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Abstract—The complementary strengths and weaknesses of 

both statistical modeling paired with machine learning has been 

an ongoing technique in the development and implementation of 

forecasting models that analyze the dataset’s linear as well as 

nonlinear components in the generation of accurate prediction 

results. In this paper, autoregressive integrated moving average 

(ARIMA) and artificial neural networks (ANN) were 

implemented as a hybrid forecasting model for a power utility’s 

dataset in order to predict the next day’s electric load 

consumption. ARIMA and ANN models were serially developed 

resulting to the findings that out of the twelve evaluated ARIMA 

models, ARIMA (8,1,2) exhibited the best forecasting 

performance. After identifying the optimal ANN layers and input 

neurons, this study showed that out of the six evaluated 

supervised feedforward ANN models, the ANN model which 

employed Hyperbolic Tangent activation function and Resilient 

Propagation training algorithm also exhibited the best 

forecasting performance. With Zhang’s ARIMA and ANN 

hybridization technique, this study showed that the hybrid model 

delivered Mean Absolute Percentage Error (MAPE) of 4.09% 

which is within the 5% internationally accepted forecasting error 

for electric load forecasting. Through the findings of this 

research, both the ARIMA statistical model and ANN machine 

learning approaches showed promising results in being 

implemented as a forecasting model pair to analyze the linear as 

well as non-linear properties of a power utility’s electric load 

data. 

Keywords—Hybrid model; autoregressive integrated moving 

average; electric load forecasting; Artificial Neural Network (ANN) 

I. INTRODUCTION 

Use of individual machine learning and statistical modeling 
has been in the forefront of predictive analytics due to their 
promising abilities to deliver close to accurate forecasting 
results. Autoregressive Integrated Moving Average (ARIMA) 
is a statistical modeling approach which has been widely used 
in forecasting with promising accuracy brought about by 
efficient linear representation exhibited by non-linear systems 
[1-4]. With its strength in modeling time series data such as 
consumed electric load as well as datasets with validated 
linearity properties, ARIMA forecasting applications is a 
growing body of researches with various applications in 
different fields [3]. Artificial Neural Networks (ANN) is a 
machine learning tool that finds patterns in the same way that 

biological neural networks develop association along with 
mathematical equivalent elements capable of processing like 
that of the human brain [2, 4, 5]. Compared to that of ARIMA, 
ANN has the ability to learn from non-linear datasets due to its 
strength of being adaptively formed from the implemented 
features of its own dataset. Despite their differences in the kind 
of data that they can accommodate, ARIMA and ANN hybrid 
forecasting methodologies as well as modelling techniques are 
being widely developed due to the potential of generating 
better predictive performance than individually utilizing each 
model [2, 6]. For the purpose of optimal predictive 
performance, the main challenge in the hybridization of these 
machine learning and statistical modeling approaches relies on 
the optimal match between the data they are processing along 
with the forecasting ability that they enforce in their inherent 
unique advantages. This gives data modelers the challenge 
beyond the functions of data preparation and explore on the 
performance analysis of the ARIMA and ANN hybridization 
technique that can yield optimal predictive results. 

Datasets such as electric load data bearing recorded 
consumption behavior through time has linear along with non-
linear properties [5, 7, 8]. A combinatory modelling technique 
of these two models with ARIMA to handle the dataset’s 
linearity and ANN to handle the non-linearity can result to 
more efficient forecasting outputs than just independently 
using one of them. This combined model is also suitable for 
both one-step ahead and multistep ahead predictions in 
generating better hybrid model performance for natural and 
economic datasets [1, 9, 10]. Power systems from the functions 
of generation, transmission and distribution can make use of 
historical load data in the development of load forecasting 
models that can aid decision makers in operations planning. 
Forecasting the load consumption in different time frame 
granularities whether it be week-ahead, day-ahead or hour-
ahead predictions can benefit power systems in the provision of 
demand information used to carry out required actions and 
planning processes that ensure reliable power systems [5, 11]. 
With historical electric load consumption data bearing both 
linear and non-linear properties, a specified hybrid model 
imploring the unique strengths of both ARIMA and ANN can 
be a potential implementation in the generation of close to 
accurate electric load forecast. The presence of historical load 
datasets as well as the absence of forecasting models that can 
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process these datasets for tactical and strategic operations 
planning is a common problem faced by power generation, 
transmission and distribution entities. This research aims to 
present a hybrid model of ARIMA and ANN in the processing 
of electric load data in order to generate optimal day-ahead 
forecasting results, Despite availability of literatures that 
explore the hybridization of ARIMA and ANN among non-
electricity related datasets, this study aims to present a 
personalized hybrid model specific in the processing and 
prediction of electric load [1, 4, 6, 10]. With an exploration on 
electric load data preparation and hybridization technique in 
ARIMA and ANN, the results of this study hopes to aid data 
modelers and decision makers in the development and 
implementation of a forecasting model that utilizes both 
machine learning and statistical modeling for better 
management of power systems. 

