponent): This operation is 

to remove a component from LOINC ontology. This means 

that the component is removed from the set of components Co. 

The formal definition of the operation is as follows. 
Definition 14. DelComponent operation 

DelComponent (codel, OL) ⇔ OL | Co ← Co - {codel} 

F. Operations on Relationships 

In LOINC, relationships on ontologies can be added to 
ontology or changed. Based on this, 2 types of change 
operations for relationship are defined as follows. 

1) Add relationship (AddRelationship): Addition operation 

is an operation performed to include a new relationship to 

LOINC ontology. This means that the new relationship is 

added to the relationship set R. The formal definition of this 

operation is as follows. 
Definition 15. AddRelationship Operations 

AddRelationship (rnew, OL) ⇔ OL | R ← R ∪ {rnew} 

2) Update relationship (UpdRelationship): This operation 

is carried out to update the relationship in LOINC ontology. In 

this case, the value of d in (c, rel, d) is changed so that it refers 

to another value. The formal definition of this operation is as 

follows. 
Definition 16. UpdRelationship operation 

UpdRelationship (r, dnew, OL) ⇔ C | (c, rel, d) ← (c, rel, 
dnew) 

VI. REPRESENTATION OF VERSIONING FOR LOINC 

Ontology versioning is the ability to manage changes in 
ontology by making or managing different versions of the 
ontology taken at different times [19]. In this study, versioning 
of LOINC needs to be done because LOINC releases are 
always different from time to time. 

To represent the versioning of LOINC, a log file Ov is built. 
This log file contains a collection of records, each of which 
stores an operation that occurs in LOINC. In this research, a 
record is represented as an XML element. Each record contains 
information about a change operation. The attributes in each 
record are as follows: 

 <id>: indicates the id number of the operation. 

 <def>: contains a formal definition of the operation, which 
is one of the operation definitions presented in Section V. 
This attribute does not only store the name of the operation, 
but the arguments of the operations are also kept. Hence, 
the information about the operation, including the concept 
that is manipulated and details of the changes, is recorded 
well. 

 <version>: indicates the current version of LOINC in which 
the change operation occurs. 

 <id_prev>: indicates the id number of the previous change 
operation that was applied to the same entity, either a 
concept, a dimension or a relationship. 

The formal definition of adding a change operation to the 
log file is as follows. 

Definition 17. Append operation (Append) 

Append(Ov, <id, def, version, id_prev>) 

As previously mentioned, the information contained in the 
log file is the id of the operation, the formal definition of the 
operation, the current version of LOINC in which the change 
occurs, and the id of the previous operation performed on the 
same entity. The <id_prev> attribute can be used to trace the 
history of changes to a particular entity, including a concept. 
Thus, if the referenced concept in an application is different 
from time to time, the record in the log file can be used to 
identify the reason of the differences. 

VII. ALGORITHMS TO IDENTIFY CHANGE OPERATIONS 

Each LOINC release includes several files related to the 
changes that occur in LOINC. Identification of change 
operation can be conducted by checking the entries in each file. 
Identification is needed so that change operations can be found 
easily. This section gives detailed description of the files that 
can be used to identify operations and the algorithms to 
identify the operations. 

The main file related to changes in LOINC is the 
LOINC_updates file. This file lists the changes that occur in 
that particular LOINC version. Each record in the list consists 
of the following columns: 

 RecType, is the column that contains the type of change 
that occurs in a LOINC concept. In this column, there are 
only 3 types of values, namely BEFORE, CHANGED and 
ADD. The record that contains BEFORE is paired with the 
record that contains CHANGED, which means that the two 
records represent the concept before and after it is changed. 
The record that contains ADD shows that a concept is 
added to LOINC ontology. 

 LOINC_NUM, is a column that shows the code of the 
concept that is changed or added. 

 COMPONENT, is a column that shows the component 
value of the concept. 

 PROPERTY, is a column that shows the property value of 
the concept. 

 TIME_ASPCT, is a column that shows the time value of 
the concept. 

 SYSTEM, is a column that shows the system value of the 
concept. 

 SCALE_TYP, is a column that shows the scale value of the 
concept. 

 METHOD_TYP, is a column that shows the method value 
of the concept. 

 CLASS, is a column that shows the class value of the 
concept. 

