
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

305 | P a g e

www.ijacsa.thesai.org

The Development of a Visual Output Approach for

Programming via the Application of Cognitive Load

Theory and Constructivism

Marini Abu Bakar
1
, Muriati Mukhtar

2

Faculty of Information Science and Technology

Universiti Kebangsaan Malaysia

Bangi, Selangor, Malaysia

Fariza Khalid
3

Faculty of Education

Universiti Kebangsaan Malaysia

Bangi, Selangor, Malaysia

Abstract—Programming is a skill of the future. However,

decades of experience and research had indicated that the

teaching and learning of programming are full of problems and

challenges. As such educators and researchers are always on the

look-out for suitable approaches and paradigms that can be

adopted for the teaching and learning of programming. In this

article, it is proposed that a visual output approach is suitable

based on the current millennials affinities for graphics and

visuals. The proposed VJava Module is developed via the

application of two main learning theories, which are, the

cognitive load theory and constructivism. There are two

submodules which consist of eight chapters that cover the topics

Introduction to Programming and Java, Object Using Turtle

Graphics, Input and Output, Repetition Structure, Selection

Structure, More Repetition Structures, Nested Loops and

Arrays. To enable Java programs to produce graphical and

animated outputs, the MJava library was developed and

integrated into this module. The module is validated by three

Java programming experts and an instructional design expert on

the module content, design and usability aspects.

Keywords—Introductory programming; CS1; novices; Java

programming; learning; objects-first

I. INTRODUCTION

Programming education research has been going on for
over five decades. Teaching and learning of programming
have continuously drawn the attention of researchers among
academics. Many studies are conducted at respective
institutions including studies on the programming languages
used, curriculum aspects, teaching and learning approaches as
well as supporting materials and software tools. Most
researchers around the world agree that teaching and learning
of programming are difficult for novice students as well as for
teachers [1]–[5]. Hence, many institutions have taken
measures to address this problem to motivate, enhance
students' interest, skills and competitiveness in programming.

The main challenges that novice students face in learning
programming are related to problem solving [6] ,
understanding programming concept [7], programming
language syntax [8] and motivation [9], [10]. While the
challenges that teachers face are the need for appropriate
teaching methods and tools [10].

Starting with a review of existing approaches to teaching
and learning of programming, this paper proposes a new
approach that addresses three key issues. First is the current
generation of students who prefer visual approaches; second is
the nature of programming courses that cause students,
especially novice students, to experience high cognitive load
in writing programs [11]–[13]; and third is the nature of
programming courses that require active participation of
students in building their own knowledge based on existing
knowledge [14]–[17]. Thus, this new approach, presented in
the form of teaching modules, was built using visual elements
and based on two main theories, cognitive load theory and
constructivism.

This paper is organized as follows: Section II presents
previous studies on teaching of programming approaches.
Section III describes the learning theory applied in this study.
Section IV details the result and discussion of the study.
Section V describes the conclusion and further work.

II. TEACHING OF PROGRAMMING APPROACHES

Many previous studies have discussed the approaches used
in the teaching of programming. In addition to the traditional
approaches, the commonly used approaches are visual
programming, graphical and animation library and object-first.

A. Traditional Approach

Generally, the traditional approach to computer
programming courses follows closely the order of the topics in
most textbooks. The first section covers the topics of
introduction, data types, assignment statements, arithmetic
expressions, input/output followed by three basic
programming structure namely sequence, selection and
repetition structure. The second part of the course covers
advanced topics such as arrays, strings, methods and classes.
Students need to apply the basic concepts in the first section to
solve the problems presented in the second section.

Fig. 1. Program Output in Text Mode.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

306 | P a g e

www.ijacsa.thesai.org

In the traditional approach input and output are textual in
which the students' program gets input from the keyboard and
displays the output on the screen in text mode. Fig. 1 shows
some examples of the output in text mode. Input and output in
text mode were common in the early 1990s as most of the
computers available in the programming lab were in text mode
and the use of personal computers and laptops was quite
limited. This traditional approach to output in text mode is less
appealing to today's digital native students who are familiar
with the latest computers and gadgets with graphical interfaces
and touch screens.

Almost all institutions of higher learning in Malaysia adopt
a traditional approach in teaching programming courses.

B. Visual Programming Approach

Among the popular visual programming language
environment are Scratch and Alice which is widely used in
primary and secondary schools [3], [18], [19]. In the visual
programming language environments, programs are created by
manipulating graphical components rather than writing
textually. Creating programs is easier as there is no
compilation errors and students are not required to know the
syntax of a specific programming language.

