
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 10, 2019 

346 | P a g e  

www.ijacsa.thesai.org 

Model for Time Series Imputation based on Average 

of Historical Vectors, Fitting and Smoothing 

Anibal Flores
1
, Hugo Tito

2
 

E.P. Ingeniería de Sistemas e Informática 

Universidad Nacional de Moquegua, Moquegua, Perú 

Deymor Centty
3
 

E.P. Ingeniería Ambiental 

Universidad Nacional de Moquegua, Moquegua, Perú 

 

 
Abstract—This paper presents a novel model for univariate 

time series imputation of meteorological data based on three 

algorithms: The first of them AHV (Average of Historical 

Vectors) estimates the set of NA values from historical vectors 

classified by seasonality; the second iNN (Interpolation to 

Nearest Neighbors) adjusts the curve predicted by AHV in such a 

way that it adequately fits to the prior and next value of the NAs 

gap; The third LANNf allows smoothing the curve interpolated 

by iNN in such a way that the accuracy of the predicted data can 

be improved. The results achieved by the model are very good, 

surpassing in several cases different algorithms with which it was 

compared. 
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I. INTRODUCTION 

The prediction of climate change and similar events 
requires increasingly precise predictive models, currently the 
most accurate prediction models require large amounts of data, 
however, in the field of meteorology, most historical time 
series present missing values or NA values for multiple 
reasons, and this means that a large amount of data cannot be 
used in prediction processes. 

This paper presents a new model for imputation of missing 
data in meteorological time series. Missing data or NA values 
in weather series are presented in different sizes, small-gaps, 
medium-gaps and big-gaps [1]; accuracy in completing this 
data is very important to carry out successful forecasting or 
prediction processes. 

The proposal model is based on three algorithms: AHV, 
iNN and LANNf which are briefly described below: 

AHV approach is inspired by CBRi and CBRm that to 
complete a set of NA values use the prior value and the next 
value to the block of NA values and based on this, all historical 
values that are between these two values are searched and 
averaged. 

However, implementing CBRi or CBRm for big-gaps is a 
bit complicated, since it is difficult to find intermediate data 
between 11 and 30 cosecutive NAs in a historical time series, 
and using the similarity could introduce bias in the synthetic 
data. That is why obtaining historical vectors considering just 
the prior value to the block of NAs was chosen. 

Average of Historical Vectors (AHV) is a simple algorithm 
that uses historical vectors to calculate an average vector, 
historical vectors are classified into two groups and in each 

group they are identified by a key value that corresponds to 
their prior value. In addition, in the first group we find the 
historical vectors for the fall and winter stations and in a 
second group we find the historical vectors for the spring and 
summer stations, taking into account that the first group 
temperatures tend to fall and in the second group temperatures 
tend to rise. 

In general, the algorithms for estimating missing values or 
NA values perform a horizontal analysis of time series 
considering the values before or after a group of NA values, 
such as LANN [1], LANN++ [1], SMA [2][3], LWMA [2][3], 
EWMA [2][3], ARIMA [3], etc. In CBRi “in press” [4] and 
CBRm [5] for NA calculation it is proposed to use only two 
horizontal values prior and next, and the rest of the data is 
vertical. Fig. 1 shows the difference between traditional 
approaches (horizontals) and new approaches (verticals). In 
this work, AHV uses a vertical approach using one of the most 
traditional and basic imputation techniques, the mean. 

Interpolation to Nearest Neighbors (iNN) is an interpolation 
or fitting algorithm that allows adjusting a predicted curve to 
two values. In an imputation process, these two values would 
correspond to the prior and next values in a time series with 
NA values. See Fig. 2. 

The adjustment problem arises in AHV predictions since in 
some cases no historical vectors are found for the prior value of 
a gap of NAs and vectors of a key value or other prior similar 
to the current prior are used. 

Once the curve of imputed values is adjusted, it is 
important to carry out smoothing, since the imputed and 
interpolated data are usually not. It has been observed in Deep 
Learning algorithms such as Long Short-Term Memory 
(LSTM) [6], Gate Recurrent Unit [7], and others such as 
Prophet [8] that the estimated or predicted values are very 
smoothed, hence the present work apply smoothing to the 
predicted and interpolated vector in such a way that the 
accuracy of the model is improved. LANNf is used for this 
process which is inspired by the LANN [1] imputation 
algorithm. 