In the list, a change is indicated by the BEFORE and 
CHANGED record pairs for a particular concept. Changing to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

552 | P a g e  
www.ijacsa.thesai.org 

dimensions is indicated by the differences between the values 
of the corresponding dimension column for the pair of records. 
For example, one of the concepts included in file 
LOINC_2.52_2.54_Updates.csv is the concept with 
LOINC_NUM 10232-7. The value of the SYSTEM dimension 
in the BEFORE record is Aortic root, while the SYSTEM 
dimension value in the AFTER record is Aorta.root. Based on 
this information, a change operation has taken place. In this 
case, the change operation that occurs is UpdRelationship. 
Originally concept 10232-7 relates to system Aortic root with 
relationship type rsy, while in the new release, the concept 
relates to system Aorta.root. Thus, the formal definition of the 
operation is UpdRelationship((10232-7, rsy, Aortic root), 

Aorta.root, OL). 

RecType with ADD value indicates the addition of a new 
concept into LOINC. Each dimension value of the new concept 
is set accordingly, as shown in the entry of the corresponding 
dimension column. Hence, when a new concept is added,  there 
are 6 AddRelationship operations that must be defined to 
represent the relationships between the new concept and each 
dimension. Furthermore, the UpdConceptClass operation is 
also defined to set the Class attribute of the new concept. For 
example, the value of each column in one of the records in file 
LOINC_2.52_2.54_Updates.csv is as follows: ADD; 60738-2; 

Intraluminal; Pres; Pt; Esophagus; Qn; -; GI. Based on the 
record, a new concept, i.e. concept 60738-2, is added to the 
ontology, with Intraluminal as component dimension, Pres as 
property dimension, Pt as time dimension, Esophagus as 
system dimension, Qn as scale dimension, no value for method 
dimension, and GI as class attribute value. Using the definition 
of change operations in Section V, there are 7 operations exist 
as follows. 

 AddConcept (60738-2, OL), which is an operation to add a 
new concept with code 60738-2 into ontology. 

 AddRelationship ((60738-2, rco, Intraluminal), OL), which 
is an operation to add a relationship that connects concept 
60738-2 with the component dimension of the value 
Intraluminal. This means that the component of the 
concept is Intraluminal. 

 AddRelationship ((60738-2, rp, Pres), OL)), which is an 
operation to add a relationship that connects concept 
60738-2 with the property dimension of the value Pres. 
This means that the property of the concept is Pres. 

 AddRelationship ((60738-2, rt, Pt), OL)), which is an 
operation to add a relationship that connects the concept 
60738-2 with the time dimension of the value Pt. This 
means that the time of the concept is Pt. 

 AddRelationship ((60738-2, rsy, Esophagus), OL)), which 
is an operation to add a relationship that connects the 
concept of 60738-2 with the system dimensions of the 
value Esophagus. This means that the system of the 
concept is Esophagus. 

 AddRelationship ((60738-2, rsc, Qn), OL)), which is an 
operation to add a relationship that connects the concept 
60738-2 with scale dimensions of the value Qn. This 
means that the scale of the concept is Qn. 

 UpdConceptClass (60738-2, GI, OL)), which is an 
operation to set the value of the class attribute value of the 
concept to GI. 

In this section, 3 algorithms are presented, i.e. the algorithm 
to identify the type of change operation, the algorithm to define 
relationship operations, and the algorithm to define concept 
addition operations. The algorithms are presented in Fig. 1, 
Fig. 2, and Fig. 3, respectively. These algorithms are based on 
the fact that there are only 7 dimensions or attributes associated 
with the concept in the LOINC_Updates file. The related 
operations are UpdRelationship (operation to change 
relationship), AddConcept (operation to add new concept to 
LOINC), and UpdConceptClass (operation to update the value 
of class attribute). 

The first algorithm shown in Fig. 1 shows the steps to 
identify the type of change operation that occurs based on the 
entry (record) in the LOINC_Updates file. If the value of the 
Rectype is BEFORE, it means there is a change in the value of 
dimensions or concept attributes, hence, the Update procedure 
is called with arguments: LOINC_NUM (concept code), 
BEFORE (the first of the pair record with the Rectype value of 
BEFORE), and CHANGED (the second of the pair record with 
the Rectype value of CHANGED, i.e. the record next after the 
BEFORE record). If the value of the RecType is ADD, which 
means that there is an addition of a concept, the Add procedure 
is called with arguments: LOINC_NUM (concept code) and 
ADD (the corresponding record with the Rectype value of 
ADD). The result of this algorithm is the identification of the 
types of operations that occur in a concept. 

