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Abstract—The present paper represents an extension of 

LCAHASH system. LCAHASH is a previously developed 

lightweight hash algorithm. It is based on cellular automata. It 

was developed as an alternative to existing hash functions to 

ensure data integrity and to meet the security requirements of 

the Internet of Things devices. Due to the limited amount of 

storage and the limited computation capabilities of these devices, 

the algorithms used by these devices should be as efficient and as 

robust as possible. In this contribution, we propose an enhanced 

version of the original LCAHASH algorithm to improve its 

efficiency and its robustness. A description of the system 

proposed along with a security analysis and the results of a 

statistical battery of tests (Dieharder) are included. These results 

show that the system proposed exhibits good statistical and 

cryptographic features. 
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I. INTRODUCTION 

In the past few years, our societies have witnessed a rapid 
growth in technology due to the development of the Internet 
and the technological advances in electronics and software. 
Soon, every device we possess will be connected to the 
Internet. These devices range from toothbrushes to homes and 
include cameras, smartphones and other appliances. 

These advances help to improve our daily lives. However, 
most of these connected devices suffer from a lack of security. 
This can be due to either a negligence of the manufacturer or 
the lack of adapted security standards for these constrained 
devices. Examples of these security breaches are man-in-the-
middle attacks, denial of service (DoS), data forging or 
physical attacks. This explains the increasing need to develop 
lightweight cryptographic primitives adapted to the computing 
power and the storage capacity of these devices. 

In this context, LCAHASH, a lightweight hash system 
based on cellular automata, was previously developed to ensure 
the integrity of RFID tags data. In this paper, we modified the 
original LCAHASH design to make it more robust, more 
efficient and more suited for the Internet of Things (IoT) 
devices [1]. 

This paper is organized as follows: In Section II, we present 
cellular automata. In Section III, we mention some related 
works. In Section IV, we describe the new design for 
LCAHASH. Afterwards, we present the experimental results in 
Section V. Finally, we conclude with the conclusion in 
Section VI. 

II. BACKGROUND ON CELLULAR AUTOMATA 

Cellular automata (CA) are dynamic systems made of cells 
that take a state from a defined set of states [2]. In the case of 
S={0,1}, the CA is called a Boolean CA. Cellular automata 
evolve according to a local transition rule [2]. The local 
transition rules can be represented by a truth a table or a logical 
function defining the relation between the present cell’s state 
and its next state in relation with its neighbor(s). The whole 
system evolves according to a global function. Depending on 
the number of neighbors, the boundary conditions, the rules 
applied and the ruleset, a cellular automaton can be one-
dimensional or more, linear or chaotic, uniform or hybrid, etc. 

Cellular automata are simple structures that yield a 
complex and unpredictable behavior. This feature makes them 
easy to implement both in hardware and software and makes 
them good candidates to use in the context of lightweight 
cryptography [2]. 

III. RELATED WORKS 

We present here some other existing lightweight hash 
functions and some existing cellular automata based hash 
functions. 

With the exception of DM-PRESENT [3], which is based 
on the Davies-Meyer construction, most of the existing 
lightweight hash function are based on a sponge construction 
[4] rather than a Merkle-Damgård construction. Using the 
sponge construction, a fixed length output or digest is obtained 
from an arbitrary length input. This is made possible by the use 
of fixed length permutation function. Examples of these 
lightweight hash functions are KECCAK [5] (winner of the 
SHA-3 competition), PHOTON [6], SPONGENT [7], QUARK 
[8], GLUON [9] and Hash-One [10]. 

In [11], Damgård proposed three methods to design 
collision resistant hash functions. Among these methods, one 
uses cellular automata as a building block. This method was 
later on attacked in [12]. Daemen et. al also proposed two hash 
functions based on cellular automata in [12] and [13]. Those 
constructions were shown to be vulnerable by Chang in [14]. A 
family of hash functions was proposed by Mihaljevic in [15]. 
However, in this proposition, no rules and no neighborhood 
configuration were specified. Newer constructions comprise 
[16], [17] and [18]. 2D cellular automata were used by Hirose 
and Yoshida in [19]. 
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IV. DESCRIPTION OF LCAHASH 1.1 

In this section, we describe the new design of LCAHASH. 

