
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

253 | P a g e

www.ijacsa.thesai.org

LCAHASH-1.1: A New Design of the LCAHASH

System for IoT

Anas Sadak
1
, Bouchra Echandouri

2
, Fatima Ezzahra Ziani

3
, Charifa Hanin

4
, Fouzia Omary

5

Faculty of Science, Mohammed V University

Rabat, Morocco

Abstract—The present paper represents an extension of

LCAHASH system. LCAHASH is a previously developed

lightweight hash algorithm. It is based on cellular automata. It

was developed as an alternative to existing hash functions to

ensure data integrity and to meet the security requirements of

the Internet of Things devices. Due to the limited amount of

storage and the limited computation capabilities of these devices,

the algorithms used by these devices should be as efficient and as

robust as possible. In this contribution, we propose an enhanced

version of the original LCAHASH algorithm to improve its

efficiency and its robustness. A description of the system

proposed along with a security analysis and the results of a

statistical battery of tests (Dieharder) are included. These results

show that the system proposed exhibits good statistical and

cryptographic features.

Keywords—Information security; hash function; cellular

automata; IoT; data integrity

I. INTRODUCTION

In the past few years, our societies have witnessed a rapid
growth in technology due to the development of the Internet
and the technological advances in electronics and software.
Soon, every device we possess will be connected to the
Internet. These devices range from toothbrushes to homes and
include cameras, smartphones and other appliances.

These advances help to improve our daily lives. However,
most of these connected devices suffer from a lack of security.
This can be due to either a negligence of the manufacturer or
the lack of adapted security standards for these constrained
devices. Examples of these security breaches are man-in-the-
middle attacks, denial of service (DoS), data forging or
physical attacks. This explains the increasing need to develop
lightweight cryptographic primitives adapted to the computing
power and the storage capacity of these devices.

In this context, LCAHASH, a lightweight hash system
based on cellular automata, was previously developed to ensure
the integrity of RFID tags data. In this paper, we modified the
original LCAHASH design to make it more robust, more
efficient and more suited for the Internet of Things (IoT)
devices [1].

This paper is organized as follows: In Section II, we present
cellular automata. In Section III, we mention some related
works. In Section IV, we describe the new design for
LCAHASH. Afterwards, we present the experimental results in
Section V. Finally, we conclude with the conclusion in
Section VI.

II. BACKGROUND ON CELLULAR AUTOMATA

Cellular automata (CA) are dynamic systems made of cells
that take a state from a defined set of states [2]. In the case of
S={0,1}, the CA is called a Boolean CA. Cellular automata
evolve according to a local transition rule [2]. The local
transition rules can be represented by a truth a table or a logical
function defining the relation between the present cell’s state
and its next state in relation with its neighbor(s). The whole
system evolves according to a global function. Depending on
the number of neighbors, the boundary conditions, the rules
applied and the ruleset, a cellular automaton can be one-
dimensional or more, linear or chaotic, uniform or hybrid, etc.

Cellular automata are simple structures that yield a
complex and unpredictable behavior. This feature makes them
easy to implement both in hardware and software and makes
them good candidates to use in the context of lightweight
cryptography [2].

III. RELATED WORKS

We present here some other existing lightweight hash
functions and some existing cellular automata based hash
functions.

With the exception of DM-PRESENT [3], which is based
on the Davies-Meyer construction, most of the existing
lightweight hash function are based on a sponge construction
[4] rather than a Merkle-Damgård construction. Using the
sponge construction, a fixed length output or digest is obtained
from an arbitrary length input. This is made possible by the use
of fixed length permutation function. Examples of these
lightweight hash functions are KECCAK [5] (winner of the
SHA-3 competition), PHOTON [6], SPONGENT [7], QUARK
[8], GLUON [9] and Hash-One [10].