Scratch was developed by Lifelong Kindergarten, MIT
Media Lab in 2007 and is designed for students ages 8 and
older. Author in [20] reports that students learning Scratch
during primary school will easily learn advanced topics in
high school. They don't have much trouble learning new
topics and can reach a higher level of understanding for most
basic concepts. As a result, some students choose to take
programming courses in higher education. Students are also
seen to have a high level of motivation and self-confidence.

Alice is a programming environment developed by the
researchers in Carnegie Mellon. Alice provides an
environment where students are able to drag-and-drop objects
to create animations in three-dimensional. C++/Java programs
are generated automatically. In higher institution Alice is
usually used as a course in parallel with Computer Science 1
(CS1) or Computer Science 0 (CS0) courses [21]. CS1
generally refers to the first computer programming course in
the computer science programme while CS0 is the
programming related course at the pre-university level. From
this study it was found that students taking Alice courses are
better compared to those who do not take Alice courses in
CS1. In this case, Alice is an additional course rather than
being used extensively in the CS1 programming course.

C. Graphics and Animation Library Approach

Most graphics and animation library approaches are
derived from LOGO. The LOGO programming language was
introduced in 1967 by Seymour Papert with several
researchers at the Massachusetts Institute of Technology [22].
LOGO is a language that teaches kids the basics of computer
programming. In LOGO, the turtle is a cursor that can be
controlled and operated according to the simple instructions
given. Lines are drawn according to the movement of the
turtle cursor. When it was first introduced in the 1960s, the
LOGO language commands controlled turtle-shaped physical
cursors. Later, with the technological advancements of the

computer display screen, the turtle is represented as a cursor
on the screen as in today's computer.

Graphics libraries have long been used for teaching of
programming in universities worldwide. In [23] from
Standford University initially developed the Turtles graphics
library in ANSI C and subsequently translated it into Java. He
encountered some problems in the implementation of the
library because the earlier version of Java introduced in 1995
was relatively unstable.

Author in [22] developed Turtles package for use in
teaching CS1 courses using Java at the University of Aarhus,
Denmark. He uses the inverted curriculum approach proposed
by [24]. With this approach important topics and concepts are
introduced first and the details are explained later. The Turtles
package has been used in all topics in the course. They
reported positive effects, but no analysis was performed to
show its effectiveness. Author in [9] also use turtle graphics in
programming courses for prospective teachers. They report
that this approach increases student motivation.

Another very similar approach is Karel the Robot in which
the character is a robot named Karel in a simple world
represented as a grid indicating streets and avenues. The Karel
the Robot character can move one step forward, turn left,
place and collect an object known as a beeper [25]. Author in
[25] has used the Karel the Robot in programming courses at
the University of Waterloo. Karel the Robot was first
developed in 1981 by Richard Pattis to introduce Structured
Programming courses using Pascal Language. Another
popular variations of Karel are Robots is Karel J Robot [26]
which are widely used in teaching basic programming courses
using Java.

D. Objects-First Approach

Object-oriented programming is a widely used
programming paradigm in both industry and education [27].
Almost all universities have object-oriented programming
courses in the curriculum. Object-oriented programming is
initially considered as an advanced course and is included in
the middle or at the end of the curriculum. This situation has
changed and today many universities have introduced object-
oriented programming as their first course of programming.
Among the object-oriented programming languages are Java,
C++, C#, Eiffel, Python and Ruby.

The objects-first approach which was introduced in the
ACM Computing Curricula 2001 document emphasized that
the principles of object-oriented programming are introduced
from the very beginning. The strategy was to begin
introducing the concept of objects and classes and then
followed by the structure of control, repetition and subsequent
topics as in the traditional method.

Many studies highlight that teaching the basic concepts of
object-oriented programming is difficult [27]–[30]. This is
because many different concepts need to be understood as
well as the skills that must be learned before students can
write the program. Author in [27] emphasizes that object-
oriented teaching is best used as an object-first approach
compared to the object-later approach, by starting with a
procedural programming approach and then switching to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

307 | P a g e

www.ijacsa.thesai.org

objects. This is because the transition from procedural to
object is more difficult compared to the difficulty of learning
from the beginning. However, many textbooks use the object-
later approaches.