II. METHODOLOGY 

A. ARIMA Modeling 

Historical electric load data of a power utility from 
December 27, 2013 to October 21, 2014 for a total of 28, 704 
records were chosen as inputs to create both ARIMA and ANN 
models. As shown in Table I, the dataset comes in 15-minute 
records of the date, time, kilowatt delivered (KW_DEL), 
kilowatt per hour delivered (KWH_DEL) and kilo volt amps 
reactive hours delivered (KVARH_DEL). The column utilized 
as input to the models was kilowatt delivered (KW_DEL) since 
this is represents the consumed electric load which can be used 
to determine the predicted values for the next day. The entire 
15-minute data of October 21, 2014 was used as the testing set 
for the overall testing in ARIMA forecast, ANN forecast, and 
Hybrid forecast. 

Since the data contains unscheduled power interruptions, 
several zero values were found in the historical data causing 
the dataset to become inefficient and out-of-range. Data 
correction was then performed in order to replace outlying 
values that could possibly alter the behavior and final results of 
the electric load forecasting model and might produce poor 
results. Outlying values of the electric load consumption data 
was replaced with the respective preceding day with the same 
time frame of the outlying value. This process of replacing 
outlying values by its preceding day’s respective data was 
supported by studies since the missing data per day has a 
tolerable occurrence [4, 5, 12]. Since the electric load 
consumption data was recorded in fifteen-minute interval, the 
maximum consumed electric load among the hour’s four 
fifteen-minute recordings was chosen to represent the hour’s 
consumption as suggested by researchers [5, 13]. By doing this 
the new number of observation would be 7, 176 with 7, 152 
observations to be used for training the model and the last 24-
hourly observation for testing the model. The number of 
observations to be used is just efficient for the hybrid model 
because a larger amount could lead to overfitting the ARIMA 
model while a smaller and inappropriately minimal amount 
could possibly lead to underfitting the ANN model [9, 14]. 

ARIMA modeling was conducted through model 
identification, model estimation, diagnostic checking, and 
forecasting phases. The model identification phase involves 
determining the order of the ARIMA model p, d, and q, where 

p represents the autoregressive terms, d represents the non-
seasonal differences needed for stationarity, and q represents 
the lagged forecast errors in the prediction equation [10, 12, 
14]. Modeling an ARMA (p, q) process requires stationarity in 
order to fit this model easily. A time series data is said to be 
stationary if its statistical properties do not depend on the time 
at which the series is observed having both mean and variance 
that do not change over time with the process not having trends 
[6, 15]. A method called differencing where differences are 
computed between consecutive observations must be done to 
achieve stationarity. Equation 1 shows the process for first 
order differencing where t is the differenced variable and yt is 
the time series variable. 

                         (1) 

A stationarity test called the Dickey-Fuller test was then 
used to determine if the variable is stationary or not [14]. The 
Dickey-Fuller test tests the null hypothesis of whether a unit 
root or non-stationary is present in an autoregressive model. 
First regular differencing as seen in Equation (1) was applied to 
meet the condition for stationarity and if by doing this the 
electric load data is still not in a stationary condition, the 
second regular differencing will be applied. Once stationarity 
have been addressed, the next step is to identify the order p and 
q of the autoregressive and moving average terms respectively 
[14, 15]. This involves plotting the data over time and the 
corresponding Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF). By plotting the ACF and 
PACF, the researchers can come up to possible ARMA models 
that will be used later in estimation. After the nomination of 
one or more appropriate models to describe the view of the 
time series data, parameters of the model was estimated using 
an estimation method used in the original ARIMA Box and 
Jenkins methodology. This estimation method followed a 
guiding principle of parsimony that is the total number of 
parameters of the model should be as small as possible which 
makes a model a good fit [14]. In addition to estimating a 
model for the electric load consumed data, the model with the 
smallest parameters is more promising to the efficient forecast 
due to more stable parameters obtained. Using a high quality 
statistical software, the coefficients of the parameters was 
determined to come up with the final ARIMA model that 
would fit the original data. These ARIMA models were further 
examined to check if all the parameters are significant using 
the assumptions of the criterions called the Akaike Information 
Criterion (AIC) and p-value. The AIC is an index used in a 
number of areas as an aid to choosing between competing 
models which defined as where Lm is the maximized log-
likelihood and m is the number of parameters in the model. 
Among the set of suggested models that are being estimated, a 
model with the smallest AIC and has significant coefficients 
was chosen as the final model that will be validated in the 
diagnostic checking phase. 

