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Abstract—In order to ensure the interoperability between 

semantic web and relational databases, several approaches have 

been developed to ensure SQL-to-SPARQL query 

transformation direction, but all these approaches have the same 

weakness. In fact, they convert directly the input SQL query to 

its equivalent SPARQL one without any pre-processing phase 

enabling the optimization of this input query filled by users 

before starting the conversion process. This weakness has 

motivated us to add a pretreatment phase aiming to optimize the 

most important SQL statements which seem to have the biggest 

impact on the effectiveness of the transformed queries. Our main 

contribution is to enrich these rewriting systems by adding an 

optimization layer that integrate a set of simplification rules of 

Left, Right and Full Outer Join in order to avoid, firstly 

unnecessary operations during the conversion process, and 

secondly SPARQL queries with a high complexity due to 

Optional patterns obtained from outer join in this conversion 

context. 
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I. INTRODUCTION 

In the last decades, the semantic web [10] has emerged as 
an extension of the classic web aiming to exploit the full web 
potential by providing a common framework for knowledge to 
be shared across applications. It is a W3C recommendation 
that offers an easier way to search, share, reuse and combine 
information. It allows machines to understand the semantics of 
data on the web in order to conceive a globally-extended 
knowledge base that links data from different sources and 
ensure a better cooperation between computers and people. 
The semantic web uses numerous technologies to achieve the 
previous goals: RDF (Resource Description Framework) [4] 
as a flexible and standard data model for representing 
information on the web and make it machine readable, OWL 
(Web Ontology Language) [3] as the famous language of 
knowledge representation for creating structured ontology and 
SPARQL query language [5] for querying data from RDF graphs. 

However, the majority of web data is stored in relational 
databases, which motivate the web researchers to develop a set 
of methods aiming to offer a better interoperability context 
between the both systems. In this light, some approaches have 
been made regarding SQL to SPARQL query transformation 
in order to facilitate data extraction for relational users by 
querying RDF stores with SQL language, but unfortunately, 
all these approaches have the same weakness in their proposed 
systems since they convert directly the input SQL query to its 
equivalent SPARQL one without any optimization phase 

enabling the pre-processing of this SQL query before starting 
the mapping process. 

This weakness has motivated us to operate in this topic so 
as to remedy this gap and establish an intermediate step 
aiming to improve existing SQL-to-SPARQL mapping 
approaches by optimizing outer join clauses that leads to 
generate equivalent SPARQL query with Optional patterns 
responsible of the high complexity of the output query 
(SPARQL complexity evaluation PSPACE-hard [9]). 

The remainder of this paper is organized as follows: 
Section II presents the key contribution of some related works. 
Section III gives some theoretical background related to the 
current topic. Section IV describes the main rules using by our 
optimization layer. Section V presents the functional 
architecture of the conceived layer and the proposed algorithm 
that aims to simplify all outer join types (left, right and full 
outer join) before starting the SQL-to-SPARQL conversion 
process. In Section VI we expose the java application 
implementing our solution and a comparison results summarizing 

the executing time of generated SPARQL queries in the 
optimized and direct mode. Finally, Section VII concludes our 
work and suggests some future extensions of this topic. 

II. RELATED WORKS 

Since the exponential emergence of semantic web in the 
last decades, researchers in the four corners of the earth have 
been interested in the interoperability between the semantic 
web and relational world, considered as one of the most used 
database management system until today, without physical 
transformation of data by elaborating a conversion context of 
their query languages (SQL and SPARQL). Several researches 
were particularly interested of SQL-to-SPARQL translation 
direction such as RETRO, SQL2SPARQL and others. 

SQL2SPARQL method [2] operates in this light aiming to 
convert a classic and simple SQL queries into an equivalent 
SPARQL ones combining the transformation rules presented 
already in other works so as to realize a dynamic mapping. In 
addition, RETRO method [6] provides interoperability 
between relational database and RDF Stores by translating 
basic and composed SQL query (Union, Intersect and inner 
join in its simple form) to a semantically equivalent SPARQL 
one. In the same context, R2D method [8] proposes a 
mechanism integrating SQL-to-SPARQL translation by 
converting SQL queries, with pattern matching and 
aggregation, into the SPARQL equivalent ones. Similarly, the 
researchers of [1] explain their proposing approach of 
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interrogating RDF data using SQL queries via an algorithm 
that convert each clause of SQL queries (simple and complex 
ones without outer join) into an equivalent SPARQL ones. 