For the experiment in this work, medium-gaps and big-gaps 
are considered. For the first case the performance of known 
imputation techniques such as SMA [9], LWMA [10], EWMA 
[2] [11], Kalman ARIMA, etc is analyzed. For the second case, 
very known prediction techniques such as ARIMA, LSTM, 
GRU and Prophet are analyzed. 
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Fig. 1. Horizontal vs Vertical Approaches. 

 

Fig. 2. Prior and Next Values. 

This paper has been organized as follows: a summary of 
related work on univariate time series imputation is shown in 
the second section. In the third section some concepts are 
developed that will allow a better understanding of the 
proposal made at work. The fourth section describes the 
proposal model and each of its elements and algorithms 
implemented. The fifth section shows the results achieved and 
a comparison with several techniques. In the sixth section, the 
conclusions reached at the end of the present work are shown, 

finally some weaknesses of the proposed model are described 
and that could be overcome in future works. 

II. RELATED WORK 

This section shows the reviewing results of different 
techniques or algorithms for univariate time series imputation 
which is detailed next. 

Traditionally, quite simple techniques have been used for 
imputation of time series; these include the mean, median and 
mode, which currently are not recommended due to the risk of 
introducing bias to the time series. 

Last Observed Carried Forward (LOCF) [12] is also a fairly 
simple technique, which involves replacing an NA value with 
the last observed value of the time series [13]. 

Baseline Observation Carried Forward (BOCF) [14]  is 
similar to the LOCF; it replaces NA values with the non-
missing baseline observation of the time series. 

Hot-deck [15] [16], is an algorithm that replaces an NA 
value with an existing value of time series randomly. For 
example, if time series have ten values with an NA value, hot-
deck, randomly select a value from the existing nine values and 
replace the NA value. For comparative analysis in this work 
VIM R package is used to implement hot-deck imputation. 

Another set of imputation techniques that have been used 
frequently are those based on moving averages [3], among 
them Simple Moving Average (SMA) [3] [9], Linear Weighted 
Moving Average (LWMA) [3] [9] and Exponential Weighted 
Moving Average (EWMA) [3] [9] [11]. All of them use a 
parameter k that establishes the number of elements to 
calculate the average that replaces the NA value. In the case of 
SMA, the average is calculated considering only the elements 
established in parameter k without assigning any weight. In the 
case of LWMA, a linear weight is assigned to each element 
that will be used to calculate the average. And in the case of 
EWMA, the weight is assigned exponentially to each element 
used to calculate the average. For comparative analysis, 
moving average based algorithms are implemented using the 
imputeTS package of R language. 

Kalman filter [17], also known as Linear Quadratic 
Estimation (LQE), is an algorithm that uses a series of 
measurements observed over time, which contains statistical 
noise and other inaccuracies, and produces estimates of 
unknown variables that tend to be more accurate than those 
based on a single measurement. Autoregressive Integrated 
Moving Average (ARIMA) [18] [19]integrated with Kalman 
filter produces good results in regression processes. Also, 
impute TS package of R language implements Kalman 
ARIMA imputation with a special setting called auto.arima [9] 
that produces optimal results. 

LANN and LANN+ [1], they are two fairly simple 
algorithms based on moving averages that produce good results 
in the imputation of short-gaps (1 or 2 consecutive NAs). In 
this work, these are just compared and evaluated for the study 
cases corresponding to medium-gaps (3 to 10 consecutive 
NAs). 
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CBRi “in press” [4] and CBRm [5] are algorithms inspired 
by Case Based Reasoning and instead of taking advantage of 
the horizontal characteristics of a time series, these exploit the 
historical vertical values between the prior and next value in a 
block of NA values. Both are analyzed and compared in 
médium-gaps study cases. 

For big-gaps, prediction algorithms that use large amounts 
of historical data are usually used, in this case algorithms such 
as ARIMA [3], PROPHET [8], LSTM [6] [20] and GRU [7] 
[21] will be implemented for analysis. Python language with 
keras and tensorflow libraries is used. 

III. THEORETICAL BACKGROUND 

A. Time Series 

A time series is the result of observing the values of an X 
variable over time. For example: the minimum daily 
temperature of the city of Lima, The total monthly sales of a 
given product, the number of visits per hour of a website, etc. 