TABLE. I. ELECTRIC LOAD DATA 

DATE TIME KW_DEL KWH_DEL KVARH_DEL 

XXX XXX XXX XXX XXX 

XXX XXX XXX XXX XXX 
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Once a model has been identified, the result was then 
considered as the final model and forecasts was obtained 
accordingly. In a normal diagnostic check in an ARIMA Box 
and Jenkins methodology, fitted models was checked if it is a 
satisfactory one to protect against forecasting errors. This was 
implemented by the use of standard diagnostic checks that 
examined the correlogram of the residuals from the fitted 
model to see if the residuals exhibit white noise. A good 
forecasting method should yield residuals with a white noise in 
which residuals are uncorrelated and have zero mean. If the 
fitted model is a good model for the data, the residuals should 
satisfy these assumptions. If these assumptions are not 
satisfied, a more appropriate model should be fitted and the 
whole process will go back to the model identification step and 
try to develop a better model. In the case of passing the model 
for these tests, a final model was adopted which is used to 
estimate linear predictions of the electric load data. Moreover, 
the residual series was analyzed using the Box-Pierce Q-
statistics as recommended by studies to make clear that the 
values are normally distributed [6, 14, 15]. When the residual 
series finally meets the condition of normal distribution, then 
the model could be used in predicting future values. After the 
model has been estimated and validated, this model was 
identified as the final model for ARIMA forecasting. Using the 
provided electric load dataset, the final model will obtain the 
corresponding linear forecast Lt at time t and the residual of the 
observed value where yt is the observation at time t. The 
residuals dataset was then modeled by ANN. 

B. ANN Modeling 

Simple perceptron can only identify sets of data that are 
linearly separable, and when the input data to be classified are 
not linearly separable, learning and classification will never 
reach an optimum point of distinct separation [16]. In situations 
like this, Multilayered Perceptron (MLP) model is used in 
learning and classification. Thus, a MLP having input, hidden 
and outputs units as a type of ANN was used in formulating an 
ANN Model to resolve the problem of electric load forecasting 
[5, 7]. As a feed-forward ANN having input neurons, hidden 
neurons and outputs neurons, it allows signals to travel one 
way only, from input to output [7, 16-17]. In this study, the 
number of inputs of the neurons depends on the residuals of the 
ARIMA model, which has non-linear relationship. The hidden 
layer, on the other hand, serves to encode the input and map it 
to the output. Identifying the ANN’s hidden neurons in the 
hidden layer does not have any standardized or theoretical 
approach but there are some empirically-derived rule-of-thumb 
approaches [5, 18]. Trial and error was then used to determine 
the optimum neurons in the hidden layer of the network using 
formulas from different researchers on how to crosscheck the 
efficient number of hidden neurons [4, 17-19]. Since the output 
layer is where the outcome of the network can be seen, the 
number of output neurons solely depends on the problem that 
the neural network wants to learn. 

Backpropagation is considered as one of the original 
training algorithms for feedforward neural networks that uses 
both learning rate and momentum with learning rate as the 
variable of learning agility and the momentum as the variable 
that helps the network get out of the established local minima 
[5, 12]. Manhattan Propagation on the other hand uses a delta 

value in updating its weight values. Resilient propagation 
training algorithm is unique compared to the two earlier 
mentioned ANN training algorithms since it does not require 
training parameters making it much easier to model and utilize, 
but has shown better performance efficiency than that of 
Manhattan Propagation and Backpropagation [6, 17]. As 
shown in Table II, this study used different pairs of training 
algorithms with Hyperbolic Tangent and Logarithmic 
activation functions since these activation functions has the 
ability to produce results between -1 and 1 fit to the datasets 
that were transformed in a scale of -1 and 1. This was done 
conservatively for the purpose of avoiding ambiguous values. 

