
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

167 | P a g e

www.ijacsa.thesai.org

An Immunity-based Error Containment Algorithm

for Database Intrusion Response Systems

Nacim YANES
1
, Ayman M. MOSTAFA

2
, Nasser ALSHAMMARI

3
, Saad A. ALANAZI

4

College of Computer and Information Sciences–Jouf University–KSA
1, 2, 3, 4

RIADI Laboratory–La Manouba University–Tunisia
1

FCI–Zagazig University–Egypt
2

Abstract—The immune system has received a special

attention as a potential source of inspiration for innovative

approaches to solve database security issues and build artificial

immune systems. Database security issues need to be correctly

identified to ensure that suitable responses are taken. This paper

proposes an immunity-based error containment algorithm for

providing optimum response in detected intrusions. The objective

of the proposed algorithm is to reduce the false positive alarms to

the minimum since not all the incidents are malicious in nature.

The proposed algorithm is based on apoptotic and necrotic

signals which are parts of the immunity structure in human

immune system. Apoptotic signals define low-level alerts that

could result from legitimate users but could be also the

prerequisites for an attack, while necrotic signals define high-

level alerts that result from actual successful attacks.

Keywords—Database security; artificial immune system; error

containment algorithm; database auditing; apoptotic signal;

necrotic signal; secret sharing

I. INTRODUCTION

Artificial immune system (AIS) is a field of research that
links different disciplines such as immunology, computer
science and engineering [1] [2]. AIS is considered the artificial
simulation of natural immune system (NIS). The immune
system is responsible for guarding the human body against the
foreign and dangerous microorganisms called pathogens. To
overcome these pathogens, the immune system depends on
innate and adaptive immune subsystems [3]. The innate
immune subsystem is considered the immutable first line of
defense for alarming danger signals around suspicious item.
The adaptive immune subsystem relies on a faster response to
unknown detected patterns.

Over the last two decades, a rich set of biological immune
inspired algorithms have been developed to solve
computational problems. Different researches of AISs have
been developed and applied based on immune modeling,
theoretical artificial immune system, and applied AISs [4].
Works on immune modeling cover several models based on
natural immune systems, while theoretical artificial immune
system discusses the theoretical field of artificial immune
system.

The most active field in AIS is the development of
immune-inspired algorithms to apply artificial immune system
in diverse real world applications. Negative selection
algorithms, clonal selection algorithms, artificial immune

networks, and danger theory; are four major algorithms of
artificial immune system that are applied in different domains
such as intrusion detection systems, neural networks, and data
analysis [2, 4].

Protecting the privacy and integrity of data with
maintaining high detection rate with low false positive and
false negative alarms is a challenging issue for database
security. As presented in our previous work [2], the immunity-
based detection algorithms are used to protect database from
malicious users or intruders who may abuse their privileges to
produce hostile acts. The developed detection algorithms
produce efficient results in preventing attacks from breaching
the security system but the security system may still have
vulnerabilities. However, there are two vulnerability cases into
which the intruder may attack the immunity-based detection
algorithms. First, if the malicious user succeeds in obtaining
some confidential information about the privileges of
authorized users, he can predict the authentic factor of the
authorized user. Second, the malicious user can perform a
brute-force attack on the authentic factor set of an authorized
user until a valid factor is obtained or the authentic factor set
which is considered as a detector of the system fails in
detecting the intruder. In both cases, the malicious user can
breach the system and obtain confidential information from
database. That’s why an error containment strategy is crucial
and helps identify post-security issues and resolve them
quickly.

The main goal of this paper is to propose an error
containment strategy with the objective to reduce the false
positive alarms to the minimum. The proposed strategy is
biological immune inspired; it is based on apoptotic and
necrotic signals that are parts of the immunity structure in
human immune system. Apoptotic signals define low-level
alerts that could result from legitimate or illegitimate users,
while necrotic signals define high-level alerts that result from
actual successful attacks. Database auditing mechanisms will
be embedded in the proposed error containment strategy in
order to monitor and audit all user transactions.

The body of this paper is structured as follows. A review
of the related works is presented in Section 2 whereas the
proposed immunity-based error containment strategy is
detailed in Section 3. Section 4 deals with the implementation
of most common mechanisms for database auditing. Finally,
the paper ends with a conclusion and future works.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

168 | P a g e

www.ijacsa.thesai.org

II. RELATED WORKS

Artificial immune system covers different models and
algorithms inspired by biological immune systems [1].

The main mechanism of artificial immune system (AIS) is
based on detecting computer viruses, intruders, or threats by
generating a set of detectors whose role is to defend
application environments. The detectors are used to scan the
developed applications and if there is a matching between the
detector and any intrusion, the intrusion will be blocked.

One of the researches of artificial immune system is
presented in [5]. In this research, a cryptographic algorithm
was developed based on the inspiration of artificial immune
systems. The developed cryptographic algorithm uses the
advanced encryption standard (AES) in order to generate a
random output which cannot be predicted by intruders.

The developed algorithm is based on the interaction
between antigen and antibody. The key and plaintext are
represented as antigen and antibody respectively. A lockup
table is developed based on a combination between the key
and plaintext for generating the cipher-text. The process of
generating cipher-text is executed in 10 rounds to produce
random output.

A survey on artificial immune system as an inspiration for
anomaly based intrusion detection systems has been presented
in [6]. In this research, a set of unique features of human
immune systems has been presented such as: dynamic,
distributed, diverse, parallel management, self-learning, self-
adaptation and self-organization. The features of human
immune system can encourage researches to simulate these
features in the artificial immune system to provide wide
applications. This research focuses also on intrusion detection
systems (IDS) using artificial immune systems (AIS).

Another adaptive intrusion tolerance strategy in light of
artificial immune systems has been presented in [7]. In this
research, the authors introduced two approaches in the
intrusion tolerance system: attack response and attack mask.