The traditional approach to programming courses that
produce text output is less appealing to today's generation Z
students who are more inclined to visual learning styles.
However, popular visual programming approaches such as
Scratch and Alice are not suitable for higher education
particularly for Computer Science students. Therefore, a new
approach to the generation Z student learning style is needed.
The proposed module named VJava Module uses the graphical
and animation library and objects-first approaches. This
module allows students to write Java programs textually that
uses objects from the developed MJava graphics library to
produce visual outputs in the form of graphics and animations.
This VJava Module aims to increase students' interest and
reduce anxiety at the beginning of the programming course
which is perceived as difficult. To develop the VJava Module,
two learning theories are applied; the cognitive load theory
and constructivism theory. Both theories are discussed in the
following sections.

III. LEARNING THEORY

Learning theory describes how knowledge is absorbed,
processed, and stored during learning. Learning theories need
to be taken into account in designing the module to make them
more effective and to achieve the objectives. This section
discusses the learning theory applied to develop the VJava
Module and the methodology of the research.

A. Cognitive Load Theory

Cognitive load theory was introduced by Sweller [31], [32]
in the 1980s as a study of problem solving. It emphasised that
all information is processed in a working memory and then
stored in long-term memory for later use. Cognitive load
theory basic premise is that the capacity of working memory is
limited and can only process some information in a short
duration of time.

Computer programming is a skill based course that is
difficult and challenging which places a heavy cognitive load
on the learners. Learning will be restrained by limited
information processing capacity. If a learning task or activity
requires cognitive capacity beyond its limits, that learning will
be hindered [33].

There are three types of cognitive load which are intrinsic,
extraneous and germane [32]. Internal cognitive load is related
to the complexity of learning material and existing knowledge.
Someone expert in programming and have extensive
knowledge will learn easily compare to a student who has no
direct knowledge of programming. This means that internal
cognitive loads cannot be modified through instructional
design [33].

Extraneous cognitive load is related to the design of
teaching materials which can be modified by organizing the
content of the materials. Novice students frequently use the
means-ends analysis strategy in solving problems in the
problem-solving approach [32]. Using this strategy will result

in high usage of working memory resources resulting in a lack
of existing cognitive resources. This causes cognitive activity
to fail in working memory and thus impedes learning.

Germane cognitive load is an important cognitive load to
explore in this study. This load refers to the construction of
subsequent schemes as the primary goal of learning [32]. For
example, giving students an example to solve a problem will
help them understand the important steps in solving the
problem and subsequently develop the problem solving
scheme. The instructional design should guide the students to
develop a scheme to increase the germane cognitive load.

The relationship between intrinsic, extraneous and
germane cognitive load can be seen in the following three
situations: (1) For situations where intrinsic cognitive load is
low (easy learning content), and sufficient memory resources,
students will be able to perform the learning process despite
the high extraneous cognitive load (poor presentation of
teaching material); (2) In situations where high intrinsic
cognitive load (difficult teaching content) and high extraneous
cognitive load, the cognitive load overcome mental resources
and learning processes may fail; (3) Situations in which the
external cognitive load in (2) is reduced, and the germane
cognitive load is enhanced to facilitate the learning process
[34].

Intrinsic cognitive load cannot be changed with the design
of teaching materials. To produce meaningful learning, the
design of instructional materials should reduce extraneous
cognitive load and nurture germane cognitive load. This is
because the extraneous cognitive load does not have a positive
effect on the learning process, in contrast to the germane
cognitive load that can help to improve the learning process.

B. Constructivism Learning Theory

The constructivism learning theory pioneered by Jean
Piaget is based on the premise that knowledge is built by a
person as a result of his mental activity rather than being
conveyed by an instructor. Learning happened by interpreting
the meaning of a concept based on existing knowledge and
experience [14], [15]. Teachers encourage students to explore
how an activity helps them to understand a concept.
Constructivist teachers provide learning environments based
on problems that need to be solved individually or
collaboratively, while students produce their meaningful
artifacts [15]. Learning occurs actively in solving problems
with teachers acting as facilitators in nurturing meaningful
learning.

Constructivism does not deny the role of lecturers or
knowledge expert. Constructivism has changed that role, so
lecturers helps students to build knowledge instead of just
presenting facts. Constructivist lecturers provide tools such as
problem solving and inquiry-based learning activities, sharing
experiences, discussions, creating concept maps and building
a broader picture of concept [35]. Students formulate and test
their ideas, draw inferences and conclusions, and integrate
their knowledge in a collaborative learning environment.
Constructivism transforms students from passive recipients to
active participants in the learning process. Guided by
lecturers, students actively build their knowledge rather than

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

308 | P a g e

www.ijacsa.thesai.org

receiving knowledge directly from a lecturer or textbook.
With a well-designed classroom environment, students will
learn how to learn.

