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Abstract—Intelligent software engineering has emerged in 

recent years to address some difficult problems in requirements 

engineering. Requirements are crucial for software development. 

Moreover, the classification of natural language user 

requirements into functional and non-functional requirements is 

a fundamental challenge as it defines the fulfillment criteria of 

the users’ expected needs and wants. Therefore the research of 

this article aims to explore and compare random forest algorithm 

and gradient boosting algorithm to determine the accuracy of 

functional requirements and non-functional requirements in the 

process of requirements classification through the conduct of 

experiments. Random forest and gradient boosting are ensemble 

algorithms in machine learning that combines the decisions from 

several base models to improve the prediction performance. 

Experimental results show that the gradient boosting algorithm 

yields improved prediction performance when classifying non-

functional requirements, in comparison to the random forest 

algorithm. However, the random forest algorithm is more 

accurate to classify functional requirements. 

Keywords—Machine learning; ensemble algorithms; 

requirements classification; functional requirements; non-

functional requirements 

I. INTRODUCTION 

Requirements are introductory building blocks for 
developing software projects. They are often classified into 
functional and non-functional requirements [1], [2]. In 
definition, functional requirements describe the system 
functionality whilst non-functional requirements describe 
system properties and constraints. This distinction has 
determined how requirements are being handled in practice; 
during elicitation, documentation, and validation [3]. 

Additionally, requirements are crucial in determining the 
success of a project; as it establishes a formal agreement 
between client and software provider working towards the 
same goal. However, the task of requirements categorization 
normally expends significant human effort and time when 

performed manually [4], [5]. The field of software engineering 
(SE) has witnessed remarkable progress in the past two 
decades attributable to the advancement of machine learning 
[6] and natural language processing. 

Machine learning in natural language processing has 
become ever more accessible, leading to more innovations in 
software engineering. Many techniques and algorithms have 
been created and adapted into different systems, which has 
improved performance and overall computational efficiency. 
Numerous attempts have been made to construct automation 
for the assistance of extraction and classification of 
requirements using supervised [7], [8], [9] and semi-supervised 
learning techniques [10]. 

This paper aims to explore and compare the machine 
learning algorithms of random forest algorithm and gradient 
boosting algorithm. Both algorithms are employed to predict 
respective labelled data of the functional and non-functional 
requirements. 

This paper is organized as follows: Section II describes the 
background and Section III discusses the related works. 
Followed by, Section IV presents the research methodology 
used. Section V exhibits the results of the study. Section VI 
presents the findings of the study. Section VII highlights the 
limitations of the study. Section VIII outlines future work to be 
undertaken. Finally, Section IX concludes the presented work. 

II. BACKGROUND 

There are two primary types of learning schemes in 
machine learning: supervised learning, where the output has 
been given a priori labelled or the learner has some prior 
knowledge of the data; and unsupervised learning, where no 
prior information is given to the learner regarding the data or 
the output [11]. The following terms and tools employed in the 
study are briefly described as follows: 
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A. Python Pandas 

Pandas is a software library written for the Python 
programming language intended for data manipulation and 
analysis. It is built on the Numpy package and its key data 
structure is called the DataFrame. DataFrames store and 
manipulate tabular data in rows of observations and columns of 
variables [11]. 

B. Scikit Learn 

Scikit Learn is one of the most popular Python toolboxes. It 
provides a wide selection of supervised and unsupervised 
learning algorithms. It has advanced functions not commonly 
offered by other libraries including ensemble methods. Both 
random forest and gradient boosting are ensemble methods 
[11]. Both algorithms predict (regression or classification) by 
combining the outputs from individual trees. 

C. Label 

Label, also known as target array, defined as the number of 
categories the machine learning algorithm has to predict. It is 
generally contained in a NumPy array or Pandas Series [12]. 
For the purpose of this study, the algorithm of A1 only has two 
(2) labels which are functional or non-functional requirements. 
The algorithm of A2 has more than two (2) labels, also known 
as multiple labels, such as security, performance, usability, etc. 

D. n-gram 

In the fields of computational linguistics and probability, an 
n-gram is a contiguous sequence of n-items from a text or 
speech corpus [11]. The items can be phonemes, syllables, 
letters, words or base pairs. The n-gram, n=1 is referred to as a 
"unigram"; n=2 as a "bigram"; and n=3 as a "trigram". For 
instance: 

n-gram 1 = the, phone, rang 

n-gram 2 = the phone, phone rang 

n-gram 3 = the phone rang 

E. Accuracy 

Accuracy is one metric for evaluating classification models. 
This is the measure of the correct number of classifications 
divided by the total number of classifications [11]. 