In the attack response sub-system, when an attack is
detected, the reaction time is activated and all system
resources are reallocated to continue working normally under
attack. In the attack mask sub-system, the overall system will
mask the affected part by redundancy, and majority voting.

The first method is simple and has low cost because the
structure of the original system is not changed while the
second method redesigns the whole system using artificial
immune technology, and redundant technology for cloning the
system resources. As a result, the method cost will be high.

An important model for the classification of heterogeneous
data with artificial immune system is presented in [8]. The
transformation of data from their original form into any other
specific types cannot only reduce its originality but it can also
occupy more space and require more preprocessing time. This
model is able to process data with any type without resorting
to data transformation.

A new framework for access control in light of the
immune mechanism is presented in [9]. In this article, the

framework of access control comprises the following: subject,
object, access control decision facility (ACDF), access control
enforcement facility (ACEF), as well as access control
information / access control rule (ACI / ACR). Subject which
is the user of certain processes sends out the access. Object is
the program, process, data, and information. Access control
decision facility (ACDF) enables the subject to visit the object
according to the access control rule (ACR) and the access
control information (ACI) and provides the result to ACEF.
Access control enforcement facility (ACEF) governs the
access of the subject to the object. As for Access control
information / access control rule (ACI / ACR), it is used to
refer when ADF conducts the decision-making, perhaps being
deposited in the database, the data file, and chooses other
access methods, in light of the security sensitivity and the
access control information quantity.

Another intrusion detection system for computer networks
based on artificial immune systems is presented in [10]. In this
research, a set of randomly generated binary strings that
represent the detectors are trained to draw a distinction
between the self and non-self connections. When the detector
has been provided to all the self and non-self connections, it
forms the “Mature Detector Set” and is not subject to further
change. This is considered as one of the limitations in this
research. This research assumes that the detectors are
complete and cannot be changed. This means that if any
antigen (intruder) succeeds in passing from the mature
detectors, the system will not be able to modify the mature
detectors to be capable for detecting the unknown intruder.
Another limitation in this research arises during the training of
the detector set. The non-self is classified as a hole when a
non-self (anomaly) cannot match 3 detectors or more. The
authors overcome the problem of holes by developing a
solution that randomly generates detectors until the anomaly
matches not less than 3 detectors. This solution will cause a
great space complexity because the system will generate large
number of detectors to detect intruders.

Chen et al. [11] developed an immunity-based intrusion
detection proposal for database systems. The developed model
provides each detector with an age and an alarm to
automatically detect malicious transactions. The Immune
System is in charge of producing as well as managing the
immunocytes for possible malicious transactions.

Most artificial immune database security researches focus
on detecting intrusions that breaches database authentication
mechanisms. Although the proposed detection algorithms
produce efficient results in preventing attacks from breaching
the security system, the security system may still have
vulnerabilities. An additional layer of security can be added by
applying database auditing that is considered a crucial
mechanism for post-security countermeasures.

Database auditing is the mechanism for monitoring user
behavior in database. By implementing access control
policies, authentication, and other cryptographic techniques,
the security of database can be elevated.

Different frameworks are presented to audit database
systems. One of the recent security frameworks was presented
in [12]. This framework is based on an auditing strategy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

169 | P a g e

www.ijacsa.thesai.org

management for configuring database authorizations and
alarms. Several event actions are applied to track all
transactions such as event manager, event generator, event
collector, event reporter, event analyzer and event memorizer.

Another auditing framework was introduced in [13] to
avoid database performance delays. This framework is used
by applying a three-way handshake of TCP data flows. A hash
table is used to manage connections for new data packets.

Database auditing can be also used to secure statistical
database [14]. In statistical database, users can acquire
statistical queries like (average, sum, count, etc.) but specific
individuals’ information should remain confidential. The aim
of the key representation auditing scheme is to guard online
and dynamic SDBs from disclosure. The idea relies on the
conversion of the original database D into key representation
database D|. Thus, before being stored in the Audit Query
table (AQ table), each new user query q would be converted
from string into key representation query q|.

Another auditing method for auditing mathematical
statistics was presented in [15]. In that research, a statistical
analysis was conducted to analyze user behavior based normal
records. The method is based on memory mathematical
statistics to store auditing objects into the memory to analyze
user behavior. The authors in [16] present a logging scheme
for database auditing used for analyzing and monitoring
network traffic. The architecture of this scheme comprises
three primary parts: packets capturing and parsing, as well as
data storage. First the packets are captured to and from the
database. After database communication protocols are
analyzed, the captured packets are parsed and immediately
used to support database audit.

Auditing the changes to a database is important for
improving system performance, maintaining data quality and
detecting malicious behaviors. However, an accurate audit log
is a historical record that constitutes a serious threat to
privacy. The policies that limit data retention clash with the
purpose of accurate auditing. Thus, data owners should
carefully assess the need for these policies in compliance with
the accurate auditing goals. The authors in [17] develop a
framework for auditing the changes to a database system
while the data retention policies are still respected. The
framework consists of a historical data model that supports
flexible audit queries, besides a language for retention policies
that conceal individual attribute values or delete entire tuples
from history. The audit history is partially incomplete under
retention policies. The interpretation of audit queries on the
protected history is formalized and may contain imprecise
results. Policy application and query answering are efficiently
implemented in a standard relational system, and characterize
the cases where the achievement of accurate auditing under
retention restrictions is possible.

III. THE IMMUNITY-BASED ERROR CONTAINMENT

STRATEGY

The current section explains different mechanisms to
secure database user transactions based on three interactive
sequential processes starting with detecting malicious
intruders using our proposed immunity-based detection

algorithm that was published in [2]. The next process presents
our proposed error-containment algorithm. The final process
explores a system hibernation framework for auditing user
transactions whether to be granted or denied.