After the architecture of the ANN model, the next phase 
involves training the forecasting model. During the training 
process, test inputs were implemented to the electric load 
consumed training dataset using the training algorithms. These 
training algorithms were used to update the network weights 
and adjust biases of the network until the error is less than the 
desired limit [9, 17, 19]. The learning parameters used in this 
study were the desired error, and number of iterations. The 
desired error was set to 0.0001 to help the network reach an 
optimal solution with the smallest amount of error. The 
standard range for the desired error should be between 0.0005 
and 0.0001. The lower the desired error implies optimal the 
result. Since the goal of this study is to get an error rate below 
the international error rate of 0.0005 and to have efficient and 
optimal results, the desired value was set to 0.0001. In 
choosing the number of iteration, the number of records to be 
used is accounted for resulting to10, 000 as the identified 
number of iterations.. If the number of records is 500 then the 
iteration is between the range of 500+250 and 500-250 or 750 
to 250. In this study, since the amount of records to be used is 
7,152 for training, then the iteration to be used is within the 
range 10, 728 and 3576. The researchers then decided to use 
the value of 10000. These parameters were used in order to 
have an equal credibility in comparison with the forecasting 
models. To measure accuracy, error measure in terms of Mean 
Square Error (MSE) was calculated to determine the predictive 
capability of the models. For this error measure, resulting 
values will always be non-negative and values closer to zero 
are better [7]. Thus, smaller value from the resulting 
calculation would indicate a consistency of performance in the 
neural network. 

TABLE. II. FORMULATED MLP MODELS 

Mod

el 

Training 

Algorithm 

Activatio

n 
Function 

Mod

el 

Training 

Algorithm 

Activation 

Function 

Mod

el 1 

Backpropagati

on 

Hyperbol
ic 

Tangent 

Mod

el 4 

Backpropagati

on 

Logarithm

ic 

Mod
el 2 

Manhattan 
Propagation 

Hyperbol

ic 

Tangent 

Mod
el 5 

Manhattan 
Propagation 

Logarithm
ic 

Mod

el 3 

Resilient 

Propagation 

Hyperbol

ic 
Tangent 

Mod

el 6 

Resilient 

Propagation 

Logarithm

ic 
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C. Hybrid Model Implementation 

In implementing the ARIMA model, Dickey-Fuller test was 
said to test stationarity followed by the identification of a 
candidate model to be used. The chosen model was estimated 
along with variations of the model for comparison. The 
residuals of the chosen model underwent a diagnostic check by 
doing a portmanteau test. The result of the final model was a 
linear forecast of the hybrid model, along with the residuals 
calculated by subtracting the actual dataset with resulting 
dataset which was then fed to the ANN model. The resulting 
linear forecasted data from the ARIMA model would be stored 
in a database. The ANN model was implemented in Encog, a 
java-based system for ease of simulation and calculation of the 
training and testing. The residuals from the ARIMA model 
would be read in Encog which training set and testing set being 
partitioned from the residuals. After partitioning the datasets, 
the next step is configuring the neural network and adding a 
hidden layer. After the hidden layer is added, the network 
would be structured and undergo a reset. After the network 
undergo a reset, it would then be trained along with the training 
set and then iterated. Once the iteration is finish, a finalized 
neural network is created. The last step is to calculate the error 
of the finalized neural network on the testing set. After the 
calculation, Encog would store the data in a database and exit. 
The result from neural network would be the nonlinear forecast 
of the hybrid model. 

In the Hybrid Implementation phase, the linear and 
nonlinear forecasted dataset obtained from the previous phases 
stored in the database would be added manually. As shown in 
Equation (2), the process of adding the linear and nonlinear 
forecasted dataset was based on Zhang’s ARIMA-ANN 
hybridization in which it is assumed that the given time series 
data is a sum of two components: linear and non-linear [4]. 

                      (2) 

On the given time series (yt), ARIMA is fit and the linear 
predictions are obtained, ( ) by Equation (3). 

 ̂                                        (3) 

The difference series is obtained by Equation (4) on which 

ANN is fit and the predictions ( ) are obtained using 
Equation (5).  

       ̂               (4) 

 ̂                                  (5) 

The hybrid model predictions are now obtained by 
summing the ARIMA and ANN predictions as shown in 
Equation (6). 

 ̂   ̂   ̂               (6) 

To summarize the hybridization process, a block diagram is 
shown in Fig. 1. The sums were stored in the same database 
and was read in the Java-based system. In the Java Interface, it 
would show the hybrid forecasted dataset along with the 
specific time and date for each data. 

 

Fig. 1. A Block Diagram of the ARIMA and ANN Hybridization. 

After the implementation of the ARIMA and ANN hybrid 
model, the results from the hybrid model were assessed using 
MSE. Electric load consumption data for October 21, 2014 was 
used in testing the hybrid model. 