III. RELATED WORKS 

Machine learning has increasingly gained attention in 
software engineering. However, there are insufficient research 
works available in scholarly literature regarding carrying out an 
accurate comparison of machine learning algorithms for 
classification of software requirements, which could be used as 
a reference to conduct similar works in the future. These 
studies [7], [9], [10] concentrate on the classification of 
software requirements by tackling the machine learning 
approach through different models. Furthermore none of these 
studies will use the ensemble approach. 

Kurtanović and W. Maalej [7] classified requirements as 
functional and non-functional requirements using support 
vector machine, abbreviated as SVM algorithm. Most present 
studies focuses on the classification of either functional or non-
functional requirements. For example, Slankas and Williams 
[9] evaluated multiple classifiers to identify non-functional 

requirements and found the support vector machine had the 
highest effectiveness. 

The approach proposed by Casamayor et al. [10] for the 
non-functional requirements identification is focused on semi-
supervised text classification. The accuracy rates are above 
70% for this proposed approach, significantly higher than the 
results obtained through the supervised method of using the 
standard collection of documents. 

Instead, this study provides an implication for deciding 
accurate algorithm to categorize functional and non-functional 
requirements individually by attempting the ensemble 
approach which makes allowance for better predictions 
compared to a single model in order to close the research gap 
as mentioned earlier in this section. 

IV. RESEARCH METHODOLOGY 

A mixture of natural language processing algorithms and 
machine learning algorithms was used in the study. The 
machine learning algorithms were used to predict functional 
and/or non-functional labelled data, as well as labels such as 
security, usability, efficiency, etc. Alternatively, the natural 
language processing algorithms were used to generate a 
sentence(s) from the user requirements. 

The main emphasis of this article is the machine learning 
algorithms. Therefore, no natural language processing 
algorithms will be discussed. In this article, algorithm A1 
represents the algorithm that classifies the functional 
requirements and algorithm A2 represents the algorithm that 
classifies the non-functional requirements. Experiments are 
conducted to determine the machine learning algorithms. The 
random forest and gradient boosting algorithms was used to 
predict the respective labelled data of functional and non-
functional requirements. 

A. Data Preparation 

The raw data was formatted and vectorised before passed 
into the random forest algorithm and the gradient boosting 
algorithm to perform model fitting and prediction. Then, the 
data frames were sorted with the relevant data to be used by the 
natural language processing algorithms at the next stage. 

Once the file was read, it began to format the input data 
into a standard format. A few steps were taken to convert the 
raw data into a standard format as follows: 

1) Remove all punctuations from the text. 

2) Convert the text into lowercase. 

3) Add a full-sentence column into the data frame. 

4) Remove stop words. 

The following vectorization steps were conducted to 
prepare the data for use by the algorithm (after the raw data has 
been formatted): 

1) Create a new data frame that has only the required 

columns for the algorithm. 

2) Split the training and test data into x and y coordinates 

respectively. 

3) Vectorise the data to be used by the algorithm. This 

means that the words would be converted into unique 
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identifiers for the algorithm since the algorithm only accepts 

numerical data. For example, yes => 0 and no => 1. 

4) Concatenate any features into the vectorised data. 

B. Experimental Instruments 

Python Pandas is well suited for different kinds of data. 
Furthermore, the DataFrame of Python Pandas can be created 
by loading datasets from existing external storage such as a 
SQL database, CSV files, list of dictionary, etc. Thus, the 
Python Pandas DataFrame is designated for the data 
manipulation in this study. 

On the other hand, Scikit Learn was also chosen as a tool in 
this study because it is built on top of common data and Python 
Math Libraries. The design makes for ease of integration, 
whereby numpy arrays and pandas data frames can pass 
directly to the machine language (ML) algorithms of Scikit. In 
addition, it features numerous classification, regression, and 
clustering algorithms including support vector machines, 
random forest, gradient boosting, etc. Hence, two (2) ML 
algorithms in Python, which are random forest and gradient 
boosting, have been chosen for this study to classify functional 
requirements and non-functional requirements in turn. 