A. The Intruder Detection Algorithm

In our paper [2], we proposed an immunity-based
detection algorithm to protect database from malicious users
or intruders who may abuse their privileges to produce hostile
acts. As presented in Fig. 1, the proposed intruder detection
algorithm is based on five nested stages. These stages are
presented as follows:

1) Stage 1: Verified factor authentication (VFA): The user

must pass his/her 18 bits in a correct manner so as not to be

detected as a malicious user. If the user passes his/her

authentic factor, he/she can move to the last layer of security

which is user certificate authorization (UCA); otherwise the

security system will perform a set of serial checking

mechanisms which are factor length matching, antigen table

matching, RCB matching, and DVS matching.

2) Stage 2: factor length matching (FLM): If the user fails

in verifying his authentication factor, the first checking

mechanism of the intruder detection algorithm is to match the

privilege factor length with the user entry. If the factor length

is not correct, the security system will raise the danger signal

II alarm. Otherwise, the system will proceed to the next

checking mechanism which is antigen table matching.

Fig. 1. Intruder Detection Checking Mechanisms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

170 | P a g e

www.ijacsa.thesai.org

3) Stage 3: antigen table matching (ATM): The developed

antigen table is the learning and memorization stage that

stores all previously detected users for performing fast

detection response to unknown patterns. The security system

searches the user factor in the antigen table to get a quick

response instead of applying the detection algorithm.

4) R-Contiguous bit matching: The security system traces

each bit of the user factor and matches it with the authentic

user factor stored in the “system cache”. As presented in [2],

the security system will raise danger signal II alarm if at least

R-contiguous bits are matched in both authentic and fake

factors. Otherwise, the security system will activate the second

detection algorithm which is the danger value algorithm

(DVS).

5) Stage 5: danger value signal (DVS) algorithm: The last

detection stage in the proposed intrusion detection algorithm is

to initialize the danger value signal (DVS) algorithm. The

main idea of this algorithm is to detect unauthorized users who

succeed in passing the four previous detection mechanisms.

B. The Error Containment Algorithm

The intrusion detection algorithm, described in the
previous section, produces efficient results in preventing
attacks from breaching the security system but the security
system may still have vulnerabilities. In fact, the intruder may
attack the immunity-based detection algorithms into two
vulnerability cases. First: if the malicious user succeeds in
obtaining some confidential information about the privileges
of authorized users, he can predict the authentic factor of the
authorized user. Second: The malicious user can perform a
brute-force attack on the authentic factor set of an authorized
user until a valid factor is obtained or the authentic factor set
which is considered as a detector of the system fails in
detecting the intruder. In both cases, the malicious user can
breach the system and obtain confidential information from
database.

Algorithm 1 presents an error containment strategy for
preventing malicious users from harming the system if they
succeed in breaching the detection algorithms.

Algorithm 1: Apoptotic-Necrotic Signal Algorithm

1. Integer m=Apoptotic Signal

2. Integer n=Necrotic Signal

3. Get User Factor from System cache

4. Set Detector = User Factor

5. If strFactor = Cached Detector Then

6. {

7. Check User Certificate Authorization (UCA)

8. If UCA = TrueThen

9. {

10. Assign Authentic User

11. Assign Predefined Privileges

12. Transactions Committed

13. }

14. Else

15. {

16. Raise Danger Signal III Alarm

17. User Disconnect

18. }

19. }

20. Else

21. {

22. Check RCB Algorithm // Algorithm 5.2

23. Check DVS Algorithm // Algorithm 5.3

24. If strFactor = Detected Then

25. {

26. Raise Danger Signal II Alarm

27. User Disconnect

28. }

29. Else

30. {

31. Assign Suspicious User

32. Classify Predefined Privileges

33. For Privileges Between 1 and m Loop

34. {

35. Assign Apoptotic Signal

36. Transactions Pending

37. System Hibernation

38. Database Auditing

39. Send DBA Broadcasting Request

40. If Request = Approve Then

41. Transactions granted

42. Else

43. Transactions denied

44. }

45. For Privileges Between m+1 and n-1 Loop

46. {

47. Assign Necrotic Signal

48. Transactions Pending

49. System Hibernation

50. Database Auditing

51. Send DBA Broadcasting Request

52. If Request = Approve Then

53. Transactions granted

54. Else

55. Transactions denied

56. }

57. For Privileges = n Then

58. {

59. Assign Max Necrotic Signal

60. Transactions denied

61. User Disconnect

62. }

63. }

64. }

As described in Algorithm 1, the strategy begins by
defining apoptotic and necrotic signals. Apoptotic and necrotic
signals are part of the immunity structure in human immune
system [1]. Apoptotic signals define low-level alerts that could
be issued by legitimate users or as a sign of a preliminary
attack. Necrotic signals define high-level alerts that result
from actual successful attacks. Defining the apoptotic and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

171 | P a g e

www.ijacsa.thesai.org

necrotic signals are the responsibility of the super
administrator (SA). The super administrator (SA) defines the
apoptotic and necrotic signals to be used as countermeasure
for preventing unauthorized users from disclosing confidential
information from databases if they succeed in breaching the
security system.

When a user connects to the security system, he must pass
the intruder recognition system as presented in [2]. If the user
passes the intruder recognition system with a valid username
and password, then the user exceeds the first danger signal
(Danger Signal I). As a result, the system verifies that the user
could be an authorized user. Therefore, the security system
retrieves the authentic factor set (AFS) of the user who owns
the username and password. The security system retrieves the
authentic factor set (AFS) from the system cache and this
factor is kept secret until the user verifies his/her identity by
passing the valid authentic factor set. The authentic factor set
(AFS) is promoted to be the detector if the user fails in
verifying his identity.

