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Abstract—Transmitting sound waves into water, and 

measuring time interval between emission and return of a pulse, 

single beam echo sounder determines the depth of the sea. To 

obtain a bathymetric model representing sea-floor continuously, 

interpolation is necessary to process irregular spaced measured 

points resulting from echo sounder acquisition and calculate the 

depths in unsampled areas. Several interpolation methods are 

available in literature and the choice of the most suitable of them 

cannot be made a priori, but requires to be evaluated each time. 

This paper aims to compare different interpolation methods to 

process single beam echo sounder data of the Gulf of Pozzuoli 

(Italy) for 3D model achievement. The experiments are carried 

out in GIS (Geographic Information System) environment 

(Software: ArcGIS 10.3 and its extension Geostatistical Analyst 

by ESRI). The choice of the most accurate digital depth model is 

made using automatic cross validation. Radial basis function and 

kriging prove to be the best interpolation methods for the 

considered dataset. 
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I. INTRODUCTION 

As reported in literature, interpolation is a process of using 
a discrete set of known data points to construct new data points 
[1, 2, 3, 4]. Data points resulting from experimentations and 
measurements represent the values of a function for a limited 
number of values of the independent variable. Interpolation 
permits to estimate the values of that function for intermediate 
values of the independent variable [5, 6]. 

The concept of spatial interpolation is related to the digital 
terrain model (DTM): introduced by Miller & Laflamme [7] at 
the Photogrammetry Laboratory of the Massachusetts 
Technology Institute, DTM can be defined as a three – 
dimensional representation of a terrain surface consisting of X, 
Y, Z coordinates stored in digital form. This representation can 
be obtained as a vector-based triangulated irregular network 
(TIN) as well as a grid, both displayable in 3D. 

DTM represents the bare ground surface without any 
objects belonging to the built (power lines, buildings and 
towers) and natural (trees and other types of vegetation) [8]. 
When the earth's surface is represented including all objects on 
it, the model is called digital surface model (DSM). Digital 
elevation model (DEM) is often used as a generic term for 
DSM and DTM [9]. In this study, we use DEM as synonymous 
of DTM. 

Data for DEM can be acquired using different techniques, 
i.e. photogrammetry, land surveying, lidar, etc. [10]. 

DEMs are basic in land analysis and management as they 
are directly usable in GIS environment [11]. They are 
fundamental for many applications, i.e. 3D thematic model 
construction [12], assessment of potential groundwater 
vulnerability to pollution [13], assessment of potential dam 
sites [14], landslide hazard [15,16], satellite images ortho-
rectification for useful applications in coastal area studies [17], 
etc. 

Interpolation methods that support DEM generation can be 
used for seabed model. This can be indicated as Digital Depth 
Model (DDM) because describes the variability of the distance 
between the sea surface and sea bottom. In other terms, 
interpolation methods permit to realize a bathymetric model 
that can be defined, according to  International Hydrographic 
Organization (IHO), as „„a digital representation of the 
topography (bathymetry) of the seafloor by coordinates and 
depths‟‟ [18]. Depth data to be processed can be obtained with 
different techniques, i.e. bathymetric survey, nautical map, 
lidar. Similarly to DEM, DDM can be generated using different 
interpolation methods and the choice of the one able to supply 
the most performed model is not banal. 

For this purpose, this study aims to realize a review of 
some existing interpolation methods usable for DDM 
construction. The paper supplies suitable information to select 
the method for DDM generation. Firstly, the single beam echo 
sounder technique to acquire depth data necessary to shape 
seafloor is introduced. Following this, a brief description is 
given for some existing DEM generation methods that can be 
used also for DDM production. Next, the performance of each 
method is evaluated considering a case study concerning the 
Gulf of Pozzuoli (Italy): single beam echo sounder data are 
processed and the accuracy of each method is referred to the 
closeness of interpolated values to measured values. To 
compare the different approaches adopted in this study, cross 
validation is carried out for each model. Finally, we remark the 
importance of the work and suggest the potential applications 
and extensions for future studies. 

II. SOURCE OF DATA 

A. Single Beam Echo Sounder 

Single beam echo sounder permits to determine the depth 
of water by diffusing sound waves into water. The amount of 
time it takes for the sound to travel through the water, spring 
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back the seafloor, and return to the sounder, permits to 
determine the depth of water. Fundamental for this purpose is 
the exact knowledge of the speed of sound in water that is 
variable and dependent on pressure (depth), density, 
temperature and salinity [19,20,21]. For example, the speed of 
sound in water ranges from 1450 to 1498 meters per second in 
distilled water and 1531 m/s in sea water at 20-25 °C [22]. 