Fig. 2 shows the algorithm that is used to define operations 
related to relationship change. This algorithm is called if there 
is a pair of records with the RecType values of BEFORE and 
CHANGED found in the LOINC_Updates file. There are 7 
possible operations that can be identified and defined, which 
consist of 6 UpdRelationship operations, each of which is for 
different concept dimension, and 1 UpdClass operation for the 
class attribute on the concept. For each operation, an update of 
the corresponding value is carried out. After that, an entry was 
added to Ov log that recorded the change operation in the 
corresponding concept, accompanied by information about the 
formal definition of the operation, the operation id, the current 
version of LOINC that contains the change, and the version of 
LOINC in which the same concept was changed. The result of 
this algorithm is that all the corresponding operations have 
been defined, and the change operation records are listed in the 
Ov log file. 

ALGORITHM 1: CHANGE OPERATION IDENTIFICATION  

IdentifyChange() 

{ 

     if exist(LOINC_NUM) then 

              if RecType = BEFORE then  

       Update(LOINC_NUM, BEFORE, CHANGED) 

              else if RecType = ADD then 

                     Add(LOINC_NUM, ADD) 

               endif 

       endif 
} 

Fig. 1. Algorithm to Identify the Type of Operation. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

553 | P a g e  
www.ijacsa.thesai.org 

ALGORITHM 2: UPDATE RELATIONSHIP OPERATION  

Update(LOINC_NUM, BEFORE, CHANGED) 

{ 

if COMPONENT(BEFORE) <> COMPONENT(CHANGED) then 

            (LOINC_NUM, rco, COMPONENT(CHANGED)) ← 

(LOINC_NUM, rco, COMPONENT(BEFORE)) 

           Append(Ov, <id, UpdRelationship (LOINC_NUM, (LOINC_NUM, 

rco, COMPONENT(CHANGED)), OL), current version, id_prev>) 

endif  

if PROPERTY(BEFORE) <> PROPERTY(CHANGED) then 

           (LOINC_NUM, rp, PROPERTY(CHANGED)) ← (LOINC_NUM, rp, 

PROPERTY(BEFORE)) 

           Append(Ov, <id, UpdRelationship (LOINC_NUM, (LOINC_NUM, rp, 

PROPERTY(CHANGED)), OL), current version, id_prev>) 

endif 

if TIME(BEFORE) <> TIME(CHANGED) then 

           (LOINC_NUM, rt, TIME(CHANGED)) ← (LOINC_NUM, rt, 

TIME(BEFORE)) 

           Append(Ov, <id, UpdRelationship (LOINC_NUM, (LOINC_NUM, rt, 

TIME(CHANGED)), OL), current version, id_prev>) 

endif  

if SYSTEM(BEFORE) <> SYSTEM (CHANGED) then 

           (LOINC_NUM, rsy, SYSTEM (CHANGED)) ← (LOINC_NUM, rsy, 

SYSTEM(BEFORE)) 

           Append(Ov, <id, UpdRelationship (LOINC_NUM, (LOINC_NUM, 

rsy, SYSTEM (CHANGED)), OL), current version, id_prev>) 

endif 

if SCALE(BEFORE) <> SCALE (CHANGED) then 

           (LOINC_NUM, rsc, SCALE (CHANGED)) ← (LOINC_NUM, rsc, 

SCALE (BEFORE)) 

           Append(Ov, <id, UpdRelationship (LOINC_NUM, (LOINC_NUM, 

rsc, SCALE (CHANGED)), OL), current version, id_prev>) 

endif  

if METHOD(BEFORE) <> METHOD(CHANGED) then 

           (LOINC_NUM, rm, METHOD (CHANGED)) ← (LOINC_NUM, rm, 

METHOD (BEFORE)) 

            Append(Ov, <id, UpdRelationship (LOINC_NUM, (LOINC_NUM, 

rm, METHOD (CHANGED)), OL), current version, id_prev>) 

endif 

if CLASS(BEFORE) <> CLASS(CHANGED) then 

           class(LOINC_NUM) ← CLASS(CHANGED) 

           Append(Ov, <id, UpdConceptClass(LOINC_NUM, 

CLASS(CHANGED), OL), current version, id_prev>) 

endif 

} 

Fig. 2. Algorithm to Define Operations on Relationships and Class 

Attribute. 