If the user factor matched the authentic factor set (AFS),
then the user exceeds the second danger signal (Danger Signal
II). The security system will pass the user to the final
verification signal which is the user certificate authorization
(UCA). If the user certificate authorization is authentic, the
user will be a normal user and can use his/her predefined
privileges in passing database transactions via the database
server. These transactions will be committed in the database
server as they have been executed from normal users. If the
user certificate authorization is not authentic, then danger
signal III alarm will be raised and the user will be
disconnected from the security system.

If the user factor did not match the authentic factor set
(AFS), the security system will activate the RCB and DVS
algorithms to be used as detection algorithms to detect the
malicious user. If the detector succeeds in detecting the
malicious user, danger signal II alarm will be activated and the
user will be disconnected from the security system.

If the detector failed in detecting the malicious user, the
security system will assign the user as “suspicious user” and
will pass the user to the final verification signal, which is the
user certificate authorization (UCA). The suspicious user may
perform a brute-force attack until a valid user certificate
authorization is obtained. The apoptotic and necrotic signals
which have been developed by the super administrator (SA)
will be activated to limit the authorizations of the user.

Apoptotic and necrotic signals activation depends on the
probability of three conditions. First: the malicious user
succeeds in obtaining a valid username and password and
passed the danger signal I alarm. Second: the malicious user
succeeds in breaching the detection algorithms and passed the
danger signal II alarm. Third: the malicious user succeeds in
passing the danger signal III by performing a brute-force
attack on the user certificate authorization until a valid
certificate is obtained.

The super administrator (SA) defines the apoptotic signal
by determining a number of privileges from 1 to m where m is
the number of transactions allowed for the suspicious user to

perform on the database server. The super administrator (SA)
defines also the necrotic signal by determining a number of
privileges from m+1 to n-1 where n is the maximum number
of transactions allowed for the suspicious user to perform on
the database server.

If the suspicious user passed the three danger signals, he
can perform different transactions on database until the
number of transactions equal m. At this point, apoptotic signal
is raised and all transactions are suspended. If the suspicious
user performed other transactions, the number of transactions
will be incremented until the transactions equal n-1. At this
point, necrotic signal is raised and all transactions are
suspended. The Database administrator performs auditing
mechanisms to monitor access to, and modification of,
database objects and resources. These auditing mechanisms
are employed to prepare a report to list all user operations
underway within database. Upon the breach of the database
security prevention and detection algorithms by malicious
users, the auditing techniques are employed to report all
transactions. Based on the auditing report, the database
administrator sends a broadcasting request. A secret sharing
mechanism is applied to monitor database administrator's
transactions in a lowest possible time. If the number of
transactions reached n, a max necrotic signal is raised and the
user is disconnected from the security system.

The main objective of dividing the signals to apoptotic and
necrotic signals is to reduce the false positive (FP) alarms to
the minimum. The normal user can pass a valid username and
password and may enter a wrong authentic factor set and the
detector fails in detecting the wrong factor. The normal user
can pass an authentic user certificate authorization (UCA). As
a result, he can enter the security system. If the signals are not
divided, the error alarm will disconnect the user although the
user is normal one. As a result, the false positive (FP) alarms
increases.

C. The System Hibernation

Once user transactions are suspended, the security system
must be hibernated until the suspended transactions are
approved or disapproved. As presented in [18], an alternate
schema is developed to obtain all transactions from normal
users until the suspension process is finished. As presented in
Fig. 2, when the security system verifies a suspicious user, the
suspicious user transactions are suspended in the original
database which resides in the database server. The security
system must verify the suspicious user transactions whether to
be saved in the original database or not. The time spent in the
verification process will delay other transactions that are
executed from normal users. This will increase the time
complexity.

In order to keep an efficient, flexible, and solid security
system, data hibernation is executed by transferring data from
their original source to their alternate designed source. As
protective measures for data hibernation, an alternate data
source in compliance with the original data source should be
designed. The data can be only transferred from the original
source to the alternate one only if both sources are in
compliance with each other [18].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

172 | P a g e

www.ijacsa.thesai.org

The original database schema is deactivated until the super
administrator (SA) verifies the suspended transactions.
Normal users are diverted to the alternate database schema
that is activated to allow normal users performing their
transactions with the ability to keep data integrity intact.

After the super administrator (SA) verifies the suspicious
user transactions, the original database schema is activated
again while the alternate database schema is deactivated.
Normal users’ transactions are merged in the original database
schema to keep the database in a consistent state.

The submitted transactions of the apoptotic and necrotic
actions are suspended until the super administrator (SA)
verifies the transactions. The transactions are verified to be
saved in the database server or rollback. The database server
sends a request to the super administrator (SA) to grant or
deny the suspended transactions. In order prevent intruders
from sneaking to the security system; the connection between
the database server and the super administrator (SA) must be
secured.

IV. DATABASE AUDITING MECHANISMS AND TECHNIQUES

As we presented in previous section, the database
administrator performs auditing mechanisms to monitor access
to, and modification of, database objects and resources.
Several popular mechanisms can be deployed to audit the
database structures whether the transactions are carried out by
malicious users or not. If regular users execute different
database transactions, a report that lists all user operations
inside database is created by the auditing mechanisms. In
contrast, upon the breach of the database security prevention
and detection algorithms by malicious users, the auditing
techniques are employed to report all transactions.

We implemented the auditing mechanisms required in
most environments, namely auditing the login and logout
operations inside database, auditing database operations
outside normal hours, auditing data dictionary language
(DDL) activities, auditing database errors that may encounter
with the database security system, auditing changes to the
source database if malicious users succeed in breaching the
system, and auditing changes to sensitive attributes to prevent
any data disclosure. Based on the auditing reports, the
database administrators (DBAs) and the super administrator
(SA) can execute error containment operation by restoring all
malicious transactions in the database.