International Hydrographic Organization (IHO) has fixed 
the requirements for bathymetric survey, so the necessary 
precision and accuracy of the hydrographic echo sounder are 
defined in IHO special publication S-44 [18]. 

Hydrographic echo sounders are usually dual frequency: a 
low frequency pulse (normally around 24 kHz) can be 
transmitted simultaneously with a high frequency pulse 
(normally around 200 kHz). Because these frequencies are 
discrete, there is not interference between the two return 
signals. Dual frequency echo sounding produces positive 
effects, such as the facility to recognize a sea grass (Posidonia 
Oceanica) layer. The high frequencies are appropriate in 
shallow water [23]. The lower frequencies are suitable in 
deeper water because less susceptible to attenuation in the 
water column [24]. 

Most hydrographic operations use a 200 kHz transducer, 
which is suitable for inshore work up to 100 meters in depth. 
Deeper water requires a lower frequency transducer as the 
acoustic signal of lower frequencies is less susceptible to 
attenuation in the water column. Commonly used frequencies 
for deep water sounding are 33 kHz and 24 kHz. 

The beam width of the transducer determines the resolution 
of the data, so a fine one is preferable. This aspect is 
fundamental for hydrographic survey in deep water, because 
the resultant footprint of the acoustic pulse can become too 
much great once it reaches a far object. 

Single beam echo sounder must be calibrated by a bar 
check for correct determination of the speed of sound in the 
water column [25]. The bar check consists of immersing a flat 
plate below the echo sounder transducer, measuring the depths 
at points of  known depths below the surface and comparing 
the actual and measured depths. The sound velocity in the echo 
sounder is modified until the measured depth is equal the 
known depth [26]. Finally, the echo sounder is fixed with the 
average sound velocity over the water column. 

A bar check should be conducted at least daily, and 
whenever there is a change of survey area during the day, to 
ensure consistent data quality [27]. Likewise, the use of bar 
check is necessary when any SBES components are modified 
or replaced on the vessel. 

B. Study Area and Pre-Elaboration of Depth Data 

For this study, 2023 depth points resulting from single 
beam echo sounder survey of the Gulf of Pozzuoli, are used for 
3D bathymetric models construction. Depth measurement data 
are kindly provided by the Italian Hydrographic Office (Istituto 
Idrografico della Marina) and present decimeter accuracy. The 
interested area is reported in Fig. 1. It extends within the 
following UTM/WGS84 plane coordinates - 33T zone: E1 = 
423,630 m, E2 = 428,320 m, N1 = 4,513,461 m, N2 = 4,518,761 
m. Depth values range between -9.7 m and -118.1 m. 

Because the sample points are fairly evenly distributed 
along the ship routes and these are not very far each from 
others, the distribution of depth values is quite uniform, as it is 
shown in Fig. 2. 

Depth data are available in txt format and converted in 
vector file (shp) using the ESRI software ArcGIS 10.3 [28]. 
The extension named “Geostatistical analyst” and available 
within the above mentioned program, is used to generate 
bathymetric models of the study area. 

 

Fig. 1. The Gulf of Pozzuoli: in Blue the Area Covered by Single Beam 

Echo Sounder Data. 
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Fig. 2. Particular of the Distribution of the Depth Points. 

III. INTERPOLATION METHODS 

In literature different interpolation methods are available 
and their application to the same data can produce different 
results. Therefore, it is necessary to compare these methods 
and choice the most performed one. 

The interpolation methods are founded on the principle of 
spatial autocorrelation, which is well represented by Tobler‟s 
first law of geography: "Everything is related to everything 
else, but near things are more related than distant things" [29, 
30]. 

Methods of interpolation are generally classified into two 
categories: local and global methods. In the local methods, the 
interpolated value is affected only by the values at nearby 
points from the initial data set, while in the global methods, 
each interpolated value is affected by all of the data [31]. For 
local methods, a specified number of points, or all points 
within a specified radius, are used to determine the output 
value of each location. In Fig. 3, the research of the 
neighbouring measured points using a specified radius is 
shown. 