Based on the previous analysis, we note that all these 
approaches have the same and common weaknesses: firstly, 
they operate just on simple SQL input queries without any 
consideration of outer join operations. Furthermore, the first 
work established in SQL-to-SPARQL conversion direction 
that takes into consideration the outer join in their simple and 
nested form is presented in [11]. Secondly, all existing 
solutions convert directly the input SQL query to its 
equivalent SPARQL one without any pre-processing phase 
enabling the optimization of outer joins and avoiding 
unnecessary operations during the conversion process. 

To the best of our knowledge, this paper is the first work 
developed in this topic treating a detailed simplification of the 
input SQL queries before starting the SQL-to-SPARQL 
transformation process, more precisely; the simplification of 
outer joins clauses generating OPTIONAL patterns 
responsible of the high complexity of SPARQL queries. 

III. PRELIMINARIES 

This section introduces our work by giving some 
theoretical background of the different operations used in this 
optimization approach. 

A. SQL Outer Join 

In relational terms, the data is distributed among several 
tables. In fact, we can imagine a table containing a foreign key 
to another one. In this case, we need to use joins in order to 
retrieve information from these both tables in a single query 
and exploit the full power of relational data-bases to achieve 
results that combine data efficiently from multiple tables. 
Joins are a powerful construction of SQL language, but they 
have to be handled carefully, because a small missed join can 
easily broke down a database server. 

Outer join is one of relational join types used via SQL 
language aiming to regroup data from two or more tables by 
returning all rows from at least one of these tables indicated in 
FROM clause. We can distingue three types of outer joins as 
illustrated in Fig. 1: 

 Left Outer Join: returns all rows from the left table and 
the matched rows from the right table. 

 Right Outer Join: returns all rows from the right table 
and the matched rows from the left table. 

 Full Outer Join: return all rows of left and right tables 
when the join condition is respected. 

 

Fig. 1. Descriptive Schema of SQL Outer Joins. 

The Left and right outer join are called one-sided outer 
joins because they preserve only one relation of its joined 
ones. Whereas, the full outer join is called two-sided outer join 
[12] because it preserves information from both relations. 

As an example, at database level, we suppose that we have 
two tables: Customer and Order. In fact, we aim to conceive a 
list of customers with the total amount of their orders by 
joining these two tables with a left outer join operator so as to 
return all customers whether they placed any order or not. The 
final SQL query is conceived as follows: 

SELECT Customer.fullName, Order.amount 

FROM Customer 

LEFTOUTERJOIN Order 

ON Customer.cust_id = Order.ord_id 

B. SPARQL Optional Operator 

The main part of SPARQL SELECT query is specified 
using a graph pattern. In fact, several studies show that 45% of 
SELECT queries are specified only by graph patterns [7]. 
They allow users and applications to query RDF data where 
the entire query pattern must match for there to be a solution. 
However, RDF has a semi-structured data; this is why 
SPARQL [5] is able to make queries that allow information to 
be added to the solution where the information is available, 
but they do not fail when some part of the query pattern does 
not match. 

In order to realize the previous aim, SPARQL language 
uses the Option-al operator that combines a pair of graph 
patterns so as to extend the solution if the patterns matching 
have been succeeded. Else, the whole query does not fail if the 
optional pattern match fails. 

The equivalent SPARQL query of the previous SQL one is 
given below: 

SELECT ?full_name ?amount 

WHERE { 

?cust_id :Customer ?full_name. 

   OPTIONAL {  ?cust_id :Order ?amount   }} 

IV. OPTIMIZATION RULES 

In this section, we describe the main rules using by our 
optimization layer in order to simplify SQL queries with outer 
join operations (in this paper, we consider all outer join types). 

Before starting the optimization process, as mentioned in 
the previous work [11], the input SQL query (having left outer 
join else we convert the other join types to a left one) has to 
respect some semantic rules: 

 Condition 1: checking the validity of the join condition. 
In fact, shared variables between join relations must be 
bound to the same values. 

 Condition 2: ensuring that the left outer join succeed by 
verifying the columns of the right relation which must 
in no case be all nulls, else the left outer join is reduced 
to a simple selection of the left table elements. For ex-
ample, if this condition is not verified for SELECT * 
FROM R1 LEFT OUTER JOIN R2 ON (R1.a = R2.a), 
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our system will reduce it to a simple selection as 
SELECT * FROM R1. 