A. Auditing Logon/Logout into Databases

The first category for auditing database is to provide a full
audit trail of any user who has signed into the database. Two
events must be recorded for the auditing operation: the sign-on
event and sign-off event. The following schema presents a
user login history table that records all login and logout
operations inside database

Create table user_login_audit (

user_id varchar2(30),

session_id number(10),

host varchar2(30),

ip_address varchar2(30),

login_time timestamp,

logout_time timestamp);

As presented in the previous schema, the login name for
signing on as well as the timestamp for the event must be
recorded. The recording process must be also applied to the
TCP/IP address of the client and the program initiating the
connection. Logon and logoff activities can be audited with
the help of database features or the external database security
solutions.

Fig. 2. System Hibernation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

173 | P a g e

www.ijacsa.thesai.org

In order to reduce the security cost complexity, all auditing
operations are recorded using implemented database security
features. In order to record all logging activities, we developed
two database triggers to fire when any login attempt is
initiated. The first trigger is fired at any login attempt while
the second trigger is fired at any logout attempt. Table I
records all login and logout attempts inside database.

Create or replace trigger user_login_trigger

After Logon on Database

Begin

Insert into user_login_audit

Values (User, sys_context („USERENV‟,

„SESSIONID‟), sys_context („USERENV‟, „HOST‟),

ora_client_ip_address, Localtimestamp, null);

Commit;
End;

Create or replace trigger user_logout_trigger

Before Logoff on Database

Begin

Update user_login_audit

Set logout_time = Localtimestamp

Where sys_context(„USERENV‟, „SESSIONID‟) =

session_id;

Commit;

End;

As presented in Table I, all login and logout operations are
recorded in the “user_login_audit” table. The super
administrator (SA) needs to re-optimize all recorded
information to obtain information about specific users. The
super administrator (SA) can build an “audit_log_summary”
table to view all usernames and the total number of logging
times for each username as presented in the following
schemas. The records resulted from the schemas are presented
in Table II.

Create table user_log_summary (

User_id varchar2(30),

Login_no number);

Declare

Cursor C is

Select user_id, count(user_id)

From user_login_audit

GROUP BY user_id;

Begin

Open C;

Loop

 Fetch C into x, y;

 Insert into autdi_log_summary

 Values(x, y);

 dbms_output.put_line(„ -User-‟ ║x║

„Connected „ ║y║ „Times‟);

 Exit When C%notfound;

End loop;

End;

Select „ -User-‟║ user_id ║„Connected ‟ ║

sum(login_no) ║ „Times ‟ “Connection History”

From audit_log_summary

GROUP BY user_id

When an external security system is used, SQL firewall is
used to block any connection after a given number of failed
attempts by the same login name is reached. Under these
circumstances, the database will not lose the connection
attempts due to the rejection of the attempts at the firewall
level. Instead of using external security system, database
triggers are used to generate an alert following a fixed number
of failed attempts as presented in Fig. 3. The alert is sent as a
notification to the database administrator (DBA) to block the
account. Blocking the user account requires the database
administrator to join a secret sharing operation with other
database administrators (DBAs) to grant or deny the
operation.

All failed login attempts are recorded in the “Antigen
Table Response” as presented in our intrusion detection
algorithm [2]. If the same intruder attacks the system again,
the security system will check the antigen table response first
to detect the intruder and provides a quick response.

B. Auditing Databases outside Normal Operating

We implemented a second auditing mechanism recording
activities that may be conducted beyond the regular operating
business hours. From a business and a compliance perspective,
this is a fundamental requirement. Auditing database usage
beyond the regular business hours is critical given that off-
hour activities enable unauthorized users to access or modify
targeted data without suspicion. The following schemas are
used to record all users who connect to the system outside
normal hours. The super administrator generates a table called
“operating_hours_history” which records the username,
session ID, host name, and the login time for each user
connected to the system outside normal hours. The records are
presented in Table III.

TABLE. I. LOGIN/LOGOUT AUDITING MECHANISM

USER_ID SESSION_ID HOST IP_ADDRESS LOGIN_TIME LOGOUT_TIME

SCOTT 20028 WORKGROUP\DESKTOP-247D553 01-SEP-19 01.50.31.226000 PM 01-SEP-19 01.50.47.468000 PM

SYSMAN 0 DESKTOP-247D553 01-SEP-19 01.50.43.245000 AM 01-SEP-19 01.50.43.256000 AM

HR 20029 WORKGROUP\DESKTOP-247D553 01-SEP-19 01.50.47.561000 PM 01-SEP-19 01.51.47.523000 PM

SYSTEM 20030 WORKGROUP\DESKTOP-247D553 01-SEP-19 01.51.01.643000 PM

DBSNMP 20031 WORKGROUP\DESKTOP-247D553 10.66.32.16 01-SEP-19 01.51.05.643000 PM 01-SEP-19 01.51.05.943000 PM

DBSNMP 20032 WORKGROUP\DESKTOP-247D553 10.66.32.16 01-SEP-19 01.51.07.345000 PM 01-SEP-19 01.51.07.868000 PM

DBSNMP 20033 WORKGROUP\DESKTOP-247D553 10.66.32.16 01-SEP-19 01.51.09.008000 PM 01-SEP-19 01.51.09.086000 PM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

174 | P a g e

www.ijacsa.thesai.org

TABLE. II. CONNECTION HISTORY

Connection History

User – HR – Connected – 1 Times

User – SCOTT – Connected – 1 Times

User – SYSTEM – Connected – 1 Times

User – SYSMAN – Connected – 1 Times

User – DBNMP – Connected – 1 Times

TABLE. III. SUSPICIOUS USERS OUTSIDE NORMAL HOURS

USER_ID SESSION_ID HOST LOGIN_TIME

SYSTEM 30629 WORKGROUP\DESKTOP-247D553 07-SEP-19 02.41.55.481000 PM

SCOTT 30631 DESKTOP-247D553 07-SEP-19 02.44.36.057000 PM

HR 30633 WORKGROUP\DESKTOP-247D553 07-SEP-19 02.44.45.558000 PM

SYSTEM 30634 WORKGROUP\DESKTOP-247D553 07-SEP-19 02.44.54.435000 PM

SCOTT 30635 WORKGROUP\DESKTOP-247D553 07-SEP-19 02.45.01.799000 PM

SYSTEM 30636 WORKGROUP\DESKTOP-247D553 07-SEP-19 02.45.09.480000 PM

Fig. 3. Account Locking Database Procedure.