III. RESULTS AND DISCUSSION 

A. ARIMA Modeling Results 

The results of the ARIMA modeling were divided into four 
stages from model identification, model estimation, diagnostic 
checking, and forecasting phases. The model identification 
phase involves determining the order of the ARIMA model p, 
d, and q. Before modeling the data, the entire 7,152 hourly 
observations from the raw electric load data from 
December 2013 to October 2014 was first plotted in a basic 
plot to visualize the behavior of the data. The plot as shown in 
Fig. 2 revealed compactness of the series with huge 
randominity which signifies the nonlinearity of the data. This 
constant trend shows that the series is in nonstationary 
condition and there’s a need to apply differencing technique to 
make the series stationary [15]. 

Moreover, to support this claim, the test for stationarity 
called the Dickey-Fuller test which tested the null hypothesis 
of whether a unit root is present was applied which obtained a 
p-value of 0.81 from a lag of 24 which is equivalent to the 24 
hourly values per day data. A p-value more than 0.01 signifies 
a non-stationary data [14]. Thus, the test signifies a 
nonstationary condition and the null hypothesis was not 
rejected. The dataset, in order to achieve stationarity of the 
series, was applied with the differencing technique of yd = yt - 
yt-1 where yt is the load at time t and yd is the differenced load. 
After the technique was applied, the Dickey-Fuller test showed 
a result of 0.01 p-value with a lag value of 24 which signifies a 
stationary condition. The data was plotted as shown in Fig. 3. 

 

Fig. 2. Electric Load Data Plot. 
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Fig. 3. Diffrenced Series. 

The differenced data as clearly seen in the plot is already in 
a stationary condition with a constant mean and variance and 
so the series was ready for model identification. The ACF and 
PACF of the differenced series was being plotted as shown in 
Fig. 4 and Fig. 5, respectively which shows a tail-off behavior 
in the ACF and the PACF cuts off after the 9th lag. This 
behavior shows a stationary data and a tentative 
autoregressive-moving average model [15]. Thus, this behavior 
signifies stationarity of the series and an autoregressive (AR) 
and moving average (MA) model. The feasible number of AR 
and MA term is the lag that is zero or approximately equivalent 
to zero [12]. Based on the ACF, the AR term can be lags 5, 6, 
7, or 8 which can be determined by looking at which lag is zero 
or close to zero. While based on the PACF plot, MA term can 
be identified the same as the AR do, so the MA term could be 
2, 4, or 5. Based on the ACF and PACF results, the model that 
will be estimated will be ARIMA(5,1,2), ARIMA(5,1,4), 
ARIMA(5,1,5), ARIMA(6,1,2), ARIMA(6,1,4), 
ARIMA(6,1,5), ARIMA(7,1,2), ARIMA(7,1,4), 
ARIMA(7,1,5), ARIMA(8,1,2), ARIMA(8,1,4), and 
ARIMA(8,1,5) [14-15]. 

The purpose of ARIMA model estimation is to select a 
parsimonious model from the generated models which will 
base on the lowest total number of parameters and AIC. When 
comparing models fitted by maximum likelihood to the same 
data, the smaller the AIC implies better fit [1, 3]. After the 
nomination of the appropriate models based on the ACF and 
PACF, the AIC test was done on the generated models. The 
one with the smallest AIC had been chosen as the final model 
for forecasting. This estimation method follows a guiding 
principle of parsimony that is the total number of parameters of 
the model should be as small as possible which makes a model 
a good fit [14]. Table IV presents the possible ARIMA models 
with their corresponding criteria in terms of Root Mean 
Squared Error (RMSE) and the AIC. During the run, some 
models produced an error in fitting which outputs no AIC and 
RMSE which indicates that the model is not good for the 
feature of the data. These models are ARIMA(6,1,4), 
ARIMA(6,1,5), ARIMA(7,1,5). In this case, the model with the 
least criterion as a whole is ARIMA(8,1,2) with an RMSE of 
1247.582 and AIC of 122283 as indicated in Table III. Based 
on the results, the effective order of the AR terms is found to 
be p = 8, the MA terms is equal to q = 2, and the differentiation 
parameter is i = 1 since the raw series is differenced in the first 
order. The final model of order ARIMA(8,1,2) was chosen as 
the model for validation in the next phase. 

 

Fig. 4. Autocorrelation Function Plot. 

 

Fig. 5. Partial Autocorrelation Function Plot. 