C. Experimental Procedure 

This section outlines the experimental procedure that 
classifies software requirements into two (2) different types, 
which are functional and non-functional requirements. 

Fig. 1 illustrates the model fitting outline before model 
prediction. First, the system will read the selected file and 
check for errors in the file type chosen. When errors are found, 
it will prompt the user with an error message and allow for file 
re-selection. Once all errors are expunged, the system will 
format and prepare the data for use by algorithm A1 and A2. 
Following, the system will perform the model fitting, followed 
by the model prediction. Finally, the model predictions of 
algorithm A1 and algorithm A2 will be saved. The system will 
then return to the user, the trained or fitted model of algorithm 
A1 and algorithm A2 to make the prediction. 

The purpose of conducting experiments on both algorithms 
is to determine which algorithm; random forest or gradient 
boosting is more accurate for algorithm A1 and algorithm A2. 
As mentioned at the beginning of this section, algorithm A1 
represents the algorithm that classifies functional requirements 
and algorithm A2 represents the algorithm that classifies non-
functional requirements. 

There will be two (2) experiments in this study. Each 
experiment will have different sets of data. For example, a file 
that comprises a mixture of functional requirements and non-
functional requirements will be used in conducting the first 
experiment to determine which algorithm, random forest or 
gradient boosting, is more accurate for algorithm A1. 
Objectively, the purpose of conducting the second experiment 
is to determine which algorithm, random forest or gradient 
boosting, is more accurate for algorithm A2. Hence, a file that 
consists of only non-functional requirements with their sub-
category(s) will be employed to realize the purpose of the 
second experiment. 

 

Fig. 1. Experimental Procedure of this Study. 

In practice, a two (2) test per model configuration change is 
conducted in each experiment. The two (2) tests are as below: 

1) The first test will be conducted five (5) times for each 

n-gram range and the averages are collected to find out which 

of the n-gram ranges are more accurate. 

2) The second test will be conducted ten (10) times for 

each n-gram range and the averages are collected to reduce 

any variances that could come from the data splitting 

processes. 

Nonetheless, there might be the circumstance of a new 
setting that leads to retesting the n-gram range to determine 
which n-gram range is most accurate. In such circumstance, 
more tests, to be conducted repetitively, was required. Such 
circumstance could also be a test to find a new setting, such as 
the number of estimators, also known as the number of 
decision trees built by the algorithm, or the depth of the 
decision trees. So, whenever a change is made in the number or 
depth of estimators, for example, the n-gram test needs to be 
conducted again to see the implications on the n-gram range. 

V. RESULTS OF STUDY 

The results of algorithm A1 that applied random forest and 
gradient boosting technique with two parameters which are the 
number of trees and maximum depth of the trees are shown 
respectively in Table I and Table II. Separately, Table III and 
Table IV illustrates the results of algorithm A2 that applied the 
same technique and parameters as presented in Table I and 
Table II. There are some null values of maximum depth of the 
trees appears in Table I and Table III which means no limits or 
infinite depth of the trees. 
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The final results of algorithm A1 and A2 are revealed in 
Table V and Table VI. Table V shows that the random forest 
technique has an advantage in the average accuracy compared 
with the gradient boosting algorithm. The random forest 
algorithm achieved a higher average accuracy which is 0.826 
in comparison with the gradient boosting algorithm which is 
0.789. Thus, the measured values deviated by the range of 
0.037. It can be concluded that the random forest is more 
accurate for algorithm A1, which is responsible to classify 
functional requirements. 

In contrast, Table VI illustrates that the gradient boosting 
algorithm is more accurate for algorithm A2. The gradient 
boosting algorithm obtained a higher average accuracy which 
is 0.591 compared to the random forest algorithm which only 
has 0.582 of the average accuracy. 

It is noteworthy to indicate that the number of labels of raw 
data has influenced the average accuracy of the algorithm 
significantly. In this study, the random forest and gradient 
boosting algorithms was used in the first experiment to predict 
functional and non-functional labelled data. Meanwhile, the 
random forest and gradient boosting algorithms was used in the 
second experiment to predict non-functional labelled data such 
as security, usability, efficiency, and so on. The efforts to 
predict multiple labels of raw data in the second experiment is 
tougher than that of the binary labels in the first experiment. 
The machine learning algorithms had to predict binary labels of 
raw data such as functional requirements and non-functional 
requirements in the first experiment, which would give 50% 
accuracy through blind guessing. In contrast, multiple labels of 
raw data from different categories of non-functional 
requirements, for instance, ten (10) labels, needed to be 
predicted in the second experiment which gave 10% accuracy 
through the prediction process. This is because the algorithm 
was required to choose from the available labels rather than to 
perform blind guessing. It also sets the baseline for comparing 
the accuracy of the algorithms. 