Create table operating_hours_summary(

user_id varchar2(30),

session_id number,

host varchar2(30),

log_time timestamp);

Create or replace trigger check_normal_hours

After Logon on Database

Begin

if to_number(to_char(sysdate, „HH24‟)) not

between 8 and 14 OR to_char(sysdate, „DY‟) in

(„FRI‟, „SAT‟)

then

Insert into operating_hours_summary

Values (USER, sys_context („USERENV‟,

„SESSIONID‟), sys_context („USERENV‟, „HOST‟),

localtimestamp);

End If;

End;

C. Auditing DDL Activities

Auditing data definition language (DDL) activity is
considered one of the most important audit trail
methodologies. The DDL commands are the most destructive

as they can be exploited by intruders in order to attack the
system and disclose confidential information. Many
regulations require an auditing mechanism to prevent intruders
from modifying the data structure such as tables or views.
Three main methods for auditing schema changes exist. First:
by using database audit features. Second: by using external
auditing system. Third: by comparing schema snapshots. This
latter method will be presented in the next subsection.

For auditing the schema changes using database audit
features, the super administrator creates an audit DDL table
called “audit_DDL” as explained in the following schema.

Create table audit_DDL(

user_id varchar2(30),

ddl_date timestamp,

event_type varchar2(25),

object_type varchar2(25),

owner varchar2(25),

object_name timestamp);

The super administrator generates a database trigger to
audit all changes in schema structures and saves the changes
in the “audit_DDL” table as presented in the following
schema.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

175 | P a g e

www.ijacsa.thesai.org

Create or replace trigger DDL_trigger

After DDL on Database

Begin

Insert into audit_DDL

Values (ora_login_user, localtimestamp,

 Ora_sysevent,

 Ora_dict_obj_type,

 Ora_dict_obj_owner,

 Ora_dict_obj_name);

End;

If the database schema changes by database administrator
or users, all the changes will be recorded in the audit DDL
table as presented in Table IV.

D. Auditing Changes to Database Source

As presented in the previous subsection, the first method
for auditing database changes is to use database auditing
features. The second method which is based on using external
auditing system is costly. The third method for auditing
schema changes is by using schema snapshots. The super
administrator can take a snapshot from the schema source as
presented in Fig. 4. By applying the Hash encryption
technique (H), the source snapshot is encrypted (h1) and
stored in the database server. If the malicious user modifies
the source snapshot, the hash function will create a new
snapshot called “suspicious snapshot” (h2). The super
administrator matches the original snapshot hash (h1) with the
suspicious one (h2). If there is no matching, an intrusion has
happened otherwise no intrusion will be found.

E. Auditing Database Errors

Auditing errors returned by the database is among the first
implemented audit trails for eliminating SQL injection, failed
logins, and privilege elevation. For eliminating SQL injection,
attackers may need to estimate the right number of columns.
Obtaining the right number will be unlikely because the

database will automatically return an error code claiming that
the selected columns by the two SELECT statements do not
correspond.

Another instance of an error that requires logging and
monitoring is failed logins, even in the event that there are no
auditing logins to the database. A failed endeavor to elevate
privileges is an essential indication that an attack is underway.
In order to record all database errors, the super administrator
builds an audit error table as explained in the following
schema.

Create table audit_error(

user_id varchar2(30),

session_id number,

host varchar2 (30),

error_date timestamp,

error_no varchar2 (100),

error_txt varchar2 (300));

The super administrator generates a system trigger to
record all database errors in the audit error table as presented
in the following schema. All recorded database errors are
explained in Table V.

Create or replace trigger audit_error_trigger

After Servererror on Database

Begin

Insert into audit_error

Values (User, sys_context(„USERENV‟,

„SESSIONID‟), sys_context(„USERENV‟, „HOST‟),

localtimestamp,

dbms_standard.server_error(1),

dbms_standard.server_error_msg(1));

Commit;

End;

TABLE. IV. DDL AUDITING TABLE

USER_ID DDL_DATE EVENT_TYPE OBJECT_TYPE OWNER OBJECT_NAME

SCOTT 07-SEP-19 02.57.55.898000 PM CREATE TABLE SCOTT SALARY

HR 07-SEP-19 02.59.00.790000 PM CREATE VIEW HR V1

SYSTEM 07-SEP-19 03.01.01.925000 PM ALTER TABLE SYSTEM DEPT

Fig. 4. Schema Snapshot Matching.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

176 | P a g e

www.ijacsa.thesai.org

TABLE. V. ERROR AUDITING TABLE

USER_ID SESSION_ID HOST ERROR_DATE ERROR_NO ERROR_TXT

SCOTT 30646
WORKGROUP\DESKTOP-
247D553

07-SEP-19
03.03.08.490000 PM

942 ORA-00942: table or view does not exist

SCOTT 30646
WORKGROUP\DESKTOP-

247D553

07-SEP-19

03.03.52.917000 PM
1

ORA-00001: unique constraint

(SCOTT.PK_EMP) violated

HR 30648
WORKGROUP\DESKTOP-
247D553

07-SEP-19
03.04.53.040000 PM

942 ORA-00942: table or view does not exist

HR 30648
WORKGROUP\DESKTOP-

247D553

07-SEP-19

03.05.19.066000 PM
1031 ORA-01031: insufficient privileges

F. Auditing Security Attributes Changes

Auditing DML activity is an important requirement in
database auditing systems. The auditing operation requires
recording the old and new values for each DML activity. Two
different requirements must be implemented to fully record
the DML activity. First: to record any update operation, the
user who has performed the update, which session has been
used, and the time for the DML activity. Second: to record
what the value was before and after the update operation.