Another way to classify interpolation methods is to 
distinguish them as either exact or approximate methods, 
according to their characteristic of preserving or not preserving 
the original sample point values  on the inferred surface [32]. 

 

Fig. 3. The Research of the Neighbouring Measured Points (Source: ArcGIS 

Pro Help). 

This section briefly presents the different interpolation 
methods used in this study. For all local interpolators, to 
determine the output value for each location, four sectors are 
used, with maximum number of points equal to 15 neighbours, 
and minimum equal to 10 for each sector. 

A. The IDW method 

Inverse Distance Weighting (IDW) is a deterministic 
interpolation method, so the resulting surface must pass 
through each measured sample value. This method is based on 
the assumption that closer values are more related than further 
values. It uses measured values surrounding an unmeasured 
location to predict its value [32]. 

Interpolated points are estimated based on their distance 
from known values: for consequence, points that are adjacent 
to known values are more influenced than points that are 
distant [33]. In other terms, the values of the neighbouring 
measured points are weighted by the inverse of the distance at 
the calculated [34]. As a result, as the distance increases, the 
weights decrease rapidly [35]. 

The interpolation function is represented by the following 
formula: 

     

∑
  

 
 
 

 
   

 

 
 
 

               (1) 

Where 

Zx,y = estimated value at the position (x,y) of the grid, 

zk = a neighbouring data point value, 

N = the number of neighbouring points, 

dk = the distance between the data point and the point being 

interpolated, 

P = a positive-power parameter. 

In this study, IDW with power equal to 2 is applied. 
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B. Radial Basis Function (RBF) 

Radial basis functions (RBFs) are a series of exact 
interpolation techniques, so the surface passes through the data 
values. 

There are different basis functions, such as: completely 
regularized spline (RBF-CRS), spline with tension (RBF-
SwT), thin-plate spline (RBF-TPS), multiquadric function 
(RBF-MF), inverse multiquadric function (RBF-IMF). Each 
basis function produces a different interpolation surface [36]. 

A RBF is conceptually similar to an elastic membrane that 
fits on the measured sample values and minimizes the total 
curvature of the surface; the selection of the basis function 
determines how the rubber membrane fits between the values 
[37,38]. 

In this study, all the above five mentioned RBFs are 
applied. 

C. Global Polynomial Interpolation 

Global polynomial interpolation (GPI) is an approximate 
method that fits a smooth surface defined by a mathematical 
function (a polynomial) to the input sample points [39]. 

The user can choice the order of the polynomial that ranges 
from a first-order to higher order. The interpolation function 
can be written as: 

  ∑ ∑     
  
   

  
                      (2) 

If n is the order of the equation, the following relations are 
valid: 

                     (3) 

                    (4) 

                     (5) 

The values of the coefficients ai,j are determined using the 
known elevation values in the sample points. 

The predictive surface is typically generated by using a 
least-square regression fit that minimizes the squared 
differences between the surface and measured points [40]. The 
estimation of the coefficients permits to determine the value of 
the polynomial function at any point within the map area [41]. 

The polynomial can be expanded to any desired degree, 
although there are computational limits because of rounding 
error. In this study, the orders 1, 2 and 3 are considered. As we 
all know, a first order polynomial (linear) corresponds to a flat 
plan (no bend). A second-order polynomial (quadratic) allows 
for one bend, a third-order (cubic) for two bends [39]. 

D. Local Polynomial Interpolation 

Local polynomial interpolation (LPI) is similar to GPI, 
except that it uses a local subset defined by a window rather 
than using the entire dataset [42]. The window is shifted across 
the map area and the surface value at the centre of the window 
is estimated. The size of this window must be large enough to 
include a reasonable number of data point [43].  For example, a 
second order polynomial requires at least six points, a third 
order ten points, and so on. 

LPI is more flexible than GPI, but requires to define more 
parameters [42], i.e. the neighborhood shape, maximum and 
minimum number of points, sector configuration [44]. 

E. Kriging 

Kriging originated in the field of mining geology as is 
named after Danie Gerhardus Krige, a mining engineer born in 
Bothaville, Free State, South Africa, in 1919 [45]. 

Similarly to IDW, Kriging weights the surrounding 
measured values to estimate the value at an unknown point. 
Unlike IDW and other methods, Kriging uses the spatial 
correlation between sampled points to estimate the value at an 
unknown point: the spatial arrangement among the measured 
points, rather than a presumed model of spatial distribution, is 
used for interpolation; in addition to that, it supplies estimates 
of the uncertainty surrounding each interpolated value [46]. 