Fig. 3 shows the algorithm for adding a new concept to the 
ontology. This algorithm is called if there is a record with the 

RecType value of ADD found in the LOINC_Updates file. 
Eight operations are identified when a concept is added, i.e. 1 
AddConcept operation, 6 AddRelationship operations, each of 
which is for one concept dimension, and 1 UpdClass operation 
to set the class attribute of the concept. For AddConcept 
operations, a new concept is added to set of concepts C, then 
an entry is added to the Ov log to record the operation. The 
AddConcept operation is always followed by 6 
AddRelationship operations to define the value for each of the 
concept dimension. Thus, there are 6 AddRelationship 
operations, each of which has different relationship type, 
adjusted with the dimension name. In addition, there is an 
UpdClass operation to set the value of the class attribute of the 
concept. For each of these operations, an entry in the log Ov is 
added to record the operation, accompanied by the information 
about the formal definition of the operation, the operation id, 

the current version of LOINC that contains the change. The 
value of id_prev is set to null since the concept is new in the 
ontology, hence, there is no previous change applied to the 
concept. The result of this algorithm is that the AddConcept 
operation and the operations that accompany it are all defined, 
while the records corresponding to the change operations are 
also written to Ov log file. 

ALGORITHM 3: CONCEPT ADDITION OPERATION  

Add(LOINC_NUM, ADD) 

{ 

Add(LOINC_NUM, C) 

Append(Ov, <id, AddConcept(LOINC_NUM, OL), current version, 

id_prev> 

Add((LOINC_NUM, rco, COMPONENT(ADD)), R) 

Append(Ov, <id, AddRelationship((LOINC_NUM, rco, 

COMPONENT(ADD)), OL), current version, id_prev>) 

Add((LOINC_NUM, rp, PROPERTY(ADD)), R) 

Append(Ov, <id, AddRelationship((LOINC_NUM, rp, 

PROPERTY(ADD)), OL), current version, id_prev>) 

Add((LOINC_NUM, rsy, SYSTEM(ADD)), R) 

Append(Ov, <id, AddRelationship((LOINC_NUM, rsy, 

SYSTEM(ADD)), OL), current version, id_prev>) 

Add((LOINC_NUM, rsc, SCALE(ADD)), R) 

Append(Ov, <id, AddRelationship((LOINC_NUM, rsc, 

SCALE(ADD)), OL), current version, id_prev>) 

Add((LOINC_NUM, rt, TIME(ADD)), R) 

Append(Ov, <id, AddRelationship((LOINC_NUM, rt, TIME(ADD)), 

OL), current version, id_prev>) 

Add((LOINC_NUM, rm, METHOD(ADD)), R) 

Append(Ov, <id, AddRelationship((LOINC_NUM, rm, 

METHOD(ADD)), OL), current version, id_prev>) 

class(LOINC_NUM) ← CLASS(ADD) 

Append(Ov, <id, UpdConceptClass(LOINC_NUM, CLASS(ADD), 

OL), current version, id_prev>) 

} 

Fig. 3. Algorithm to Define Concept Addition Operations. 

VIII. EVALUATION AND DISCUSSION 

The three algorithms described in Section VII have been 
implemented in C++. To evaluate the methods, including the 
formal definition of the change operations, an evaluation has 
been carried out by applying them to LOINC Release of June 
2017. For this reason, LOINC_2.52_2.54_Updates.csv is used 
which contains changes that occur in that release. The 
following is the detailed description of the data contained in the 
file, along with the calculation of the number of operations that 
should be identified. 

 Number of records: 9001 

 Number of record pairs with RecType of BEFORE and 
CHANGED: 3154 

Among the 3154 record pairs, each produces one or more 
UpdRelationship operations or UpdConceptClass operation. 
The total number of operations is 3220, with details as follows, 
which is also the target number of change operation 
identification: 

a) 579 UpdRelationship operations with relationship 

type of rco. 

b) 176 UpdRelationship operations with relationship 

type of rp. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

554 | P a g e  
www.ijacsa.thesai.org 

c) 2067 UpdRelationship operations with relationship 

type of rt. 

d) 134 UpdRelationship operations with relationship 

type of rsy. 

e) 4 UpdRelationship operations with relationship type 

of rsc.  

f) 251 UpdRelationship operations with relationship 

type of rm. 

g) 9 UpdConceptClass operations. 