One face of Constructivism learning theory is the
Constructionism introduced by Seymour Papert [36], [37] that
asserted learning occurs “especially felicitously” when
learners engaged in constructing artifacts. Papert introduced
constructionism in association with LOGO, a programming
language designed to enable the study of abstract concepts in
mathematics, geometry, physics and others by manipulating
computational objects [38]. The most common artifacts in
constructionism today are in digital form.

C. Methodology

The VJava Module is developed using ADDIE, the five-
phase development methodology [39]. The first phase is the
analysis phase which comprises of literature review and
preliminary study to determine the problems faced in the
learning of programming, determine the appropriate approach
and relevant learning theories to apply in the proposed
method. The second phase is the design phase, which involves
the design of the graphics library and the learning module.
This is followed by the third phase, which is the development
phase to develop the module. At the end of this phase, the
process of verification of the module by the experts is
conducted. The next phase is the implementation phase where
the updated modules based on expert reviews are tested in the
pilot study before being implemented in the actual learning
environment. The final phase is the evaluation phase on the
students' response after learning using this module. This paper
discusses the results of a study that covers phases one to three.

IV. RESULTS AND DISCUSSIONS

This study applies two learning theories, namely cognitive
load theory and constructivism in designing and developing
VJava Modules for basic programming course. The VJava
Module consists of two submodules; the VJava Module I
consists of five chapters and the VJava Module II that consists
of three chapters. This module uses the MJava graphics library
to produce graphics and animated outputs.

A. MJava Library

The MJava library consists of two Java packages, the
MTurtle package and the MGraphics package. The MTurtle
library implements the turtle graphics concept introduced by
Seymour Papert. The output generated by programs using
MTurtle library are display in animated form as the turtle
moves. The MGraphics library can produce basic graphical
shapes output such as line, rectangle, oval, polygon and text.
Combination of these basic forms can produce complex
drawing.

B. Application of Cognitive Load Theory in VJava Module

The application of cognitive load theory in the VJava
Module are (1) graphical and animated output; (2) learn
programming by examples; (3) program tracing; (4) step by
step guide. These feature are aim to reduce the students'
cognitive load in learning programing.

1) Graphical and animated output: Using the MJava

library, programs written by students can produce graphical

and animated output. Students can better understand the basic

concepts of Java such as sequence, repetition and selection

structure by associating the graphical and animation output

with the written program. The output helps students to

understand the program flow especially when they need to

correct errors.

Fig. 2 shows an example of program code and the output
generated written in the traditional approach as compared to
the graphical and animated output approach using MTurtle
library. This method will increase students' interest and
facilitate the understanding of basic concepts. Hence, this
method will reduce students' internal cognitive load in
understanding basic programming concepts.

2) Learn programming by example: All concepts in the

VJava Module are presented using appropriate examples

which include programs to solve specific problems and the

output produced. For example, a program to draw a rectangle

is shown in Fig. 3 while the output is shown in Fig. 4.

Fig. 2. Traditional Approach vs Graphical Output Approach.

Fig. 3. Program Example.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

309 | P a g e

www.ijacsa.thesai.org

Fig. 4. The Output.

3) Program tracing: Programs in the VJava Module are

explained by tracing the program line by line. Program tracing

is a method to simulate how the program is executed on paper,

by step through it line by line. With this explanations students

can understand the program discussed before they can write

their code. Fig. 5 shows an example of tracing a program to

draw a square.

4) Step by step guide: The step by step guide is to explain

important tasks. For example, to describe the process to install

JDK and Eclipse on a computer. The step by step guide

enables students to follow it to perform the tasks on their own.

C. Application of Constructivism Theory in VJava Module

Features of the theory of Constructivism applied in the
module are (1) scaffolding; (2) forming new ideas; (3)
exploration of new ideas; (4) construction of new knowledge.

1) Scaffolding: The MJava Module implements

scaffolding learning that consisting of 5 stages namely

requirements, concepts and syntax, reinforcement, program

segment exercise and programming exercise (Fig. 6).