In other terms, in Kriging, the weights are founded not only 
on the distance between the measured points and the estimate 
location, but also on the overall spatial organization of the 
empirical observations; this can be introduced using the spatial 
autocorrelation [47]. 

The spatial correlation between the measurement points can 
be computed by means of the semi-variance function. It is half 
the variance of the differences between all possible points 
spaced a constant distance apart: 

  
 

     
∑ [             ] 

    
              (6) 

Where 

N(h) is the number of pairs of measurement points with 
distance h apart; 

z(ui) is the  value at location ui, 

z(ui+h) is the value at location ui+h 

As points are compared to increasingly distant points, the 
semivariance increases; in case of strong spatial dependence, 
points that are closer together will present a smaller 
semivariance [48]. 

A variogram is introduced as a graphical representation of 
the covariance calculated between each pair of points in the 
sampled data and plotted against the distance. Because half the 
variance is plotted, the resulting graphical representation is 
sometimes called “semivariogram”. 

Usually, to speed up the procedure, the pairs are gathered 
into lag bins. For example, the average semivariance is 
calculated for all pairs of points that present distance between 
20 meters and 30 meters. 

The empirical semivariogram plotting the observed values 
is substituted with an acceptable semivariogram model that 
best fits the data. In this way, the kriging algorithm can access 
to semivariogram values for lag distances other than those used 
in the empirical semivariogram [49]. 

There are several Variogram models available to fit the data 
[50,51], i.e. linear, gaussian, exponential, stable, etc. 
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Fig. 4. The Semi-Variogrm Obtained with Ordinary Kriging Application to 

Bathymetric Data. 

Different types of kriging are present in literature, and 
interested readers could refer to several papers for detailed 
description of them, e.g. [52, 53]. In this study ordinary kriging 
(OK), simple kriging (SK) and universal kriging (UK) are 
considered, using in all cases stable variogram model because 
it produces the best results. The resulting semi-variogram 
obtained with ordinary kriging, is shown in Fig. 4. 

IV. COMPARISON OF METHODS 

The accuracy of an interpolation method is usually tested 
analyzing the closeness of interpolated values to accepted 
values. In the case of DDM, measured depths can be  
considered the accepted values. However, the analysis should 
be carried out on Check Points (CPs) that are not listed in the 
dataset used for interpolation, and thus the amount of 
information to be used for DDM generation would be depleted. 
In other terms, the lack of knowledge about the depth in some 
points used as CPs would limit the accuracy of the resulting 
model in these points. 

For this reason, the best approach to evaluate the accuracy 
of DDM is to use Cross Validation (CV). Different methods 
are available in literature for CV application [54]. 

One of the possible approach for CV is the leave-one-out 
method: each sampling point is removed from the dataset and 
the other points are used to interpolate the depth value at its 
location; the residual is calculated between measured and 
interpolated values before moving to the next point [55,56,57].   
Rather than removing all the points, once at time, a subset of 
the initial database can be removed in turn [58].   For this 
study, the leave-one-out method is applied. The overall 
performance of the interpolation methods can be avaluated 
using statistical terms of the differences between the original 
and interpolated points, such as mean, minimum, maximum, 
mean absolute, Root Mean Square Error (RMSE), and other 
factors [59].   RMSE is expressed as: 

     √∑ (          
      )

  
   

 
             (7) 

Where: 

N is the number of the depth points; 

Zi (x,y) is the measured depth at the location i(x,y); 

  
       is the interpolated depth at the same location i(x,y). 

In this study, fifteen interpolation methods are applied. In 
Table I, minum, maximum, mean and RMSE of the residuals 
calculated by CV for each method is reported. 

By comparing the interpolation methods applied in this 
study, it is possible to note some significant differences as well 
as analogies in the output results for each statistic parameter. 
The range of minimum values (in m) goes from –44.304 (GPI-
1) to −8.991 (SK), while the range of maximum values (in m) 
goes from 5.054 (RBF) to 22.352 (GPI-1).  The range of mean 
values (in m) goes from -0.038 (IDW) to 0.536 (SK), while the 
range of RMSE goes from 13.682 to 0.608 (RBF-SwT and 
RBF-TPS). According to all indicators, four methods tend to be 
equal in terms of better performance: RBF-SwT, RBF-TPS, 
OK and UK. 