The LCAHASH 1.1 process starts with splitting the input 
M into blocks of 128 or 256 bits, depending on the version of 
the algorithm. Padding is applied to the last block Mn if 
necessary. In the next step, a block is chosen at random (Mindex) 
and XORed with IV1, an initial vector of size 128 or 256 bits 
generated randomly. Following this step, a 7 or 13 bits prime 
number N is generated at random and Ris are computed 
following: 

Ri = Mi mod N              (1) 

The Ris are then concatenated into M’. M’ is in turn split 
into blocks of 128 or 256 bits and padding is applied to the last 
block Mk’ if necessary. Mevol is then obtained as follows: 

Mevol = IV2 ⊕M1’⊕M2’…⊕Mk’             (2) 

where IV2 an initial vector of size 128 or 256 bits generated 
randomly. Finally, using the hybrid cellular automaton with the 
rule set {30,90}, Mevol is evolved for 128 or 256 iterations 
depending on the version of the algorithm. The obtained 
sequence is the output or the digest of our hash function 
system. 

Algorithm 1. LCAHASH 1.1 Algorithm 

Input: M, IV1, IV2, index, N  

Output: Digest 

1 Split M into n blocks of 128 or 256 bits; 

2  If Mn is not a multiple of 128 or 256 then  

3   Pad Mn;   

4 End If 

5 Mindex ←Mindex ⊕  IV1 

6 For i=1 to n do 

7  Ri ←Mi mod N 

8 End For 

9 M’ ←R1 || R2 ||…|| Rn 

10 Split M’ into k blocks of 128 or 256 bits; 

11 If Mk’ is not a multiple of 128 or 256 then 

12  Pad Mk’; 

13 End If 

14 Mevol ←IV2 ⊕ M1’ ⊕ M2’ ⊕ … ⊕ Mk’ 

15  Digest ← Evol{30,90}( Mevol , 128 or 256 iterations) 

Fig. 1 shows the different steps of LCAHASH 1.1. 

 

Fig. 1. LCAHASH 1.1 steps 

 

Fig. 2. Sample Evolution of Mevol. 

Fig. 2 shows a sample evolution of Mevol using the non-
uniform cellular automaton with ruleset {30,90}. 
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V. SECURITY ANALYSIS, STATISTICAL TESTS AND 

PERFORMANCE 

Before proceeding to the security analysis of our modified 
design of LCAHASH, we consider first the major properties 
expected from a cryptographic hash function. These properties 
represent theoretical measures and are used in the field of 
cryptography to measure the level of security of hash functions 
and their ability to resist the most known cryptanalytic attacks. 

Ideally, a cryptographic hash function is [20]: 

 Deterministic: the same output (h) is always produced 
from the same input (m). 

 Easy and fast to compute. 

 Pre-image resistant: given an output h, it is 
computationally hard to find any input m such that h = f 
(m). This property prevents an attacker who has a hash 
value h from finding the input m. 

 Second pre-image resistant: given an input m, it is 
computationally hard to find another input m’ such that 
f (m) = f (m’). This property prevents an attacker who 
has an input (m) and its corresponding output (h) from 
replacing the original input with another input (m’). 

 Collision resistant: it is computationally hard to find 
two inputs m and m’ that generate the same output such 
that h = h’. This property prevents an attacker to find 
two inputs with the same output. Note that a hash 
function which is collision resistant is also second pre-
image resistant. 

A. Security Analysis 

1) Complexity: In general, a hash function should be easy 

and fast to compute. In order to evaluate this property, we try 

to approximate the complexity of our algorithm. 

Splitting the message M into n blocks and applying 

padding requires at most   
 

 
 steps (where s is the block size 

(128 or 256 bits) and L is the message length). XORing IV1 
and Mindex requires s modulo 2 additions. Calculating the Ris 

requires ns modulo 2 divisions. Splitting the message M’ into 

k blocks and applying padding requires at most   
  

 
 steps 

(where L’ is the length of the message M’). XORing M’is with 
IV2 requires k modulo 2 additions. Finally, evolving Mevol 
requires s

2
 steps. 

Overall, the complexity of our algorithm is O(s
2
). 

2) Pre-image and second pre-image resistance: The 

security of the proposed system lies in the global transition rule 

of the cellular automaton as IV1, IV2, index and N are known 

parameters. Depending on the version of the algorithm, 

1282
128 

or 2562
256

 operations are needed in order to find the 

global transition rule. Therefore, our proposed system is pre-

image and second pre-image resistant. 

3) Collision resistance: For each of the cellular automaton 

evolutions, a new state is obtained with 2
s
 – 1 possible 

sequences. If we consider the birthday attack [21] , the 

complexity upper bound for breaking the collision resistance of 

our system is O(2
s/2

). It means that depending on the version 

used, 2
128/2 

or 2
256/2

 operations are required to find a collision. 

4) Avalanche effect: In cryptography, a function that 

displays the avalanche effect property is a function for which a 

small change in the input causes a greater change in the output 

[22]. Preferably, one bit changed in the input should change 

half of the bits in the output (strict avalanche criterion) [23]. 