The five stages are explained with an example as follows:

a) Requirements: At this stage the requirements for a

topic are described. For example, in Topic 4 Repetition

Structure, it is explained how a repetition structure can

simplify the writing of the program without duplicating the

program statements. This is demonstrated by showing an

example of a program to draw two squares side by side by

copying the program segment to draw a square and repeating

it twice with some changes to set the location and direction of

the turtle of the second square. This is discussed in detail with

program examples until the purpose is achieved.

The next query put forward is "how to output 5 or maybe
10 squares in a row. Do we need to repeat the program
segment 10 times?" (Fig. 7) This situation justifies the need
for a repetition structure.

a) Concepts and syntax - In this stage the concepts of a

topic are discussed with simple examples and the syntax of the

statement is also explained. For example, the program to draw

10 squares in a row as discussed in (a) is shown in Fig. 8. In

this example, a repetition statement, that is for loop is

introduced and the syntax is explained in Fig. 9.

Fig. 5. Tracing a Program that Draws a Square.

Fig. 6. Scaffolding.

Fig. 7. Question Put Forward to Draw 10 Squares Side by Side.

Fig. 8. Program to Draw 10 Squares in a Row using for Statement.

Fig. 9. Syntax for "for Loop".

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

310 | P a g e

www.ijacsa.thesai.org

b) Reinforcement- This stage further explains the

program example by tracing the program. Using the same

example to draw 10 squares, the program is traced for each

loop to show the drawing displayed and the value and

calculation of variables representing the coordinates and

direction of the turtle.

c) Program segment exercise - Simple questions such as

to trace some program segments were given to familiarize

students with the concepts being discussed. Further exercises

related to the discussed problems are also provided, for

example to draw 5 horizontal lines. Using the program to draw

10 squares, students can write a solution to this problem.

d) Programming exercise - The question given in this

stage requires students to apply the concepts discussed to

solve the problem on their own. An example of the question is

to draw 5 cascading squares.

These five scaffolding stages of learning are emphasized in
the learning outcomes of the related topics. Examples of
learning outcomes for Topic 4 Repetition Structure are shown
in Fig. 10. Stages 1 to 5 refer to learning outcomes 1 to 5,
respectively.

2) Forming new ideas: Forming new ideas is a key feature

of the theory of constructivism. Based on the examples given,

students are anticipated to form new ideas in solving

problems. For example, based on the given example to draw a

square, students should be able to form new ideas to draw a

triangle (Fig. 11). The idea needed is to determine the degree

of angle for the turtle to turn to draw the lines.

Fig. 10. Learning Outcome for Topic 4 Repetition Structure.

Fig. 11. Example of Question to form New Ideas.

3) Exploration of new ideas: In VJava Module, students

were given examples based on the concepts discussed. In the

programming exercises, students are asked to explore the

MTurtle and MGraphics software library by referring to the

library documentation. The documentation listed all the

methods that can be used to create a drawing using the

respective library. For example, in an exercise, students are

asked to change the color and line thickness of the turtle.

Students are guided to explore by referring to the MTurtle

documentation.

4) Construction of new knowledge: One of the exercises

in Topic 4 Repetition Structure is to trace a program segment

that produces a pattern called polyspiral. Students were given

a note that describes polyspiral as a hint. This is then followed

by a programming exercise where students were asked to

write a program that produces the polyspiral pattern. New

knowledge constructed in this exercise is that pseudo-code for

the polyspiral that can be converted into program code.

Students can refer to the program tracing exercise and modify

the program code to solve this problem.

Other ensuing exercise questions require students to
change the values of some variables to produce interesting
polyspiral shapes. A new knowledge constructed that
polyspiral patterns can be produced with different variable
values that applies the geometric coordinate concept in
mathematics.

D. Validation of Module by Experts

The expert validation process is conducted on the
developed VJava Module, to determine the validity, and
usability of the module. The evaluation was performed by
three programming experts and one instruction design expert
as shown in Table I. PK1, PK2 and PK3 are the programming
experts, while the PRB is the instruction design expert.

The questionnaire for programming experts consists of
three sections, Part A for the demographics of respondents,
Part B for module content and Part C for module usability.
The survey for instruction design experts also comprises three
sections, Part A for the demographics of the respondent, Part
B for module design and Part C for module usability.

1) Module Content Validation: Content validity is based

on the mean score of learning outcomes of the topics in the

VJava Module. Findings for expert evaluation of learning

outcomes are summarized based on topics as shown in Table II.