The first requirement for recording the DML information
is developed by building a DML audit table as presented in the
following schema.

Create table DML_audit(

username varchar2(20),

session_id number,

host_name varchar2(40),

insert_time timestamp,

update_time timestamp,

delete_time timestamp

);

The super administrator develops a DML trigger that
records all DML operations and stores the result in the DML
audit table as presented in the Table VI.

Create or replace trigger DML_trigger

After Insert or Update or Delete On Scott.emp

For each row

Begin

If Inserting Then

Insert into DML_audit

Values (User, sys_context(„USERENV‟,

„SESSIONID‟), sys_context(„USERENV‟, „HOST‟),

localtimestamp, Null, Null);

Elsif Updating Then

Insert into DML_audit

Values (User, sys_context(„USERENV‟,

„SESSIONID‟), sys_context(„USERENV‟, „HOST‟),

Null, localtimestamp, Null);

Elsif Deleting Then

Insert into DML_audit

Values (User, sys_context(„USERENV‟,

„SESSIONID‟), sys_context(„USERENV‟, „HOST‟),

Null, Null, localtimestamp);

End if;

End;

The second requirement for recording the DML
information is developed by building an audit change table to
record the updated value before and after the update operation
as presented in the following schema.

Create table audit_changes

(

username varchar2(20),

DML_time timestamp,

oldempno integer,

newempno integer,

oldname varchar2(20),

newname varchar2(20),

oldhiredate date,

newhiredate date,

oldsal number,

newsal number,

oldcomm number,

newcomm number

);

The super administrator develops a DML trigger that
records all old and new DML values and stores the result in
the audit change table as presented in the Table VII.

Create or replace trigger

trigger_table_changes

After Insert or Update or Delete On Scott.emp

For each row

Begin

Insert into audit_changes

Values (User, localtimestamp, :old.empno,

:new.empno, :old.ename, :name.ename,

:old.hiredate, :new.hiredate, :old.sal,

:new.sal, :old.comm, :new.comm);

End;

Suppose that 1 million DML transactions are executed per
day and each transaction updates a single value. The database
contains 100 tables and each table contains 10 attributes. The
database contains 10,000 records in each table. If the super
administrator (SA) develops an auditing system that records
all attributes changes before and after the update activity, then
the database will grow 35 times larger than the original
database after one year.

As presented in [19, 20, and 21], the DML activities must
be recorded for sensitive attributes only in order to reduce the
space complexity of database size.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

177 | P a g e

www.ijacsa.thesai.org

TABLE. VI. DML ACTIVITY TIME

USER_ID HOST_NAME INSERT_TIME UPDATE_TIME DELETE_TIME

SCOTT
WORKGROUP\DESKTOP-

247D553
07-SEP-19 03.08.30.853000 PM

SCOTT
WORKGROUP\DESKTOP-

247D553
 07-SEP-19 03.09.51.031000 PM

SCOTT
WORKGROUP\DESKTOP-

247D553
 07-SEP-19 03.08.56.949000 PM

TABLE. VII. DML AUDITING VALUES

USERNA
ME

DML_TIME
OLDEM
P-NO

NEWEM
-PNO

OLDENA
-ME

NEWENA
-ME

OLDHIRE
-DATE

NEWHIR
-EDATE

OLDSA
L

NEWSA
L

OLDCOM
-M

NEWCO
-MM

SCOTT

07-SEP-19

03.14.12.
399000 PM

7369 7369 SMITH SMITH
17-DEC-

80

17-DEC-

80
800 800

SCOTT

07-SEP-19

03.14.12.

403000 PM

7566 7566 JONES JONES
02-APR-

81

02-APR-

81
2975 2975

SCOTT

07-SEP-19

03.14.12.

403000 PM

7788 7788 SCOTT SCOTT
19-APR-
87

19-APR-
87

3000 3000

SCOTT

07-SEP-19

03.14.12.

403000 PM

7876 7876 ADAMS ADAMS
23-MAY-
87

23-MAY-
87

1100 1100

SCOTT

07-SEP-19
03.14.12.

403000 PM

7902 7902 FORD FORD
03-DEC-

81

03-DEC-

81
3000 3000

SCOTT

07-SEP-19
03.14.37.

229000 PM

7654 7654 MARTIN MARTIN 28-SEP-81
28-SEP-

81
1375 1650 1400 1400

G. Auditing Changes to Privileges, Users and Roles

The final auditing category is to keep a complete audit trail
of any changes to the privileges, users, and roles. Different
categories must be recorded to monitor the user activities in
database. First: addition and deletions of users and roles.
Second: privilege changes. Third: change to the security
attributes at a server, database, statement, or object level.

As presented in [19, 20, and 21], the first and second
categories are secured by using the secret sharing algorithm. A
single database administrator (DBA) cannot add or delete
users and roles, or modifies user privileges without the
agreement of other database administrators (DBAs) according
to the super administrator (SA) infrastructure.

The third category which is based on protecting security
attributes from modification is based on preventing a single
database administrator (DBA) from changing the sensitive and
most sensitive attributes as presented in [2].