In summary, the results of this study shows that the random 
forest algorithm is more accurate for algorithm A1 whereas the 
gradient boosting algorithm is more suited for algorithm A2 
due to accuracy. 

TABLE. I. RESULT OF ALGORITHM A1 USING RANDOM FOREST WITH 

NUMBER OF TREES AND MAXIMUM DEPTH OF THE TREES PARAMETERS 

SETTING 

Number 

of Trees 

Maximum 

Depth of 

the Trees 

Precision Recall Accuracy 
Predict 

Time 

50 40 0.892 1 0.915 0.106 

200  0.892 1 0.915 0.103 

100 40 0.900 1 0.894 0.104 

50 30 0.868 1 0.894 0.108 

100 30 0.868 1 0.894 0.104 

100  0.889 0.970 0.894 0.104 

200 40 0.868 1 0.894 0.104 

50 30 0.878 1 0.894 0.104 

100  0.878 1 0.894 0.104 

200 
 

0.919 0.944 0.894 0.104 

TABLE. II. RESULT OF ALGORITHM A1 USING GRADIENT BOOSTING WITH 

NUMBER OF TREES AND MAXIMUM DEPTH OF THE TREES PARAMETERS 

SETTING 

Number of 

Trees 

Maximum 

Depth of 

the Trees 

Precision Recall Accuracy 
Predict 

Time 

150 11 0.914 0.970 0.915 0.001 

150 3 0.889 0.970 0.894 0.001 

150 11 0.912 0.939 0.894 0.001 

300 3 0.889 0.970 0.894 0.001 

300 11 0.912 0.939 0.894 0.001 

450 11 0.889 0.970 0.894 0.001 

450 3 0.848 1.000 0.894 0.001 

450 3 0.935 0.879 0.872 0.001 

150 7 0.886 0.939 0.872 0.001 

300 7 0.910 0.909 0.872 0.001 

TABLE. III. RESULT OF ALGORITHM A2 USING RANDOM FOREST WITH 

NUMBER OF TREES AND MAXIMUM DEPTH OF THE TREES PARAMETERS 

SETTING 

Number 

of Trees 

Maximum 

Depth of the 

Trees 

Precision Recall Accuracy 
Predict 

Time 

50 20 0.586 0.586 0.586 0.125 

50 40 0.621 0.621 0.621 0.109 

50  0.621 0.621 0.621 0.123 

100 20 0.586 0.586 0.586 0.110 

100 40 0.621 0.621 0.621 0.121 

100  0.655 0.655 0.655 0.120 

200 20 0.621 0.621 0.621 0.109 

200 40 0.655 0.655 0.655 0.110 

200  0.586 0.586 0.586 0.109 

50 20 0.621 0.621 0.621 0.109 

TABLE. IV. RESULT OF ALGORITHM A2 USING GRADIENT BOOSTING WITH 

NUMBER OF TREES AND MAXIMUM DEPTH OF THE TREES PARAMETERS 

SETTING 

Number 

of Trees 

Maximum 

Depth of 

the Trees 

Precision Recall Accuracy 
Predict 

Time 

150 11 0.586 0.586 0.586 0.001 

300 11 0.621 0.621 0.621 0.001 

450 11 0.621 0.621 0.621 0.001 

600 11 0.517 0.517 0.517 0.001 

750 11 0.586 0.586 0.586 0.002 

900 11 0.655 0.655 0.655 0.002 

1050 11 0.552 0.552 0.552 0.002 

150 11 0.517 0.517 0.517 0.001 

300 11 0.586 0.586 0.586 0.001 

450 11 0.586 0.586 0.586 0.001 
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TABLE. V. FINAL RESULTS OF ALGORITHM A1 