The measure used is a 5-point Likert scale (1 = strongly
disagree, 2 = disagree, 3 = moderate agree, 4 = agree, 5 =
strongly agree). The descriptive range for the mean score is
divided into three levels: low (1.00 - 2.33), medium (2.34 -
3.66) and high (3.67 - 5.00). Based on the expert evaluation,
all chapters showed high scores, in the range of 3.67 to 5.00.
The highest score was for Topic 4 Repetition Structure with a
mean score of 4.93 while the topic with the lowest score was
Topic 8 Arrays with a score of 3.89. Topic 4 is the topic that
introduces the concept of repetition that is discussed in detail.
Topic 8 is on arrays which is considered as a difficult topic for
novices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

311 | P a g e

www.ijacsa.thesai.org

TABLE. I. EXPERT PROFILE

No. Designation Expertise Experience

PK1
Senior

lecturer

Programming education, software

testing
20 years

PK2 Professor Artificial intelligence 24 years

PK3
Associate

professor

Programming language design,

software testing
17 years

PRB Lecturer
Education technology,

computational thinking
11 years

TABLE. II. EXPERT EVALUATION ON LEARNING OUTCOME

Topic Title Mean score

1 Introduction to Programming and Java 4.40

2 Objects : Using Turtle Graphics 4.47

3 Input and Output 4.58

4 Repetition Structure 4.93

5 Selection Structure 4.67

6 More Repetition Structure 4.87

7 Repetition Structure : nested loop 4.67

8 Arrays 3.89

Expert reviews of the overall content of the module are
shown in Table III. The reviews are positive with some
suggestions for improvement.

2) Modul design validation: The design expert evaluates

and validates that module design includes features of cognitive

load theory, constructivism theory. The overall review by the

design expert are as follows:

"The content structure of this module is clear and provides
some examples of incremental program development:
1) examples to illustrate concepts; 2) guided examples for
reinforcement (work-example); and 3) activities/exercises that
students need to complete without guidance. Need to include
more exercises - a broader context that resembles the program
used in the industry/field (suggestion)."

3) Usability of the module: All experts have evaluated and

validated the usability of the module in terms of learnability,

efficiency, memorability and satisfaction. As for the error

aspects, experts recommend the need for minor changes in

terms of spelling and grammar. An overall review of the

usability of the module is shown in Table IV. All of the

experts confirm that the VJava module is suitable to be used in

basic programming course.

E. Limitation of the Study

This study focuses on the early part of a basic
programming course in which most novice learners have
difficulties in understanding the basic concept of
programming and the syntax of a programming language.
Using a simple approach to write programs that produce
graphical and animated output will increase students' interest
and reduce anxiety, hence will reduce the cognitive load in
learning programming. The next part of the programming
course which focuses on problem solving and programming
skills is part of a different study.

TABLE. III. EXPERT REVIEW ON MODULE CONTENT

Expert Remarks

PK1

1. This module is very interesting. It's generally very interesting

and easy to understand.
2. Only the topic on array seem difficult.

PK2
1. An interesting learning method using visuals and graphics.

2. Simple examples are used to introduce a concept.

PK3

1. This is a great effort to improve the teaching quality of

programming. The proposed concept can be further refined to
increase students' understanding of Java.

2. I strongly agree with the concept of 'tracing' used and

recommend to emphasis on this.
3. Need to include additional references especially from youtube

to enable students to learn more about each topic.

4. Overall, I agree with this module and hope to improve it in the
future.

TABLE. IV. EXPERT REVIEW ON USABILITY OF THE MODULE

Expert Remarks

PK1
1. Practical. The use of visuals makes it easier for students to

remember/understand what to do (visual/visual algorithms)

PK2

1. Support materials for the laboratory are very suitable
2. It should be used with textbooks and reference books for an in-

depth explanation.

3. Overall, it is simple, interesting and appropriate approach for
21st-century learning

PK3 1. This module is simple to understand.

PRB
1. Generally, this module is easy to use. The content is presented

in a structured way.

2. The use of icons to mark 'sections' in module content is good.

V. CONCLUSIONS

This article describes the development of the VJava
Module that uses visual output approaches for a basic
programming course. This module uses the developed MJava
library that can be integrated into student programs to produce
graphical and animated outputs. Cognitive load theory and
constructivism are applied in the design of this module. The
VJava module has been validated by programming and
instruction design experts in terms of content, design and
usability of the module. All experts have responded positively
and agreed that this module is suitable for use in the teaching
and learning of programming in higher education institutions.