Generally, RBF interpolation methods tend to produce 
good results for gently varying surface: they are inappropriate 
when large changes in the depth values occur within short 
distances and/or when the sample data are affected by 
considerable measurement error or uncertainty [36]. The area 
considered in this study is free of wide variations in the 
morphology and the depth measurements are sufficiently 
accurate, so RBF methods produce excellent results. 

The appropriateness of Kriging approach for bathymetry 
representation and its better performance that other methods 
such as IDW [60] are confirmed in this study. 

As is to be expected, GPIs give the worst outcomes. As 
evidenced by other performing methods, the study area 
presents a morphology that is unlike plane or second or third 
order surface, so the results of GPIs cannot be satisfactory. 

One of the most performed model, resulting from ordinary 
kriging application, is shown in Fig. 5 (2D visualization) and 
Fig. 6 (3D visualization). 

TABLE. I. STATISTICAL TERMS OF THE RESIDUALS SUPPLIED BY CROSS 

VALIDATION 

Interpolation 

method 

Statistical terms of the residuals 

Min (m) Max (m) Mean (m) RMSE (m) 

IDW -12.982 6.251 -0.038 1.517 

RBF - CRS -14.707 9.538 -0.010 1.201 

RBF - SwT -9.313 5.054 0.004 0.608 

RBF - TPS -9.313 5.054 -0.003 0.608 

RBF - MF -9.381 7.372 -0.009 0.801 

RBF - IMF -9.449 7.934 -0.007 0.876 

GPI-1 -44.304 22.352 0.006 13.682 

GPI-2 -35.367 17.129 0.002 5.840 

GPI-3 -30.502 12.297 -0.001 4.350 

LPI-1 -9.347 5.198 0.058 0.735 

LPI-2 -9.272 5.809 0.006 0.757 

LPI-3 -9.197 5.667 -0.006 0.748 

OK -9.335 5.272 0.027 0.724 

SK -8.991 8.006 0.536 1.649 

UK -9.332 5.272 0 0.717 
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Fig. 5. One of the Most Performed Model (Resulting from Ordinary Kriging 

Application) in 2d Visualization. 

 

Fig. 6. 3D Visualization of the Model Shown in Fig. 5. 

V. CONCLUSION 

The analysis presented here illustrates the performance of 
spatial interpolation methods for bathymetry modelling. 
Because every method gives a different output representation, 
the main challenge is to produce the most accurate model 
based on the available data. This goal can be achieved by 
comparing different methods. In this study, 15 methods are 
tested on 2023 depth points resulting from single beam echo 
sounder survey of the Gulf of Pozzuoli. CV leave-one-out is 

used to analyze the performance of each interpolation methods: 
statistical terms of the differences between measured and 
interpolated points permit to compare the considered methods. 

RBF-SwT, RBF-TPS, OK and UK present the better 
performance, GPI-1, GPI-2 and GPI-3 the worst. The positive 
results of some interpolation methods find easy explanations: 
they are due to the quite regular distribution and sufficiently 
accurate measurement of the initial points for the RBF 
methods, and to the greater interpretative capacity of the 
stochastic approach for kriging methods. 

 The results obtained in this study remark that the quality of 
a DDM is related to the choice of an appropriate interpolation 
method in order to fit the dataset, according to other studies on 
those aspects  [11,34,42]. However, single beam echo sounder 
survey permits the availability of data that are not completely 
random: depth points are quite regularly distributed along the 
ship routes and that eases the interpolation process. 
Nevertheless, some factors such as the distance between two 
nearby ship routes and seabed morphology have an important 
influence on the accuracy of the chosen method. 

Concerning the future developments of this work, further 
studies will be focused on the possibility to integrate data from 
different bathymetry survey in order to increase the number of 
available depth values and to evaluate the relationship between 
point density and model accuracy. In addition, we will be 
mainly focused on the relationship between interpolation 
methods and seabed morphology. 

ACKNOWLEDGMENT 

The research is supported by University of Naples 
“Parthenope”. We wish to thank the Italian Hydrographic 
Office (Istituto Idrografico della Marina) for providing the 
data. We also like to thank the technical staff of our 
Department for their contribution to this project; particularly, 
special thanks should be given to Mr. Mariano Rovito 
(Laboratory of Topography and Photogrammetry) and 
Ferdinando Sposito (Laboratory of Geomatica, Remote sensing 
and GIS), for their valuable technical support to this project. 