TABLE. III. POSSIBLE ARIMA MODELS 

Model RMSE AIC Model RMSE AIC 

ARIMA(5,1,
2) 

1396.16
9 

123881.
2 

ARIMA(7,1,
2) 

1357.84
8 

123487.
5 

ARIMA(5,1,
4) 

1438.60
1 

124315.
4 

ARIMA(7,1,
4) 

1259.14
9 

122420.
7 

ARIMA(5,1,
5) 

1449.25
4 

124419.
9 

ARIMA(7,1,
5) 

N/A N/A 

ARIMA(6,1,
2) 

1357.94
7 

123486.
5 

ARIMA(8,1,
2) 

1247.58
2 

122283 

ARIMA(6,1,
4) 

N/A N/A 
ARIMA(8,1,
4) 

1259.69
5 

122424.
4 

ARIMA(6,1,
5) 

N/A N/A 
ARIMA(8,1,
5) 

1249.38
8 

122312.
8 

Before a forecast was generated using the ARIMA model, 
the model was first checked to test the adequacy of the overall 
model to prevent forecast errors. Residuals of the model was 
generated and checked by examining the correlogram to see if 
the residuals process a white noise. A residual in forecasting is 
the difference between an observed value and its forecast based 
on other observations [4, 15]. The residuals were plotted in a 
standard plot and autocorrelation plot as shown in Fig. 6 and 
Fig. 7, respectively. The residuals standard and ACF plot of the 
fitted model did not satisfy the diagnostic checking phase. The 
standard plot shown in Fig. 6 shows a slight pattern of data 
which rejects the white noise assumption. While the ACF plot 
in Fig. 7 shows significant spikes especially in lag 24 which 
correlates to the 24 hourly data and not all lags fall outside the 
confidence interval. 

The Box-Ljung test was also applied to the residuals and 
the test showed a p-value of 2.2e-1. Since this study is a hybrid 
process of ARIMA and ANN for linear and nonlinear 
components respectively, the results of the diagnostic checking 
phase shows that it does not satisfy the claim to be a random 
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distribution, thus was fixed by feeding the residuals to ANN 
for it to model and forecast a residual data for hybridization. 
Based on the results, the researchers found out that there was 
no evidence to claim that the residuals are random. Thus, the 
assumption that the electric load data comprised of nonlinear 
component was proved and the residuals data needs to utilize 
ANN modeling for residuals forecasting to later be joined in 
ARIMA forecast. The final chosen model as a whole in 
ARIMA modeling phase was ARIMA(8,1,2) which has a 
coefficients per term shown in Table IV. 

The model equation is where B is the backshift operator 
and at is the white noise. A 24-hour forecast was generated 
using this model which is shown in Fig. 8. The blue line is the 
point forecast from ARIMA(8,1,2) with its high and low 
boundaries. While the red line represents the actual 24-hour 
value of October 21, 2014. A shown in Fig. 5, the 24-hour 
forecast values of this model were imported in a database for 
later use in comparison. 

While residuals of the fitted model for a total of 7,152 data 
points were passed on to the next process for ANN modelling 
and then will forecast residuals to be merged in the hybrid 
process. Fig. 9 shows that the raw data of 7,152 values being 
fed to the ARIMA generated the same number of residuals to 
be used then in ANN modeling and a 24-ahead forecast to be 
test in the hybridization process. 

 

Fig. 6. Residuals Standard Plot. 

 

Fig. 7. Residuals Autocorrelation Plot. 

TABLE. IV. ARIMA COEFFICIENTS 

AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 
MA

1 

MA

2 

2.01
65 

-

1.35

77 

0.47
37 

-

0.40

29 

0.32
33 

-

0.42

54 

0.58
49 

-

0.32

44 

-

1.92

83 

0.99
56 

 

Fig. 8. Actual vs. Predicted Plot. 

 

Fig. 9. ARIMA Modeling Data Flow. 

B. ANN Modeling Results 

The results of the ANN model were divided into four 
phases namely ANN data preparation, ANN model 
formulation, ANN model training, and residuals forecasting. 
The model formulated in the ARIMA phases generated 
residual data for the ANN to model. After the residuals were 
generated in the ARIMA modeling, the data were plotted in the 
graph as shown in Fig. 10. 

The plotted residual values shows a random distribution of 
values with minimum value of -2680.893454503 and 
maximum value of 3652.1309335015 as these values are 
within the range of -2680.893454503 and 3562.1309335015, 
the boundaries for the residual transformation process. It is 
common in ANN modeling to undergo data transformation 
between a specified range e.g. -1 to 1 or 0 to 1 since this makes 
the training of the network efficient to yield accurate predictive 
results [6-8]. It was found out that the residuals generated from 
the ARIMA model did not satisfy this requirement resulting to 
a need for the data to be transformed. Shown in Table V are 
sample of the residuals dataset that underwent a transformation 
technique using Min-Max normalization which scaled down 
the dataset to a range of -1 to 1. 