A common use of time series is its analysis for prediction 
and forecasting. Time series are studied in different areas such 
as signal processing, econometrics, statistics, biology, etc. 
Some features or characteristics of time series are: trends, 
cycles of seasonality and non-seasonality, pulses and steps, and 
outliers. 

B. Missing Data 

Depending on what causes missing data, the gaps will have 
a certain distribution. Understanding this distribution may be 
helpful in two ways [2]. First, this knowledge can be used to 
select the most appropriate imputation algorithm to complete 
the NA values. Second, this knowledge can help implement an 
imputation model with a set of training data and a set of test 
data to determine the RMSE to replace known NA values of 
the same time series; once the model is evaluated, it must be 
decided whether it is suitable for the imputation process of 
unknown NA values. 

Missing data is classified into three categories: Missing 
Completely at Random (MCAR), Missing at Random (MAR) 
and Not Missing at Random (NMAR). The process of 
completing NA-gaps in time series is sometimes complicated, 
since the underlying mechanisms are unknown [2]. 

C. Univariate Time Series 

This term refers to a time series that consists of single 
observations recorded sequentially over successive time 
periods. Although a univariate time series is usually considered 
as one column of observations, time is in fact an implicit 
variable [2]. Traditional techniques such as SMA, LWMA, 
EWMA, ARIMA and others usually just work with time series 
values, instead another forecasting techniques such as Prophet, 
LSTM, GRU in addition to the time series values they use the 
recording date, this undoubtedly makes their accuracy much 
better than moving average techniques. 

IV. PROPOSAL MODEL 

The proposal model has four modules: Time Series, NA 
Calculation, Fitting - Smoothing, and Testing. Fig. 3 shows a 

graphical view of the proposal model and every module of this 
is described below. 

A. Time Series 

This module contains several functions that allow the pre-
processing of the time series from which the historical vectors 
will be implemented. For the present study, the same time 
series was chosen as in [1], “in press” [4] and [5] so that the 
comparison of results is more appropriate. 

Also, this module contains a getVectors() function which 
allows to extract historical vectors from the chosen time series. 

Two vectors were considered for the vector base: The first 
Q1, contains time series extracted from March 23 to September 
22 (Fall and Winter seasons in Peru). The second Q2, contains 
time series extracted from September 23 to March 22 (Spring 
and Summer seasons in Peru). Table I shows the algorithms 
used in Time Series Module. 

TABLE. I. ALGORITHMS FOR RETRIEVING HISTORICAL VECTORS 

function initTemp()  

{ t=15.0; 

 for(i=0;i<=200;i++) 
 { temv.push(parseFloat(t.toFixed(1))); 

  t+=0.1; 

 } 
} 

function initBase(ts,idx) 

{ Q1=new Array(200); 
 Q2=new Array(200); 

 getVectors(ts,idx); 

} 

function getVectors(ts,idx) 

{ nQ=Q1.length; 
 nts=ts.length; 

 total=30; 

 for(i=0;i<nQ;i++) 
 { value=parseFloat(temv[i]); 

  cad1="";//fall-winter 

  cad2="";//spring-summer 
  finj=nts-total; 

  for(j=0;j<finj;j++) 

  { if(value==parseFloat(ts[j])) 
   { ini=j+2; 

    fin=j+total; 

    if(idx[j]<184) 
    { cad1+=ts[j+1]; 

     for(k=ini;k<=fin;k++) 

      cad1+="*"+ts[k]; 
     cad1+="/"; 

    } 

    else 
    { cad2+=ts[j+1]; 

     for(k=ini;k<=fin;k++) 

      cad2+="*"+ts[k]; 
     cad2+="/"; 

    } 

   } 
  } 

  Q1[i]=cad1; 

  Q2[i]=cad2; 
 } 

} 
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Fig. 3. Proposal Model. 

B. Average of Historical Vectors (AHV) 

This module was implemented through a function called 
AHV that uses several functions that will allow to calculate the 
NA values, among these functions we have getPriorNext (), 
getSimilar() and calculateNA(), which are described below: 

getPriorNext() is a function that allows to calculate the 
prior and next values from the time series with NA values. 

getSimilar () is a function that allows to obtain the historical 
vectors of 30 days having the prior value as a key value. 