Setting 
Average 

Precision 

Average 

Recall 

Average  

Accuracy 

Predict 

Time 

Random Forest 0.802 0.965 0.826 0.111 

Gradient Boosting 0.809 0.882 0.789 0.658 

TABLE. VI. FINAL RESULTS OF ALGORITHM A2 

Setting 
Average 

Precision 

Average 

Recall 

Average  

Accuracy 

Predict 

Time 

Random Forest 0.582 0.582 0.582 0.105 

Gradient Boosting 0.591 0.591 0.591 0.131 

VI. DISCUSSION 

There are several tuning parameters important for random 
forests and gradient boosting algorithm, however, only two 
parameters which are the number of trees and the tree depth 
were chosen in this discussion. Generally, a higher number of 
trees increased the performance and made the predictions more 
stable which could result in better accuracy. In comparison, 
more trees also meant more computational cost and after a 
certain number of trees, the improvement was negligible. The 
results in Table I show that there was no significant 
improvement on the accuracy; for example, the first and 
second record obtained the same accuracy rate which was 
0.915, but both had different number of trees 50 and 200 for 
the first and second record respectively. It is concluded that as 
the number of trees grows, it does not always mean the 
performance of the forest is significantly better than previous 
forests which had fewer trees. The results of Table I indicates 
that the addition of trees is insignificant. This result is aligned 
with the previous studies finding [14] revealing that the 
smallest number of trees is sufficient to obtain the same level 
of accuracy. Barman et al. [15] also discovered that there is no 
significant difference between using a number of trees, and 
larger number of trees in a forest will not significantly improve 
the performance but in contrary, it will increase its 
computational cost. 

Table II shows that the first record gained the highest 
accuracy which was 0.915 with 150 number of trees and 11 
depth of the trees. The results in Table II yet again shows that 
larger number of trees has no significant improvement on the 
accuracy. 

Table III displayed that the eighth record listed has the 
highest accuracy value of 0.6555 in contrast to the seventh and 
ninth record listed which possesses the same number of trees, 
but have differing depth of trees which are 20, 40 and infinite 
depth of trees respectively. The results indicate that depth of 
the trees has a significant effect on the accuracy. As the depth 
increases, the stability of prediction will decrease as each 
model tends to cause overfitting [16]. The depth of the tree 
meaning length of tree. Larger tree helps to convey more 
information whereas smaller tree gave less precise information. 
Hence, there needed to be a balanced ratio within the depth of 
trees to gain a better performance. 

Alternatively, the findings in Table IV indicate the number 
of trees will determine the accuracy of prediction when the 

depth of the trees value is constant. The sixth record listed in 
Table IV gained the highest accuracy which was 0.655. 

The parameters in random forest and gradient boosting are 
either to increase the predictive power of the model or to make 
it easier to train the model. Important parameters to fine tune 
would be the number of trees, the depth of trees and the 
number of features used for a split. However, the number of 
trees and the depth of trees were selected to perform the fine 
tuning the models of this study. Optimistically this article has 
given essential understanding to begin using the random forest 
and gradient boosting on projects. 

VII. LIMITATION OF STUDY 

As with all research, there were a few limitations to this 
study that must be acknowledged. Firstly, the system is limited 
by the amount of data due to the issue of confidentiality; 
similar to that encountered in similar research [13]. As more 
quality data is collected, the accuracy of algorithm A1 and 
algorithm A2 will increase. Secondly, the system has a 
limitation on the format of data read, as it requires data to be in 
a specific format to function properly. It is also limited by its 
inability to determine how many separate requirements there 
are in a sentence, as well as its inability to read from .docx and 
.txt files. 

VIII. FUTURE WORK 

With the limitations of study stated in Section VII. For 
future work, the following aspects are identified: 

1) Collect more data to be used in experiments. 

2) Generalize the reading format to allow the reading of 

data in a more general format. 

3) Implement a function to determine how many different 

requirements exist in a sentence. 

IX. CONCLUSION 

This article explores and compares the random forest 
algorithm and the gradient boosting algorithm to discover 
which is more accurate to classify functional requirements and 
non-functional requirements, by conducting experiments. 
Among the investigated machine learning algorithms, the 
results of this study have shown empirically that the gradient 
boosting algorithm yields better prediction performance in 
terms of accuracy when sorting non-functional requirements, in 
comparison to the random forest algorithm. 

For future work, more machine learning algorithms will be 
investigated by engaging the ensemble strategy in order to 
improve the overall classification accuracy. 
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