 

Fig. 10. Residuals Dataset. 
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TABLE. V. SAMPLE ACTUAL RESIDUALS AND NORMALIZED RESIDUALS 

Actual 
Normaliz

ed 
Actual 

Normaliz

ed 
Actual 

Normaliz

ed 

-
1459.631

38 

-
0.524629

072 

3652.130

934 
1 

1564.143

068 

0.340603

245 

-
2596.552

35 

-
0.973364

668 

648.3317

892 

0.051385

575 

522.3360

6 

0.011595

509 

-

2680.893
45 

-1 

-

110.7605
25 

-

0.095252
67 

-

154.2247
59 

-

0.807376
23 

Designing the architecture of an ANN model includes the 
identification of the number and size of the input, hidden, and 
output layers. Although neural networks are used for the 
purpose of unsupervised learning, classification, or regression, 
in this study, regression was the appropriate application for the 
problem since residuals have time series structure [1, 7, 10]. A 
regressor neural network used two window sizes for the model 
training which are the input window size and the output 
window size [9, 12]. The input window used the number of 
input nodes while the output window size is equivalent to the 
number of the forecasting results being 24 hourly values in a 
day. The block diagram shown in Fig. 11 implies that all the 
models that were created were of a feedforward type of ANN 
where there is 1 layer containing 24 input neurons for the input 
layer to represent the 24 data points of the 24 hourly residuals. 

If the neural network is used for the purpose of regression, 
then the output layer has a single node [1]. This was also 
supported in a study which also used 1 output neuron for the 
output layer [19]. Since the data used in this study is a time 
series data, the output layer used contains 1 neuron. A neural 
network with one hidden layer has the tendency to perform 
very well depending on the problem [5, 19]. The researchers 
used 1 layer for the hidden layer. In order to select the 
appropriate number of hidden neurons, the researchers 
conducted a test with the result shown in Table VI. Each 
identified number of hidden neurons was tested using the final 
ANN model and yielded error measures in terms of MSE. 
From the 4 hidden neurons results, 17 hidden neurons had the 
lowest MSE while 4 hidden neurons had the highest MSE. 
Thus, this study used 1 hidden layer containing 17 of hidden 
neurons. 

The ANN model architecture composed 24 input neurons, 
17 hidden neurons and 1 output neuron. This research 
produced 6 models and used different kinds of training 
algorithms, namely, Backpropagation, Manhattan Propagation, 
and Resilient Propagation which were Hyperbolic Tangent and 
Logarithmic functions. In comparing the different ANN 
models, the model which had the lowest error is the Model 3 
which has the combination of Resilient Propagation and 
Hyperbolic Tangent and generated a network error of 
0.003668849. As shown in Table VII, better precision and 
accuracy of prediction were seen in Model 3 and Model 6 
which uses Resilient Propagation as training algorithm, 
however Model 3 outperformed Model 6 in terms of lesser 

MSE or prediction accuracy. On the other hand, Model 2 and 
Model 5 which uses Manhattan Propagation as training 
algorithm produced the neutral values of MSE which means it 
has the capability of performing predictions, however, these 
models were not enough to have a better prediction. 

Model 1 and Model 4 which used Backpropagation as 
Training Algorithm produced bigger value of MSE which only 
means that it has less capability of achieving good prediction or 
low quality of performance. Moreover, results showed that 
models which had Resilient Propagation as the training 
algorithm produced the smallest amount of error which only 
means that better predictions can be seen in these models. 
Resilient Propagation exhibited more efficient performance 
than Manhattan Propagation or Backpropagation for supervised 
feedforward neural networks. This made an advantage for the 
Resilient Propagation training algorithm since there were no 
learning rates, momentum values or update constants that need 
to be determined. On the other hand, the Backpropagation 
training algorithm used two parameters in conjunction with the 
gradient descent which may result to a problem in the 
algorithm because the gradient descent algorithm should be 
able to seek out local minima. These local minima are points of 
low error but may not be a global minimum. With Manhattan 
Propagation training algorithm, the sign of the gradient and the 
magnitude is discarded. This means that it is only important if 
the gradient is positive, negative, or near zero. When all the 
propagation training algorithms were paired with the 
Hyperbolic Tangent activation function, it stood out and 
resulted lesser error than the other activation function. This is 
because Hyperbolic Tangent activation function works with 
both negative and positive numbers. It has a derivative function 
which can be used with propagation training making it a 
common choice for feedforward and simple recurrent neural 
networks. Using Model 3, the graph shown in Fig. 12 shows 
the forecasted values of the residuals for the next 24 hours. 