The data returned by the getSimilar() function is converted 
in vectors and then into a matrix M whose columns will be 
averaged to obtain the average vector with the estimated NA 
values. Equation (1) is used to calculate NA values. 

    ∑ (∑       
   )     

               (1) 

TABLE. II. AHV ALGORITHM 

function AHV(prior,ix) 

{  
 totalf=30; 

 posf=ts.length-1; 

 i=0; 
 index=ix+1; 

 avector=new Array(); 

 while(i<totalf)   
 { data=getSimilar(prior,ix); 

  dat=data.split("/"); 

  ndat=dat.length-1; 
  M=new Array(); 

  for(j=0;j<ndat;j++) 

  { da=dat[j].split("*"); 
   M.push(da); 

  } 

  nda=20; 
  ix+=nda; 

  if(ix>=365) 

   ix=0; 
  for(jj=0;jj<nda;jj++) 

  { s=0.0; 

   for(ii=0;ii<ndat;ii++) 
    s+=parseFloat(M[ii][jj]);  

   mean=s/ndat; 

   avector.push(mean.toFixed(4)); 
  } 

  current=mean.toFixed(1); 

  i+=nda; 
  posf=ts.length-1; 

 } 

 return avector; 
} 

The code corresponding to the AHV algorithm is shown in 
Table II. 

C. Fitting - Smoothing 

This module allows improving the accuracy of the 
estimated vector by AHV algorithm using two algorithms, the 
first is iNN (interpolation to Nearest Neighbors) and the second 
is LANNf, which are described below. 

 Interpolation to Nearest Neighbors (iNN). It is an 
algorithm that approximates an estimated vector of NA 
values towards the prior and next values of a block of 
NA values. 

This approach consists of: 

1) Calculate the difference d between prior and next 
values, through equation (2). 

  (          )             (2) 

2) Determine the t factor from equation (3). 

                     (3) 

Where nna is the gap-size. The t factor is used to calculate 
the values of the first NA and Last NA. See Fig. 4. 

The t factor is subtracted or added according to the value of 
d, which determines the trend of the curve. 

3) Once the first fitted NA and last fitted NA values are 

calculated, the differences between these values and those 

estimated in the NA Calculation block are determined using 

equation (4) and equation (5). 

                                       (4) 

                                      (5) 

4) Based on the differences d1 and d2, the k factor is 

calculated using equation (6). 

   
     

     
               (6) 

The k factor is used to adjust the non-adjusted NA values. 
An adder s is initialized on d1 and each non-adjusted NA 
element is iterated. If d1<d2 the adder s increases in k, 
otherwise if d1>d2 the adder s decreases in k. 

Fig. 5 shows an example of an estimated 30-day curve 
fitted with iNN. 

 

Fig. 4. First and Last NA Re-Calculation. 
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Fig. 5. Comparison of Non-Fitted Curve vs Fitted Curve. 

The iNN algorithm is shown in Table III, which it receives 
as inputs: 

 ts  the time series to interpolate or adjust 

 prr the prior value 

 nxt the next value 

 nna the number of NA values 

TABLE. III. INN ALGORITHM 

function iNN(ts,prr,nxt,nna) 

{ first=0; 

 last=nna-1; 

 d=prr-next; 

 t=Math.abs(d/nna); 
 if(d>0) 

 { prr1=prr-t; 
  nxt1=nxt+t; 

 } 

 else 
 { prr1=prr+t; 

  nxt1=nxt-t; 

 } 
 d1=ts[first]-prr1; 

 d2=ts[last]-nxt1; 

 dd=d1-d2; 
 k=Math.abs(dd/(nna-1)); 

 predi=new Array(); 

 predi.push(prr1); 

 s=d1; 

 for(z=1;z<last;z++) 

 {  
  if(d1>d2) 

   s-=k;  

  else  
   s+=k; 

  fllw=parseFloat(ts[z])-s; 

  predi.push(fllw); 
 } 

 predi.push(nxt1); 

 return predi; 
} 

 

Fig. 6. Comparison of Fitted Curve vs Smoothed Curve. 

 Local Average of Nearest Neighbors Filter (LANNf). It 
is an algorithm inspired by LANN [1] that allows 
smoothing a curve, for each estimate it uses three 
values of the vector to be smoothed, recalculating the 
intermediate or second value with the average of the 
first and third. Fig. 6. Shows a comparison between a 
fitted curve versus a smoothed curve using LANNf. 