To evaluate the avalanche effect property of our system, we 
took a sample of a hundred 1024 bits messages. For each 
message, we changed the original message bit per bit and 
calculated the Hamming distance between the hash value of the 
original sample message and the modified messages. We then 
calculated the average percentage values based on the hundred 
sample messages. We evaluated the avalanche effect using the 
128-bit version of our system. The results of our setting are 
shown in Fig. 3 and Table I. 

B. Statistical Tests 

In order to test LCAHASH against statistical attacks, we 
used the DIEHARD test suite [24]. This test suite consists of a 
series of tests that evaluate the randomness of an algorithm. 
The benefit of this test suite is to show that the output of our 
algorithm is statistically indistinguishable from the output of a 
true random source and that predicting the output is 
computationally hard. 

Table II shows the results of the DIEHARD test suite. 

From the table below, we can see that LCAHASH 1.1 128-
bit version passed all the tests of the DIEHARD test suite. 
LCAHASH 1.1 has then a good random behavior and its 
outputs are statistically indistinguishable from those generated 
by a true random function. 

 

Fig. 3. Avalanche Effect for LCAHASH (128-Bit Version). 

TABLE. I. MIN, MAX AND MEAN AVERAGE HAMMING DISTANCES 

Min 45.41% 

Max 55.35% 

Mean 50.51% 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 11, 2019 

256 | P a g e  

www.ijacsa.thesai.org 

TABLE. II. DIEHARD TEST SUITE 

Test P-values Interpretation 

 Diehard birthdays 0.39440811 Passed 

 Diehard operm5 0.53313565 Passed 

 Diehard_rank_32x32 0.57604853 Passed 

 Diehard_rank_6x8 0.72206931 Passed 

 Diehard_bitstream 0.94834578 Passed 

 Diehard_opso 0.13756532 Passed 

 Diehard_opso 0.92199512 Passed 

 Diehard_dna 0.63962068 Passed 

 Diehard_count_1s_str 0.49117533 Passed 

 Diehard count1s byt 0.93944197 Passed 

 Diehard parking lot 0.22547510 Passed 

 Diehard 2d sphere 0.64639589 Passed 

 Diehard 3d sphere 0.79712585 Passed 

 Diehard squeeze 0.83155292 Passed 

 Diehard sums 0.17939475 Passed 

 Diehard runs 0.79737984 Passed 

 Diehard craps 0.47732566 Passed 

 Marsaglia tsang gcd 0.85305736 Passed 

 Sts monobit 0.95959990 Passed 

 Sts_runs 0.64144586 Passed 

 Sts_serial 0.50158333 Passed 

 Rgb_bitdist 0.46256434 Passed 

 Rgb_minimum_distance 0.63795066 Passed 

 Rgb_permutations 0.59225124 Passed 

 Rgb_lagged_sum 0.49443699 Passed 

 Rgb_kstest_test 0.69428829 Passed 

 Dab_bytedistrib 0.56457052 Passed 

 Dab_dct 0.42650444 Passed 

 Dab_filltree 0.41658555 Passed 

 Dab_filltree2 0.54588999 Passed 

 Dab_monobit2 0.67956689 Passed 

C. Performance 

To measure the software implementation of LCAHASH 
1.1, the Java source code was turned on an Intel Core i3-4010 
32-bit processor clocked at 1.7 GHz with 4 Go of RAM. The 
results are presented in Table III. The performance of 
LCAHASH 1.1 is compared to LCAHASH 1.0 and other 
lightweight hash functions [9]. Those results show that 
LCAHASH 1.1 has a better performance than LCAHASH 1.0. 
Furthermore, LCAHASH has a satisfying performance when 
compared to other well established lightweight hash functions. 

TABLE. III. SOFTWARE PERFORMANCE OF LCAHASH 1.1 

Hash function Output size (bit) 
Cycle per byte 

(cpb) 

Clock  

(GHz) 

LCAHASH 1.0 
128 324 1.7 

256 374 1.7 

LCAHASH 1.1 
128 995 1.7 

256 2844 1.7 

GLUON 112 1951 2.66 

U-QUARK 128 43373 2.66 

D-QUARK 160 53103 2.66 

S-QUARK 224 25142 2.66 

PHOTON 80 1243 2.66 

VI. CONCLUSIONS 

In this paper, we presented a modified version of 
LCAHASH, a previously developed lightweight hash function. 
In our proposed design, we used a non-uniform cellular 
automaton with the rule set {30,90} to evolve the variable 
length input of our algorithm in order to generate a 128-bit or a 
256-bit digest. 

The new design preserves the security and statistical 
properties of the original design and has a better performance. 

In future work, we should investigate non-uniform cellular 
automata more deeply and we should implement our algorithm 
in constrained devices to evaluate its hardware performance. 
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