REFERENCES 

[1] Z. Zhan, Y. Fu, R. J. Yang, Z. Xi, Z., and L. Shi, “A Bayesian inference 
based model interpolation and extrapolation,” SAE International journal 
of materials and manufacturing, 5(2), pp. 357-364, 2012. 

[2] K. Wang, “A study of cubic spline interpolation,” InSight: Rivier 
Academic Journal, 9(2), 2013. 

[3] P. P. Shingare, and M, S. S, Kale, “Review on digital elevation model,” 
International Journal of Modern Engineering Research (IJMER), 3(4), 
pp. 2412-2418, 2013. 

[4] A. Barac, Automatic conversion of scanned sea charts into 3D models 
(Master's thesis), 2012. 

[5] J. Stoer, and R. Bulirsch, Introduction to numerical analysis, Vol. 12, 
Springer Science & Business Media, 2013. 

[6] S. D. Conte, and C. De Boor, Elementary numerical analysis: an 
algorithmic approach, SIAM, Philadelphia (USA), 2017. 

[7] C. L. Miller, and R. A. Laflamme, “The digital terrain model theory and 
application,” Photogrammetric Engineering, Vol. 24 (Issue 3), pp- 433–
442, 1958. 

[8] Stilla, U., and Soergel, U. “Reconstruction of buildings in SAR imagery 
of urban areas,” in Urban remote sensing (pp. 47-67). Taylor & Francis, 
2014. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 10, 2019 

12 | P a g e  

www.ijacsa.thesai.org 

[9] C. Hirt, “Digital terrain models,” in Encyclopedia of Geodesy, 1-6, DOI 
10.1007/978-3-319-02370-0_31-1, Springer International Publishing, 
Switzerland, 2014. 

[10] Z. Li, Q. Zhu, and C. Gold, Digital terrain modeling: principles and 
methodology, CRC Press, Boca Raton, FL, 2005. 

[11] G. Garnero, and D.Godone, “Comparisons between different 
interpolation techniques,” in International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 5, 
W3, 2013. 

[12] P. Maglione, C. Parente, R. Santamaria, and A. Vallario, “3D thematic 
models of land cover from DTM and high-resolution remote sensing 
images WorldView-2,” Rendiconti Online della Società Geologica 
Italiana, Vol. 30:33-40, 2014. 

[13] N. A. Gesim, N. A., and T. Okazaki, “Assessment of Groundwater 
Vulnerability to Pollution using DRASTIC Model and Fuzzy Logic in 
Herat City, Afghanistan,” IJACSA - International Journal of Advanced 
Computer Science and Applications, 9(10), pp. 181-188, 2018. 

[14] A. Rasooli, and D. Kang, “Assessment of potential dam sites in the 
Kabul River Basin using GIS,” IJACSA - International Journal of 
Advanced Computer Science and Applications, Vol. 6, No. 2, 2015. 

[15] M. C. Spreafico, L. Perotti, F. Cervi, M. Bacenetti, G. Bitelli, V. A. 
Girelli, E. Mandanici, M. A. Tini, and L. Borgatti, “Terrestrial Remote 
Sensing techniques to complement conventional geomechanical surveys 
for the assessment of landslide hazard: The San Leo case study (Italy),” 
European Journal of Remote Sensing, 48(1), pp. 639-66., 2015. 

[16] K. Freeborough, C. Dashwood, D. D. Doce, G. Jessamy, S. Brooks, H. 
Reeves, and S. Abbott, “A national assessment of landslide hazard from 
Outside Party Slopes to the rail network of Great Britain,” Quarterly 
Journal of Engineering Geology and Hydrogeology, qjegh2018-029, 
2018. 

[17] P. Maglione, C. Parente, and A. Vallario, “High resolution satellite 
images to reconstruct recent evolution of domitian coastline,” American 
Journal of Applied Sciences, 12(7), pp. 506-515, 2015. 

[18] International Hydrographic Organization (IHO), IHO Standards for 
Hydrographic Surveys. 5th edition, International Hydrographic Bureau, 
Monaco, Special Publication No: 44, 2008. 

[19] C.T. Chen, and F. J Millero, "Speed of sound in seawater at high 
pressures," The Journal of the Acoustical Society of America, vol. 62, 
no. 5, pp. 1129-1135, 1977. 