 Number of records with RecType of ADD: 2693 

Based on Section VII, the target number of operations that 
must be identified is as follows: 

a) 2693 AddConcept operation. 

b) 2693 AddRelationship operations with relationship 

type of rco. 

c) 2693 AddRelationship operations with relationship 

type of rp. 

d) 2693 AddRelationship operations with relationship 

type of rsy. 

e) 2693 AddRelationship operations with relationship 

type of rsc. 

f) 2693 AddRelationship operation with relationship 

type of rt. 

g) 2693 AddRelationship operations with relationship 

type of rm. 

h) 2693 UpdConceptClass operations. 

 Total number of update/addition operations: 22071. 

Table 1 lists the operation identification results for each of 
the operation types. From the table, it can be seen that the 
algorithms can identify operations with a success rate of 100%. 
Hence, it can be concluded that the algorithms have been 
compiled correctly and can be used to identify changes to 
LOINC using the files available in each LOINC release. 

Other than the identification of change operations, the 
algorithms also produce a log file that can show a history of 
changes to a particular concept. This file can be used to track 
changes that occur during the life of a concept. Since in this 
research there is no process of identifying change operations in 
previous releases (due to data limitations), evaluation to the log 
files related to the history of a concept cannot be performed. 
However, log files can still be used in the future because the 
change operations listed in the log file will accumulate. Hence, 
the changes in the binding/reference of a term in an application 
to a LOINC concept can be traced back to the sequence of 
changes starting from LOINC Release in June 2017. 

TABLE I.  RESULT OF OPERATION IDENTIFICATION USING THE 

PROPOSED ALGORITHMS 

Type of operation 

The 

number of 

operations 

The number of 

successful 

identifications 

Percentage of 

successful 

identification 

UpdRelationship of 

relationship type rco 
579 579 100% 

UpdRelationship 

of relationship type 

rp 

176 176 100% 

UpdRelationship 

of relationship type 

rt 

2067 2067 100% 

UpdRelationship 

of relationship type 

rsy 

134 134 100% 

UpdRelationship 

of relationship type 

rsc 

4 4 100% 

UpdRelationship 

of relationship type 

rm 

251 251 100% 

AddClass 2693 2693 100% 

AddRelationship 

of relationship type 

rco 

2693 2693 100% 

AddRelationship 

of relationship type 

rp 

2693 2693 100% 

AddRelationship 

of relationship type 

rt 

2693 2693 100% 

AddRelationship 

of relationship type 

rsy 

2693 2693 100% 

AddRelationship 

of relationship type 

rsc 

2693 2693 100% 

AddRelationship 

of relationship type 

rm 

2693 2693 100% 

UpdConceptClass 2702 2702 100% 

Total operations                 22071 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 1, 2019 

555 | P a g e  
www.ijacsa.thesai.org 

IX. CONCLUSION 

In this paper, a formal representation of change operations 
in the evolution of LOINC has been presented. Operations can 
be classified into 3, namely addition, change/update, and 
deletion, and each operation type has different target of 
entities. The classification of change operations is based on the 
changes that occur in the release of LOINC. In addition, formal 
representation of change operations is presented. Algorithms to 
identify each change operation have been implemented using 
the files related to changes that are included in the release of 
LOINC. 

The evaluation result shows that the algorithm can be used 
to identify change operations that occur in the LOINC release 
of June 2017 with 100% success rate. Log files produced from 
the identification of operation changes has been generated to 
keep a history of changes that occur in a particular concept. By 
utilizing this log file, the history of reference to LOINC 
concepts can also be traced back so that information about 
reference changes can be obtained easily. 

For future work, an ontology can be defined to maintain the 
change operations that occur in LOINC. Moreover, algorithms 
for identifying change operations can be completed with 
operations other than AddConcept, AddRelationship, 
UpdRelationship, and UpdConceptClass. These algorithms will 
require the data contained in 2 LOINC versions that are 
released in sequence. In addition, the domain of the ontology 
can also be extended to other ontologies related to biomedical 
field, such as Gene Ontology. 

REFERENCES 

[1] S. Garde, R. Chen, H. Leslie, T. Beale, I. McNicoll, and S. Heard, 

“Archetype-Based Knowledge Management for Semantic 
Interoperability of Electronic Health Records”, Proceedings of MIE 

2009: The XXIInd International Congress of the European Federation 
for Medical Informatics, Sarajevo, Bosnia and Herzegovina, Agust 30 - 

September 2, 2009. 