In the next phase of this project, the VJava module will go
through a pilot test process before being implemented in a real
learning environment and evaluated for its effectiveness. The
results of this evaluation will be reported in the subsequent
paper.

ACKNOWLEDGMENT

Appreciation to the Ministry of Education of Malaysia for
supporting this work through its research grant
FRGS/1/2016/ICT01/UKM/02/3.

REFERENCES

[1] M. M. Bashir and A. S. M. L. Hoque, “An effective learning and
teaching mod el for programming languages,” J. Comput. Educ., vol. 3,
no. 4, pp. 413–437, 2016.

[2] A. Luxton-Reilly et al., “Introductory programming: A systematic
literature review,” in Annual Conference on Innovation and Technology
in Computer Science Education, ITiCSE, 2018, pp. 55–106.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

312 | P a g e

www.ijacsa.thesai.org

[3] M. Noone and A. Mooney, “Visual and Textual Programming
Languages: A Systematic Review of the Literature,” Oct. 2017.

[4] P. C. Tavares, P. R. Henriques, and E. F. Gomes, “A computer platform
to increase motivation in programming students-PEP,” in CSEDU 2017
- Proceedings of the 9th International Conference on Computer
Supported Education, 2017, vol. 1, pp. 284–291.

[5] R. Latih, M. Abu Bakar, N. Jailani, N. M. Ali, S. M. Salleh, and A. M.
Zin, “A Design for Challenge-based Learning of Programming,” Int. J.
Adv. Sci. Eng. Inf. Technol., vol. 8, no. 5, pp. 1912–1918, 2018.

[6] R. Smetsers-Weeda and S. Smetsers, “Problem solving and algorithmic
development with flowcharts,” in ACM International Conference
Proceeding Series, 2017.

[7] A. Vihavainen, J. Airaksinen, and C. Watson, “A Systematic Review of
Approaches for Teaching Introductory Programming and Their
Influence on Success,” in Proceedings of the Tenth Annual Conference
on International Computing Education Research, 2014, pp. 19–26.

[8] R. M. Kaplan, “Using Problem-Based Learning in a CS1 Course -Tales
from the Trenches,” in Proceedings of the International Conference on
Frontiers in Education: Computer Science and Computer Engineering
(FECS), 2015, pp. 86–90.

[9] R. Horváth and S. Javorský, “New Teaching Model for Java
Programming Subjects,” Procedia - Soc. Behav. Sci., vol. 116, pp.
5188–5193, 2014.

[10] R. P. Medeiros, G. L. Ramalho, and T. P. Falcao, “A Systematic
Literature Review on Teaching and Learning Introductory Programming
in Higher Education,” IEEE Trans. Educ., 2019.

[11] M. Yousoof and M. Sapiyan, “Optimizing instruction for learning
computer programming- A novel approach,” Commun. Comput. Inf.
Sci., vol. 516, pp. 128–139, 2015.

[12] S. Mohd Salleh, Z. Shukur, and H. Mohamad Judi, “Scaffolding Model
for Efficient Programming Learning Based on Cognitive Load Theory,”
Int. J. Pure Appl. Math., 2018.

[13] X. Li, “Application of Cognitive Load Theory in Programming
Teaching,” J. High. Educ. Theory Pract., vol. 16, no. 6, pp. 57–65, 2016.

[14] M. Guzdial, “Constructivism vs. Constructivism vs. Constructionism,”
Computing Education Research Blog, 2018. [Online]. Available:
https://computinged.wordpress.com/2018/03/19/constructivism-vs-
constructivism-vs-constructionism.

[15] M. Rob and F. Rob, “Dilemma between constructivism and
constructionism: Leading to the development of a teaching-learning
framework for student engagement and learning,” Journal of
International Education in Business, vol. 11, no. 2. Emerald Group
Publishing Ltd., pp. 273–290, 05-Nov-2018.

[16] A.-M. Gasaymeh, I. A. AlJa‟afreh, A. Al-Dmour, and M. A. Alrub,
“Higher Education Students‟ Preferences for Applying the Principles of
Constructivism in Learning Programming Languages with the Use of
ICTs,” J. Stud. Educ., vol. 6, no. 3, pp. 168–187, 2016.

[17] M. A. Bakar et al., “Kerangka Bagi Persekitaran Pembelajaran
Berpusatkan Pelajar untuk Latihan Pengaturcaraan Kendiri,” ASEAN J.
Teach. Learn. High. Educ., vol. 10, no. 1, pp. 24–37, 2018.