In [11], Damgård proposed three methods to design
collision resistant hash functions. Among these methods, one
uses cellular automata as a building block. This method was
later on attacked in [12]. Daemen et. al also proposed two hash
functions based on cellular automata in [12] and [13]. Those
constructions were shown to be vulnerable by Chang in [14]. A
family of hash functions was proposed by Mihaljevic in [15].
However, in this proposition, no rules and no neighborhood
configuration were specified. Newer constructions comprise
[16], [17] and [18]. 2D cellular automata were used by Hirose
and Yoshida in [19].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

254 | P a g e

www.ijacsa.thesai.org

IV. DESCRIPTION OF LCAHASH 1.1

In this section, we describe the new design of LCAHASH.

The LCAHASH 1.1 process starts with splitting the input
M into blocks of 128 or 256 bits, depending on the version of
the algorithm. Padding is applied to the last block Mn if
necessary. In the next step, a block is chosen at random (Mindex)
and XORed with IV1, an initial vector of size 128 or 256 bits
generated randomly. Following this step, a 7 or 13 bits prime
number N is generated at random and Ris are computed
following:

Ri = Mi mod N (1)

The Ris are then concatenated into M’. M’ is in turn split
into blocks of 128 or 256 bits and padding is applied to the last
block Mk’ if necessary. Mevol is then obtained as follows:

Mevol = IV2 ⊕M1’⊕M2’…⊕Mk’ (2)

where IV2 an initial vector of size 128 or 256 bits generated
randomly. Finally, using the hybrid cellular automaton with the
rule set {30,90}, Mevol is evolved for 128 or 256 iterations
depending on the version of the algorithm. The obtained
sequence is the output or the digest of our hash function
system.

Algorithm 1. LCAHASH 1.1 Algorithm

Input: M, IV1, IV2, index, N

Output: Digest

1 Split M into n blocks of 128 or 256 bits;

2 If Mn is not a multiple of 128 or 256 then

3 Pad Mn;

4 End If

5 Mindex ←Mindex ⊕ IV1

6 For i=1 to n do

7 Ri ←Mi mod N

8 End For

9 M’ ←R1 || R2 ||…|| Rn

10 Split M’ into k blocks of 128 or 256 bits;

11 If Mk’ is not a multiple of 128 or 256 then

12 Pad Mk’;

13 End If

14 Mevol ←IV2 ⊕ M1’ ⊕ M2’ ⊕ … ⊕ Mk’

15 Digest ← Evol{30,90}(Mevol , 128 or 256 iterations)

Fig. 1 shows the different steps of LCAHASH 1.1.

Fig. 1. LCAHASH 1.1 steps

Fig. 2. Sample Evolution of Mevol.

Fig. 2 shows a sample evolution of Mevol using the non-
uniform cellular automaton with ruleset {30,90}.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

255 | P a g e

www.ijacsa.thesai.org

V. SECURITY ANALYSIS, STATISTICAL TESTS AND

PERFORMANCE

Before proceeding to the security analysis of our modified
design of LCAHASH, we consider first the major properties
expected from a cryptographic hash function. These properties
represent theoretical measures and are used in the field of
cryptography to measure the level of security of hash functions
and their ability to resist the most known cryptanalytic attacks.

Ideally, a cryptographic hash function is [20]:

 Deterministic: the same output (h) is always produced
from the same input (m).

 Easy and fast to compute.

 Pre-image resistant: given an output h, it is
computationally hard to find any input m such that h = f
(m). This property prevents an attacker who has a hash
value h from finding the input m.

 Second pre-image resistant: given an input m, it is
computationally hard to find another input m’ such that
f (m) = f (m’). This property prevents an attacker who
has an input (m) and its corresponding output (h) from
replacing the original input with another input (m’).

 Collision resistant: it is computationally hard to find
two inputs m and m’ that generate the same output such
that h = h’. This property prevents an attacker to find
two inputs with the same output. Note that a hash
function which is collision resistant is also second pre-
image resistant.

A. Security Analysis

1) Complexity: In general, a hash function should be easy

and fast to compute. In order to evaluate this property, we try

to approximate the complexity of our algorithm.