 

Fig. 11. Block Diagram for ANN Architecture. 

TABLE. VI. HIDDEN NEURON RESULTS 

Hidden Neurons Technique Hidden Neuron MSE  

The square root of input neuron plus the 
output neuron  

5 0.000149 

The average of input and output neurons 13 0.000119 

The square root of input neuron 
multiplied with the output neuron  

4 0.000153 

2/3 of the input neuron plus the output 
neuron 

17 0.000110 
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TABLE. VII. ANN MODEL RESULTS 

ANN 
Models 

MSE 
ANN 
Models 

MSE 
ANN 
Models 

MSE 

Model 1 0.00490 Model 3 0.00111 Model 5 0.00426 

Model 2 0.00406 Model 4 0.00505 Model 6 0.001273 

 

Fig. 12. ANN Residuals Forecast Plot. 

C. Hybrid Model Implementation Results 

In the ARIMA-ANN hybrid model implementation, the 
actual dataset was passed to the ARIMA(8,1,2) model. This 
resulted to two dataset outputs which is the ARIMA forecast or 
the linear forecast and another which is the ARIMA residuals. 
Consequently, the ANN model that processed the ARIMA 
residuals employed Hyperbolic Tangent activation function 
and Resilient Propagation training algorithm. As shown in 
Table VIII, this ANN model generated the nonlinear forecast 
which was correspondingly added to the linear forecast to 
generate the ARIMA-ANN forecast. 

This hybrid model was based on Zhang’s hybridization 
process using ARIMA and ANN but focuses on a different 
aspect or field of study [4]. As presented in Table IX, the result 
still shows that the hybrid technique has outputs which are 
more accurate than using the individual models. 

Similar to a study which used ARIMA and GRNN, the 
hybrid forecast is much close to the actual data rather that the 
individual models used [12]. Another study using ARIMA and 
ANN on predicting traffics accidents also found that the hybrid 
model has a higher accuracy in prediction [10]. The results 
along with these studies presented that if the dataset is fully 
linear or fully nonlinear, then the hybrid model would not be 
beaten by the individual models. However, the researchers 
were not able to find any studies yet, disproving the prediction 
capability of the ARIMA-ANN hybrid model since as Zhang 
has assumed, there is no dataset that is fully linear and fully 
nonlinear. 

TABLE. VIII. ADDING THE LINEAR AND NONLINEAR FORECASTS 

  
ARIMA 

Forecast 
  ANN Forecast   

ARIMA+ANN 

Forecast 

1 26510.853 + -183.272 = 26327.581 

2 25565.625 + -1245.971 = 24319.654 

… … + … = … 

24 28439.424 + -463.978 = 27975.445 

TABLE. IX. MAPE OF THE MODELS 

Model Mean Absolute Percentage Error 

ARIMA Model 5.11% 

ANN Model 16.90% 

ARIMA+ANN Hybrid Model 4.09% 

IV. CONCLUSION AND RECOMMENDATIONS 

This study attempted to present a hybrid model of ARIMA 
and ANN in load forecasting. The methodology focused in the 
formulation and performance evaluation of twelve ARIMA 
models and six ANN models with different combination of 
training algorithm and activation functions. Since ARIMA 
(8,1,2) exhibited the best forecasting performance, its residuals 
were then processed by the best performing ANN model 
employing Hyperbolic Tangent activation function and 
Resilient Propagation training algorithm which generated the 
ANN forecast. The independent results of both ARIMA and 
ANN models were then processed following Zhang’s 
hybridization technique that generated a MAPE of 4.09% 
which is generally lower than the internationally accepted 5% 
MAPE for electric load forecasting. 

This study only focuses on a single hybridization technique 
of ARIMA and ANN models. Despite the very limited 
literature that attempted to develop and implement ARIMA 
and ANN models in forecasting, the researchers still 
recommend that other hybridization techniques should be 
explored along with the performance evaluation of these 
hybridization techniques. The possibility of implementing 
other hybrid implementation frameworks other than that of 
Zhang’s ARIMA and ANN hybridization process can yield to a 
fundamental rethinking of how statistical and machine learning 
models can process linear and non-linear datasets for 
forecasting functions. The results of this study clearly suggest 
that a forecasting model that utilizes both statistical modeling 
and machine learning can perform promising results that can be 
used for better management of power systems. 
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