[20] R. Urick, Principles of Underwater Sound, McGraw-Hill, 1983. 

[21] F. J. L. Ribeiro, A. C. P. Pedroza, and L. H. M. K. Costa, “Deepwater 
monitoring system using logistic-support vessels in underwater sensor 
networks,” in The 21st International Offshore (Ocean) and Polar 
Engineering Conference-ISOPE , Vol. 2, pp. 327-333, 2011. 

[22] Nichy Du, “Speed of Sound in Water,” in The Physics Factbook – 
Hypertextbook,2000,https://hypertextbook.com/facts/2000/NickyDu.sht
ml. 

[23] F. Giordano, G. Mattei, C. Parente, C., F. Peluso, and R. Santamaria, 
“Integrating sensors into a marine drone for bathymetric 3D surveys in 
shallow waters”. Sensors, 16(1), 41, 2016. 

[24] P Barr, F. J., and Sanders, J. I. “Attenuation of water-column 
reverberations using pressure and velocity detectors in a water-bottom 
cable,” in SEG Technical Program Expanded Abstracts 1989 (pp. 653-
656). Society of Exploration Geophysicists, 1989. 

[25] The  International Federation of Surveyors (FIG), Publication 56 - 
Guidelines for the Planning, Execution and Management of 
Hydrographic Surveys in Ports and Harbours, Copenhagen, Denmark, 
2010 

[26] Ferreira, H., Almeida, C., Martins, A., Almeida, J., Dias, N., Dias, A., 
and Silva, E. “Autonomous bathymetry for risk assessment with ROAZ 
robotic surface vehicle,” in Oceans 2009-Europe (pp. 1-6). Ieee. 

[27] Canadian Hydrographic Service, Hydrographic survey management 
guidelines, June 2013, Edition 2, 2009. 

[28] Esri, ArcGIS 10.3, Redlands, CA, USA, 2015. 

[29] W. R. Tobler, “A computer movie simulating urban growth in the 
Detroit region,” Economic Geography, Vol. 46, pp. 234–40, 1970. 

[30] H. J. Miller, “Tobler's first law and spatial analysis,” Annals of the 
Association of American Geographers, 94(2), pp. 284-289, 2004. 

[31] C. Özkan, “Surface interpolation by adaptive neuro-fuzzy inference 
system based local ordinary kriging,” in Asian Conference on Computer 
Vision, pp. 196-205, Springer, Berlin, Heidelberg, January 2006, 

[32] N. S. N. Lam, “Spatial interpolation methods: a review,” The American 
Cartographer, 10(2), pp. 129-150, 1983. 

[33] Bartier, P. M., and Keller, C. P.. Multivariate interpolation to 
incorporate thematic surface data using inverse distance weighting 
(IDW). Computers & Geosciences, 22(7), 795-799, 1996. 

[34] Alcaras, E., Parente, C. and Vallario, “A Comparison of different 
interpolation methods for DEM production,” International Journal of 
Advanced Trends in Computer Science and Engineering. Vol. 6: 1654-
1659, 2019. 

[35] ESRI, “How inverse distance weighted interpolation works,” in ArcGIS 
Pro help, ESRI, Redlands, CA, USA. 

[36] ESRI, “How radial basis functions work,” in ArcGIS Pro help, ESRI, 
Redlands, CA, USA. 

[37] G.F. Lin, and L.H. Chen, “A spatial interpolation method based on 
radial basis function networks incorporating a semivariogram model,”. J. 
Hydrol 288(3–4), pp.288–298, 2004, doi:10.1016/j.jhydrol.2003.10.008 

[38] H. Apaydin, F. K. Sonmez, and Y. E. Yildirim, “Spatial interpolation 
techniques for climate data in the GAP region in Turkey,” Climate 
Research, 28(1), pp. 31-40, 2004. 

[39] ESRI, “How global polynomial interpolation works,” in ArcGIS Pro 
help, ESRI, Redlands, CA, USA, 

[40] S. Eberly, J. Swall, D. Holland, B. Cox, and E.Baldridge, ,”Developing 
spatially interpolated surfaces and estimating uncertainty,” United States 
Environmental Protection Agency, pp. 28-40, 2004. 