Splitting the message M into n blocks and applying

padding requires at most

 steps (where s is the block size

(128 or 256 bits) and L is the message length). XORing IV1
and Mindex requires s modulo 2 additions. Calculating the Ris

requires ns modulo 2 divisions. Splitting the message M’ into

k blocks and applying padding requires at most

 steps

(where L’ is the length of the message M’). XORing M’is with
IV2 requires k modulo 2 additions. Finally, evolving Mevol
requires s

2
 steps.

Overall, the complexity of our algorithm is O(s
2
).

2) Pre-image and second pre-image resistance: The

security of the proposed system lies in the global transition rule

of the cellular automaton as IV1, IV2, index and N are known

parameters. Depending on the version of the algorithm,

1282
128

or 2562
256

 operations are needed in order to find the

global transition rule. Therefore, our proposed system is pre-

image and second pre-image resistant.

3) Collision resistance: For each of the cellular automaton

evolutions, a new state is obtained with 2
s
 – 1 possible

sequences. If we consider the birthday attack [21] , the

complexity upper bound for breaking the collision resistance of

our system is O(2
s/2

). It means that depending on the version

used, 2
128/2

or 2
256/2

 operations are required to find a collision.

4) Avalanche effect: In cryptography, a function that

displays the avalanche effect property is a function for which a

small change in the input causes a greater change in the output

[22]. Preferably, one bit changed in the input should change

half of the bits in the output (strict avalanche criterion) [23].

To evaluate the avalanche effect property of our system, we
took a sample of a hundred 1024 bits messages. For each
message, we changed the original message bit per bit and
calculated the Hamming distance between the hash value of the
original sample message and the modified messages. We then
calculated the average percentage values based on the hundred
sample messages. We evaluated the avalanche effect using the
128-bit version of our system. The results of our setting are
shown in Fig. 3 and Table I.

B. Statistical Tests

In order to test LCAHASH against statistical attacks, we
used the DIEHARD test suite [24]. This test suite consists of a
series of tests that evaluate the randomness of an algorithm.
The benefit of this test suite is to show that the output of our
algorithm is statistically indistinguishable from the output of a
true random source and that predicting the output is
computationally hard.

Table II shows the results of the DIEHARD test suite.

From the table below, we can see that LCAHASH 1.1 128-
bit version passed all the tests of the DIEHARD test suite.
LCAHASH 1.1 has then a good random behavior and its
outputs are statistically indistinguishable from those generated
by a true random function.

Fig. 3. Avalanche Effect for LCAHASH (128-Bit Version).