[2] P. J. Kroth, S. Daneshvari, E. F. Harris, D. J. Vreeman, and H. J. H. 
Edgar, “Using LOINC to link ten terminology standards to one unified 

standard in a specialized domain”, J. Biomed Inform., vol. 45(4), pp. 
674-682, August 2012. 

[3] A. Silberschatz, H.F. Korth, and S. Sudarshan, Database System 
Concepts, 6th ed., McGraw Hill, 2011. 

[4] A.M. Khattak, Z. Pervez, S. Lee, and Y. K. Lee, “After Effects of 

Ontology Evolution”, 5th International Conference on Future 
Information Technology (FutureTech), 2010. 

[5] G. Konstantinidis, F. Giorgos, A. Grigoris, and V. Christophides, “A 

Formal Approach for RDF/S Ontology Evolution”, ECAI 2008, IOS 
Press,  pp. 70-74, 2008. 

[6] A.M. Khattak, K. Latif, and S. Lee, “Change management in evolving 

web ontologies”, Knowledge-Based Systems, vol. 37, pp. 1–18, 2013. 

[7] A.K. Sari, W. Rahayu, and M. Bhatt, “An approach for sub-ontology 
evolution in a distributed health care enterprise”, Information Systems, 

vol. 38(5), pp. 727-744, 2013. 

[8] A. Maedche, B. Motik, and L. Stojanovic, “Managing multiple and 
distributed ontologies on the semantic web”, The VLDB Journal, vol. 

12, pp. 286–302, 2003. 

[9] R. Palma, O. Corcho, A. Gmez-Prez, and P. Haase, “A holistic approach 
to collaborative ontology development based on change management”, 

Web Semantics: Science, Services and Agents on the World Wide Web, 
vol. 9, 2011. 

[10] A. Shaban-Nejad and V. Haarslev, “Bio-medical ontologies maintenance 
and change management”, In: Sidhu A.S., Dillon T.S. (eds) Biomedical 

Data and Applications, Studies in Computational Intelligence, vol 224. 
Springer, 2009. 

[11] M. C. Lin, D.J. Vreeman, C. J. McDonald, and S. M. Huff, “Auditing 

consistency and usefulness of LOINC use among three large institutions 
–Using version spaces for grouping LOINC codes”, Journal of 

Biomedical Informatics, vol. 45 (4), pp. 658-666, 2012. 

[12] D.J. Vreeman, M.T. Chiaravalloti, J. Hook, and C. J. McDonald, 
“Enabling international adoption of LOINC through translation”, Journal 

of Biomedical Informatics, vol. 45 (4) , pp. 667-673, 2012. 

[13] M. Dugas, S. Thun, T. Frankewitsch, and K. U. Heitmann, “LOINC® 
Codes for Hospital Information Systems Documents: A Case Study”, 

Journal of the American Medical Informatics Association, vol. 16 (3), 
pp. 400-403, 2012. 

[14] A. N. Khan, S. P. Griffith, C. Moore, D. Russell, A. C. Rosario Jr., and 

J. Bertolli, “Standardizing Laboratory Data by Mapping to LOINC”, 
Journal of the American Medical Informatics Association, vol. 13 (3), 

pp. 353-355, 2006. 

[15] H. Kim, R. El-Kareh, A. Goel, F. N. U., Vineet, and W. W. Chapman, 
“An approach to improve LOINC mapping through augmentation of 

local test names”, Journal of Biomedical Informatics, vol. 45 (4), pp. 
651-657, 2012. 

[16] J. Davis, R. Studer, and P. Warren, Semantic Web Technologies Trends 
and Research in Ontology-based Systems, John Wiley & Sons, Ltd, 

West Sussex, 2006.   
[17] M. Ehrig, Ontology Alignment: Bridging the Semantic Gap, Semantic 

Web and Beyond Computing for Human Experience, Springer-Verlag 

US, 2007. 

[18] S. Schulz and R. Cornet, “SNOMED CT’s ontological commitment”, in: 
B. Smith (Ed.), ICBO: International Conference on Biomedical 

Ontology, LNCS, National Center for Ontological Research, Buffalo, 
New York, pp. 55–58, 2009. 

[19] M. Klein and N. Noy, “A component-based framework for ontology 

evolution”, In Workshop on Ontologies and Distributed Systems at 
IJCAI-03, Acapulco, Mexico, 2003. 

 

https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=22036696
https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=22036696