[41] W. Wang, W. Qi, N. Chen, P. Wang, and J. Chen, J. “Research on 
determining the weights of urban land grading evaluation factors based 
on Spearman rank correlation analysis,” in International Symposium on 
Spatial Analysis, Spatial-Temporal Data Modeling, and Data Mining, 
Vol. 7492, p. 74921U, International Society for Optics and Photonics, 
October 2009. 

[42] W. Luo, M. C. Taylor, and S. R. Parker, “A comparison of spatial 
interpolation methods to estimate continuous wind speed surfaces using 
irregularly distributed data from England and Wales,” International 
Journal of Climatology: A Journal of the Royal Meteorological Society, 
28(7), 947-959, 2008. 

[43] M. J. De Smith, M. F. Goodchild, and P. Longley, Geospatial analysis: a 
comprehensive guide to principles, techniques and software tools. 
Troubador publishing ltd, Leichester (UK), 2007. 

[44] J. Seyedmohammadi, L. Esmaeelnejad, M. Shabanpour, “Spatial 
variation modelling of groundwater electrical conductivity using 
geostatistics and GIS,” Modeling earth systems and environment, 2(4), 
pp. 1-10, 2016. 

[45] Assibey-Bonsu, W., “Professor Danie Krige‟s First Memorial Lecture: 
The Basic Tenets of Evaluating the Mineral Resource Assets of Mining 
Companies, as Observed in Professor Danie Krige‟s Pioneering Work 
Over Half a Century,” in Geostatistics Valencia 2016 (pp. 3-25). 
Springer, Cham, 2017. 

[46] Columbia University Mailman School of Public Health, Kriging, 
Columbia University, 722 West 168th St. NY, NY 10032, 
https://www.mailman.columbia.edu/research/population-health-methods 
/kriging 

[47] ESRI, “How kriging works”, in ArcGIS Pro help, ESRI, Redlands, CA, 
USA, 

[48] L. H. Peters, Spatial Autocorrelation: Covariance and Semivariance, 
GEOG 593, 2009. 

[49] G. Bohling, G., “Introduction to geostatistics and variogram analysis,” 
Kansas geological survey, 1, pp. 1-20. 

[50] M. Armstrong, Basic linear geostatistics. Springer Science & Business 
Media, 1998. 

[51] D. Chen, Advances in data, methods, models and their applications in 
Geoscience. BoD–Books on Demand, 2011. 

[52] M Meul, and M. Van Meirvenne, “Kriging soil texture under different 
types of nonstationarity,” Geoderma, 112(3-4), pp. 217-233, 2003. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 10, 2019 

13 | P a g e  

www.ijacsa.thesai.org 

[53] P. Singh, and P. Verna, “A Comparative Study of Spatial Interpolation 
Technique (IDW and Kriging) for Determining Groundwater Quality,” 
in Venkatramanan, S., Viswanathan, P. M., & Chung, S. Y. (Eds.). GIS 
and Geostatistical Techniques for Groundwater Science, Elsevier, 2019. 

[54] K. C. Lam, R. G. Bryant, and J. Wainright, “Application of spatial 
interpolation method for estimating the spatial variability of rainfall in 
Semiarid New Mexico, USA,” Mediterranean Journal of Social 
Sciences, 6(4), S3, 2015. 

[55] P. A. Burrough, and R.A. McDonnell, Principles of Geographical 
Information Systems, Oxford: Oxford University Press, 1998. 

[56] R. S. Bivand, E.J. Pebesma, and V. Gomez-Rubio, Applied Spatial Data 
Analysis with R, Springer, 2008. 

[57] G. E.Fasshauer, and J. G. Zhang, “On choosing “optimal” shape 
parameters for RBF approximation,” Numerical Algorithms, 45(1-4),pp. 
345-368, 2007. 

[58] U. Falchi, C. Parente, and G. Prezioso, “Global geoid adjustment on 
local area for GIS applications using GNSS permanent station 
coordinates,” Geodesy and Cartography, 44(3), pp. 80-88, 2018. 

[59] A. I. EL-Hattab, “Single beam bathymetric data modelling techniques 
for accurate maintenance dredging,” The Egyptian Journal of Remote 
Sensing and Space Science, 17(2), 189-195, 2014. 

[60] I. O. Ferreira, D. D.  Rodrigues, G. R. D. Santos, and L. M. F.  Rosa, “In 
bathymetric surfaces: idw or kriging?,” Boletim de Ciências Geodésicas, 
23(3), pp. 493-508, 2017. 

 