TABLE. I. MIN, MAX AND MEAN AVERAGE HAMMING DISTANCES

Min 45.41%

Max 55.35%

Mean 50.51%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

256 | P a g e

www.ijacsa.thesai.org

TABLE. II. DIEHARD TEST SUITE

Test P-values Interpretation

 Diehard birthdays 0.39440811 Passed

 Diehard operm5 0.53313565 Passed

 Diehard_rank_32x32 0.57604853 Passed

 Diehard_rank_6x8 0.72206931 Passed

 Diehard_bitstream 0.94834578 Passed

 Diehard_opso 0.13756532 Passed

 Diehard_opso 0.92199512 Passed

 Diehard_dna 0.63962068 Passed

 Diehard_count_1s_str 0.49117533 Passed

 Diehard count1s byt 0.93944197 Passed

 Diehard parking lot 0.22547510 Passed

 Diehard 2d sphere 0.64639589 Passed

 Diehard 3d sphere 0.79712585 Passed

 Diehard squeeze 0.83155292 Passed

 Diehard sums 0.17939475 Passed

 Diehard runs 0.79737984 Passed

 Diehard craps 0.47732566 Passed

 Marsaglia tsang gcd 0.85305736 Passed

 Sts monobit 0.95959990 Passed

 Sts_runs 0.64144586 Passed

 Sts_serial 0.50158333 Passed

 Rgb_bitdist 0.46256434 Passed

 Rgb_minimum_distance 0.63795066 Passed

 Rgb_permutations 0.59225124 Passed

 Rgb_lagged_sum 0.49443699 Passed

 Rgb_kstest_test 0.69428829 Passed

 Dab_bytedistrib 0.56457052 Passed

 Dab_dct 0.42650444 Passed

 Dab_filltree 0.41658555 Passed

 Dab_filltree2 0.54588999 Passed

 Dab_monobit2 0.67956689 Passed

C. Performance

To measure the software implementation of LCAHASH
1.1, the Java source code was turned on an Intel Core i3-4010
32-bit processor clocked at 1.7 GHz with 4 Go of RAM. The
results are presented in Table III. The performance of
LCAHASH 1.1 is compared to LCAHASH 1.0 and other
lightweight hash functions [9]. Those results show that
LCAHASH 1.1 has a better performance than LCAHASH 1.0.
Furthermore, LCAHASH has a satisfying performance when
compared to other well established lightweight hash functions.

TABLE. III. SOFTWARE PERFORMANCE OF LCAHASH 1.1

Hash function Output size (bit)
Cycle per byte

(cpb)

Clock

(GHz)

LCAHASH 1.0
128 324 1.7

256 374 1.7

LCAHASH 1.1
128 995 1.7

256 2844 1.7

GLUON 112 1951 2.66

U-QUARK 128 43373 2.66

D-QUARK 160 53103 2.66

S-QUARK 224 25142 2.66

PHOTON 80 1243 2.66

VI. CONCLUSIONS

In this paper, we presented a modified version of
LCAHASH, a previously developed lightweight hash function.
In our proposed design, we used a non-uniform cellular
automaton with the rule set {30,90} to evolve the variable
length input of our algorithm in order to generate a 128-bit or a
256-bit digest.

The new design preserves the security and statistical
properties of the original design and has a better performance.

In future work, we should investigate non-uniform cellular
automata more deeply and we should implement our algorithm
in constrained devices to evaluate its hardware performance.

VII. CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

[1] Hanin, B. Echandouri, F. Omary, and S. E. Bernoussi, ―L-CAHASH: A
Novel Lightweight Hash Function Based on Cellular Automata for
RFID,‖ Ubiquitous Networking Lecture Notes in Computer Science, pp.
287–298, 2017.

[2] S. Wolfram, A New Kind of Science. Champaign, Ill: Wolfram Media,
2002.

[3] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
B. Robshaw, Y. Seurin, and C. Vikkelsoe, ―PRESENT: An Ultra-
Lightweight Block Cipher,‖ Cryptographic Hardware and Embedded
Systems - CHES 2007 Lecture Notes in Computer Science, pp. 450–466.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, ―On the
Indifferentiability of the Sponge Construction,‖ Advances in Cryptology
– EUROCRYPT 2008 Lecture Notes in Computer Science, pp. 181–197,
2008.

[5] E. B. Kavun and T. Yalcin, ―A Lightweight Implementation of Keccak
Hash Function for Radio-Frequency Identification Applications,‖ Radio
Frequency Identification: Security and Privacy Issues Lecture Notes in
Computer Science, pp. 258–269, 2010.

[6] J. Guo, T. Peyrin, and A. Poschmann, ―The PHOTON Family of
Lightweight Hash Functions,‖ Advances in Cryptology – CRYPTO 2011
Lecture Notes in Computer Science, pp. 222–239, 2011.

[7] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı, and I.
Verbauwhede, ―Spongent: A Lightweight Hash Function,‖ Cryptographic
Hardware and Embedded Systems – CHES 2011 Lecture Notes in
Computer Science, pp. 312–325, 2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

257 | P a g e

www.ijacsa.thesai.org

[8] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, ―Quark:
A Lightweight Hash,‖ Journal of Cryptology, vol. 26, no. 2, pp. 313–339,
Oct. 2012.

[9] T. P. Berger, J. D’Hayer, K. Marquet, M. Minier, and G. Thomas, ―The
GLUON Family: A Lightweight Hash Function Family Based on
FCSRs,‖ Progress in Cryptology - AFRICACRYPT 2012 Lecture Notes
in Computer Science, pp. 306–323, 2012.