D. Testing 

This module implements a RMSE function that calculates 
the Root Mean Squared Error to estimate the performance and 
accuracy of the proposal model. RMSE is calculated with 
Equation (7). 

     √
∑ (     )    
   

 
             (7) 

The LANNf algorithm is shown in Table IV. 

TABLE. IV. LANNF ALGORITHM 

function LANNf(ts) 

{ nts=ts.length-1; 
 i=1; 

 while(i<nts) 

 { prr=parseFloat(ts[i-1]); 
  nxt=parseFloat(ts[i+1]); 

  ts[i]=((prr+nxt)/2).toFixed(4); 

  i+=1; 
 } 

 return ts; 

} 

V. RESULTS AND DISCUSSION 

In this section, the accuracy of the proposal model is 
compared with different techniques described in Related Work 
section; the comparative results show the performance of the 
proposal on medium and big gaps. 

Table V and Fig. 7 show the results achieved by the 
proposal model compared to other well-known techniques. As 
it can be seen, the proposal model is always among the best 
ones. 

24 

24.5 

25 

25.5 

26 

26.5 

27 

27.5 

28 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

iNN RMSE=0.6777 

Real Non-Fitted Fitted

24.5 

25 

25.5 

26 

26.5 

27 

27.5 

28 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

LANNf RMSE=0.6693 

Real Fitted Smoothed



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 10, 2019 

351 | P a g e  

www.ijacsa.thesai.org 

TABLE. V. COMPARISON WITH OTHER UNIVARIATE IMPUTATION 

TECHNIQUES (90-DAYS) IN MEDIUM-GAPS 

Technique 
RMSE 

(NAs 80%) 

RMSE 

(NAs 65.55%) 

RMSE 

(NAs 54.44%) 

AHV, iNN & LANNf 0.7038 0.7251 0.8381 

CBRm 0.6844 0.8050 0.8968 

CBRi 0.8086 0.8112 0.8905 

LANN  0.8422 0.8198 0.9053 

LANN+ 0.8276 0.7339 0.8608 

Hotdeck  1.4337 1.6323 1.4996 

SMA (k=1)  0.8324 0.7035 0.8403 

LWMA (k=4)  0.7673 0.7083 0.8106 

EWMA (k=4)  0.7682 0.7456 0.8535 

ARIMA Kalman  5.4275 6.7383 2.6836 

 

Fig. 7. Comparison with other Techniques (Medium-Gaps). 

According to Table VI and Fig. 8, it can be seen that the 
proposal model, like the case of medium-gaps, for big-gaps is 
also among the best. 

TABLE. VI. COMPARING WITH OTHER UNIVARIATE IMPUTATION 

TECHNIQUES IN BIG-GAPS 

Technique  
RMSE 

GAP-SIZE:11 

RMSE 

GAP-SIZE: 21 

RMSE 

GAP-SIZE: 30 

AHV, iNN & LANNf 0.6175 0.6783 0.6693 

ARIMA 0.6748 1.0424 1.4165 

Prophet 0.5991 0.6477 0.7652 

LSTM 0.6156 0.6820 0.7579 

GRU 0.6749 0.6503 0.7262 

 

Fig. 8. Comparison with other Techniques (Big-Gaps). 

VI. CONCLUSION 

In imputation processes of máximum temperature time 
series with medium-gaps (from 3 to 10 consecutive NAs), of 
the three proposed problems and among 10 techniques, the 
proposal model was among the best: in one problem it was 
third and in the other two it was second. 

For big-gaps imputation, in three different problems the 
proposed model was always among the three best, in two cases 
it was third and in one case it was the best. 

Therefore, according to the results achieved, the proposed 
model is highly recommended for imputation processes of 
medium and big-gaps. 

VII. FUTURE WORK 

There are several improvements that can be implemented in 
this work; some of them are mentioned below: 

AHV only uses historical data to estimate NAs vertically; it 
could be complemented with the traditional horizontal mode. 
In addition, the vertical imputation technique could be any of 
the known SMA, LWMA, EWMA, ARIMA, KALMAN, etc., 
since as the average is known, it is one of the most basic and 
risky techniques due to the bias that can be inserted in time 
series. 

Also, instead of working with only two stations, the 4 
known stations could be included for this type of time series. 
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