[18] J. M. Sáez-López, M. Román-González, and E. Vázquez-Cano, “Visual
programming languages integrated across the curriculum in elementary
school: A two year case study using „scratch‟ in five schools,” Comput.
Educ., vol. 97, pp. 129–141, Jun. 2016.

[19] H. Husain, N. Kamal, M. F. Ibrahim, A. B. Huddin, and A. A. Alim,
“Engendering problem solving skills and mathematical knowledge via
programming,” J. Eng. Sci. Technol., 2017.

[20] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari, “From Scratch to
„Real‟ Programming,” ACM Trans. Comput. Educ., vol. 14, no. 4, pp.
1–15, 2015.

[21] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in
introductory computer science,” ACM SIGCSE Bull., vol. 35, no. 1, p.
191, 2003.

[22] M. E. Caspersen and H. B. Christensen, “Here, there and everywhere -
on the recurring use of turtle graphics in CS1,” in Proceedings of the
Australasian conference on Computing education - ACSE ‟00, 2000, pp.
34–40.

[23] E. Roberts and A. Picard, “Designing a Java graphics library for CS 1,”
ACM SIGCSE Bull., vol. 30, no. 3, pp. 213–218, 1998.

[24] B. Meyer, “Towards an object-oriented curriculum,” J. Object-Oriented
Program., vol. 6, no. 2, pp. 76–81, 1993.

[25] B. W. Becker, “Teaching CS1 with Karel the Robot in Java,” Proc.
thirty-second SIGCSE Tech. Symp. Comput. Sci. Educ. (SIGCSE ‟01).,
pp. 50–54, 2001.

[26] J. Bergin, M. Stehlik, J. Roberts, and R. Pattis, Karel J Robot : a gentle
introduction to the art of object-oriented programming in Java. Dream
Songs Press, 2013.

[27] M. Kölling, “The problem of teaching object-oriented programming.
Part 1,” J. Object Oriented Program., vol. 11, no. 8, pp. 8–15, 1999.

[28] N. Thota and R. Whitfield, “Holistic approach to learning and teaching
introductory object-oriented programming,” Comput. Sci. Educ., vol. 20,
no. 2, pp. 103–127, 2010.

[29] M. Berry and M. Kölling, “Novis: A notional machine implementation
for teaching introductory programming,” in Proceedings - 2016
International Conference on Learning and Teaching in Computing and
Engineering, LaTiCE 2016, 2016.

[30] E. J. Johan, S. Idris, M. A. Bakar, and M. Mukhtar, “Persuasive Object
Oriented Programming Lab Assignment Framework,” Int. J. Technol.
Incl. Educ., vol. 4, no. 1, pp. 557–565, 2015.

[31] J. Sweller, “Cognitive load theory, learning difficulty, and instructional
design,” Learn. Instr., vol. 4, no. 4, pp. 295–312, 1994.

[32] J. Sweller, J. J. G. van Merriënboer, and F. Paas, “Cognitive
Architecture and Instructional Design: 20 Years Later,” Educational
Psychology Review. 2019.

[33] T. de Jong and T. Jong, “Cognitive load theory, educational research,
and instructional design: some food for thought,” Instr. Sci., vol. 38, no.
2, pp. 105–134, 2010.

[34] N. H. Jalani and L. C. Sern, “The Example-Problem-Based Learning
Model: Applying Cognitive Load Theory,” Procedia - Soc. Behav. Sci.,
2015.

[35] T. Pittayapiboolpong and P. Yasri, “Development of an Integrative
Learning Unit to Enhance Students‟ Conceptual Understanding of
Dissolution and Their Reasoning Sophistication,” J. Res. Sci. Math.
Technol. Educ., vol. 1, no. 3, pp. 283–310, 2018.

[36] S. Papert, Mindstorms: Childern computer and powerful ideas. 1980.

[37] G. Walton, M. Childs, and G. Jugo, “The creation of digital artefacts as
a mechanism to engage students in studying literature,” Br. J. Educ.
Technol., vol. 50, no. 3, pp. 1060–1086, May 2019.

[38] M. Lodi, D. Malchiodi, M. Monga, A. Morpurgo, and B. Spieler,
“Constructionist Attempts at Supporting the Learning of Computer
Programming: A Survey,” Olympiads in Informatics, 2019.

[39] R. M. Branch, Instructional design: The ADDIE approach. 2010.