[10] P. M. Mukundan, S. Manayankath, C. Srinivasan, and M.
Sethumadhavan, ―Hash-One: a lightweight cryptographic hash function,‖
IET Information Security, vol. 10, no. 5, pp. 225–231, Jan. 2016.

[11] Damgård, I. B. (1989). A Design Principle for Hash Functions. Advances
in Cryptology — CRYPTO’ 89 Proceedings Lecture Notes in Computer
Science, 416-427. doi:10.1007/0-387-34805-0_39.

[12] Daemen, J., Govaerts, R., & Vandewalle, J. (1991). A Framework for the
Design of One-Way Hash Functions Including Cryptanalysis of
Damgård’s One-Way Function Based on a Cellular Automaton.
Advances in Cryptology — ASIACRYPT 91 Lecture Notes in Computer
Science,82-96. doi:10.1007/3-540-57332-1_7.

[13] Daemen, J., Govaerts, R., & Vandewalle, J. (1992). A Hardware Design
Model for Cryptographic Algorithms. In: Deswarte Y., Eizenberg G.,
Quisquater JJ. (eds) Computer Security — ESORICS 92,648, 419-434.
doi: https://doi.org/10.1007/BFb0013911.

[14] Chang, D. (2006). Preimage Attacks on CellHash, SubHash and
Strengthened Versions of CellHash and SubHash (Vol. 2006, p. 412, Rep.
No. 2006/412). IACR Cryptology ePrint Archive.

[15] Mihaljevic, M., Zheng, Y., & Imai, H. (1999). A Family of Fast
Dedicated One-Way Hash Functions Based on Linear Cellular Automata
Over GF (q). IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 40-47.

[16] Jeon, J. (2012). One-Way Hash Function Based on Cellular Automata. IT
Convergence and Security 2012 Lecture Notes in Electrical Engineering,
21-28. doi:10.1007/978-94-007-5860-5_3.

[17] Kuila, S., Saha, D., Pal, M., & Chowdhury, D. R. (2014). CASH: Cellular
Automata Based Parameterized Hash. Security, Privacy, and Applied
Cryptography Engineering Lecture Notes in Computer Science, 59-75.
doi:10.1007/978-3-319-12060-7_5.

[18] Hanin, C., Echandouri, B., Omary, F., & Bernoussi, S. E. (2017). L-
CAHASH: A Novel Lightweight Hash Function Based on Cellular
Automata for RFID. Ubiquitous Networking Lecture Notes in Computer
Science, 287–298. doi: 10.1007/978-3-319-68179-5_25.

[19] Hirose, S., & Yoshida, S. (1997). A One-Way Hash Function Based on A
Two-Dimensional Cellular Automaton. The 20th Symposium on
Information Theory and Its Applications (SITA97), 213-216.

[20] P. Rogaway and T. Shrimpton, ―Cryptographic Hash-Function Basics:
Definitions, Implications, and Separations for Preimage Resistance,
Second-Preimage Resistance, and Collision Resistance,‖ Fast Software
Encryption Lecture Notes in Computer Science, pp. 371–388, 2004.

[21] M. Bellare and T. Kohno, ―Hash Function Balance and Its Impact on
Birthday Attacks,‖ Advances in Cryptology - EUROCRYPT 2004
Lecture Notes in Computer Science, pp. 401–418, 2004.

[22] A. F. Webster and S. E. Tavares, ―On the Design of S-Boxes,‖ Lecture
Notes in Computer Science Advances in Cryptology — CRYPTO ’85
Proceedings, pp. 523–534.

[23] R. Forrié, ―The Strict Avalanche Criterion: Spectral Properties of Boolean
Functions and an Extended Definition,‖ Advances in Cryptology —
CRYPTO’ 88 Lecture Notes in Computer Science, pp. 450–468.

[24] G. Marsaglia, DIEHARD Statistical Tests: http://www. stat. fsu.
edu/pub/diehard/.