V. CONCLUSION

Artificial immune system (AIS) is a cover term for all the
attempts that develop computational models in the spirit of
biological immune systems. This paper presents an error
containment algorithm as a post-security countermeasure for
detecting malicious intrusions. A system hibernation
framework is embedded with the proposed algorithm to
monitor users' transactions. Different auditing mechanisms are
implemented to track the users' behaviors whether they are
authorized or not. Based on the results of the auditing
mechanisms and users' authorizations, the transactions are
committed or rolled back.

As short-term future work, we plan to implement the
proposed artificial immunity-based algorithm and evaluate its
accuracy by comparing our experimental results to those of
post-security algorithms identified in the literature. The
accuracy of the algorithms will be evaluated based on
reducing the false positive and false negative alarms.

Over a medium-term research perspective, we propose to
apply the artificial immunity-based algorithm on cloud service
providers using different cloud deployment models.

REFERENCES

[1] C.M. Ou, “Host-based intrusion detection systems adapted from agent-
based artificial immune systems”, International Journal of
Neurocomputing, ELSEVIER, vol.88, 2012, pp.78-86.

[2] A. M. Mostafa, N. Yanes, and S. A. Alanazi, "A Cognitive adaptive
artificial immunity algorithm for database intrusion detection systems",
Journal of Theoretical and Applied Information Technology, vol. 97, no.
16, 2019, pp. 4387-4400.

[3] D. A. Fernandes, M. M. Freire, P. A. Fazendeiro, and P. R. Inácio,
“Applications of artificial immune systems to computer security: a
survey”, ELSEVIER Journal of Information Security and Applications,
vol. 35, 2017, pp. 138-159.

[4] D. Dipankar, S. Yu, and F. Nino, "Recent advances in artificial immune
systems: models and applications", Applied Soft Computing, vol. 11, no
2, 2011, pp. 1574-1587.

[5] S. Ariffin, R. Mahmod, A. Jaffar, and M. R. K. Ariffin, “Immune
systems approaches for cryptographic algorithm”, IEEE International
Conference on Bio-Inspired Computing: Theories and Applications,
2011, pp.231-235.

[6] F. Hosseinpour, K. Abu-Baker, A. H. Hardoroudi, and N. Kazazi,
“Survey on artificial immune systems as a bio-inspired technique for
anomaly based intrusion detection systems”, IEEE International
Conference on Intelligent Networking and Collaborative Systems, 2010,
pp.323-324.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 10, 2019

178 | P a g e

www.ijacsa.thesai.org

[7] Z. Cui, X. Lu, and J. Wang, “Adaptive intrusion tolerance strategy of the
system based on artificial immune”, IEEE International Conference on
Computational Intelligence and Software Engineering, 2009, pp.1-4.

[8] M. Puteh, K. Omar, A. R. Hamdan, and A. Abu-Bakr, “Classifying
heterogeneous data with artificial immune system”, IEEE International
Symposium on Information Technology, 2008, pp.1-5.

[9] L. Wang, C. Yin, and H. Dong, “A Novel generalized framework for
access control based on the immune mechanism”, IEEE International
Conference on Intelligent Control and Automation, 2008, pp.1427-1431.

[10] D. Dal, S. Abraham, A. Abraham, S. Sanyal, and M. Sanglikar,
“Evolution induced secondary immunity: an artificial immune system
based intrusion detection system”, IEEE International Conference on
Computer Information Systems and Industrial Management
Applications, 2008, pp.65-70.

[11] K. Chen, G. Chen, and J. Dong, “An Immunity-based intrusion detection
solution for database systems”, International Conference on Web-Age
Information Management, Springer, Berlin, Heidelberg, 2005, pp.773-
778.

[12] H. Wang, “A Security framework for database auditing system”, IEEE
International Symposium on Computational Intelligence and Design,
vol. 1, 2017, pp.350-353.

[13] K. Wu, L. Hua, X. Wang, and X. Ding, “The Design and
implementation of database audit system framework”, IEEE
International Conference on Software Engineering and Service Science,
2014, pp. 553-556.

[14] A. A. Elshiekh, and P. D D. Dominic, “Three audit stages for securing
statistical databases”, IEEE International Conference on Information
Management and Engineering, 2009, pp.283-286.

[15] Shao Zuozhi, Li Yunpeng, Zhang Kuo, Zeng Geng, Zhao Sitang, “An
Audit Method Based on Mathematical Statistics Detection in Database
Audit System”, IEEE Conference on Intelligent Human-Machine
Systems and Cybernetics, 2015, pp. 203-206.

[16] Q. Huang, and L. Liu, “A Logging scheme for database audit”, IEEE
International Workshop on Computer Science and Engineering, vol. 2,
2009, pp.390-393.

[17] L. Wentian, G. Miklau. “Auditing a database under retention
restrictions”, IEEE International Conference on Data Engineering, 2009,
pp.42-53.

[18] S. Safdar, M. F. Hassan, M. A. Qureshi, and R. Akba, “Data hibernation
framework in workflows under intrusion threat”, IEEE Symposium on
Computers and Informatics, 2011, pp.680-685.

[19] A. M. Hashem, I. M. El-Henawy, and A. M. Mostafa, “Interactive multi-
layer policies for securing relational databases”, IEEE International
Conference on Information Society, 2012, pp.65-70.

[20] A. M. Mostafa, A. M. Hashem, and I. M. El-Henawy, “Design and
implementation of multi-layer policies for database security”,
International Journal of Information Sciences, Natural Sciences, vol. 2,
no.3, 2013, pp.147-153.

[21] A. M. Mostafa, A. M. Hashem, and I. M. El-Henawy, “Design and
implementation of extensible service-oriented algorithms for securing
relational databases”, International Journal of Digital Content
Technology and its Applications (JDCTA), Elsevier, vol.7, 2013,
pp.753-763.