 Condition 3: Before the evaluation of the main Left 
Outer Join clause, all containing clauses have 
succeeded. Hence, the attributes of their right relations 
must be NOT NULL. 

Regarding the optimization process, we have used a set of 
algebraic equivalence rules based on null-rejected condition so 
as to simplify, whenever possible, the outer join operation and 
avoid generating Option-al patterns after the SQL-to-SPARQL 
conversion process. 

In fact, a condition is said null-rejected in attribute set A 
for an outer join operation if it evaluates to False or Unknown 
on every tuple in which all attributes in A are null. 

We consider the previous tables Customer and Order. For 
example, in the following query (Eq. 1) that aims to make a 
list of all customers who lives in Casablanca city: 

σ City =„Casablanca Customer‟            (1) 

The condition on customer‟s city (City = „Casablanca‟) 
reject nulls on the attribute City and on any superset of City 
(sch(Customer)). 

In this study, we use relational operators on a condition C 

such as a selection (σC), left outer join (=      ), right outer join 

(   =) and full outer join (=   =). The Inner join, returning 

records that have matching values in both tables, is denoted. 

The set of attributes referenced by a condition C is called the 

schema of C, and denoted sch(c). 

A. Left Outer Join Simplification 

The Left outer join operation can be converted to an inner 
join one if and only if the WHERE condition is null-rejected 
on the right relation schema (Eq. 2 in rule 1), else we use the 
second rule (Eq. 3) to guarantee this equivalence that is 
presented as a union of the Inner Join and Minus be-tween the 
both joined relations. 

Rule 1: if C1 is null-rejected on sch(C1) ⊆ sch(R2), then: 

            (2) 

Rule 2:if the previous condition is not checked, then: 

            (3) 

It is not necessary that the condition of null-rejecting is 
checked just on relation schemas, but also on any set of 
attributes satisfying the conditions. 

B. Right Outer Join Simplification 

Regarding the Right Outer Join operation, its 
simplification (Eq. 4) is obtained by permuting the joined 
relation so as to have a left outer join expression and continue 
to use the rules 1 and 2 defined in the previous paragraph. 

Rule 3 : 

           (4) 

C. Full Outer Join Simplification 

Regarding the Full Outer Join, the test is applied to each 
side of operation. In fact, if the null-rejected condition is 
checked on R1 schema then the operation is reduced to a left 
outer join one (Eq. 5 in rule 4), else if it is checked on R2 
schema then we replace the full join with the right outer join 
(Eq. 6 in rule 5). 

Rule 4: if C1 is null-rejected on sch(C1) ⊆ sch(R1), then: 

           (5) 

Rule 5: if C1 is null-rejected on sch(C1) ⊆ sch(R2), 

           (6) 

After performing the simplification of two-sided outer join 
to one-sided outer join, we process with the same manner as 
left and right ones. 

V. STRATEGY OVERVIEW 

A. Functional Architecture 

In order to avoid direct transformation of input SQL 
queries to the equivalent SPARQL ones in existing conversion 
systems, we have proposed to add an optimization layer to 
these mapping systems in order to bridge the previous gap by 
conceiving a functional architecture, schematized in Fig. 2 and 
composed of five components: Query Analyser & Corrector, 
Is Null Rejected, Full Outer Join Simplifier, Right to Left 
Outer Join Converter and Outer Join Optimizer. 

B. Optimization Algorithms 

Query Analyser & Corrector: This step is very helpful 
especially in the case when the SQL queries were built based 
on user input that can be scanned and analyzed in order to 
correct syntactic errors, if they exist, before starting the 
optimization process. 

Outer Join Optimizer: This component is considered as the 
main one in our proposed architecture. In fact, it operates on 
an SQL query filled by users and having an outer join clause 
in order to return the optimized SQL query at the end of 
Algorithm 1. 

 

Fig. 2. Functional Architecture of our Optimization Layer. 

C 

C 
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Firstly, our algorithm extracts each clause of SQL query 
separately by parsing it to a binary tree, and then we check if 
the FROM clause contains full outer join expression then we 
call FullOuterJoinSimplifier in order to replace it by a one-
sided join whenever possible. Else if the FROM clause 
contains a right outer join expression then we use the 
Right2LeftOJConverter component aiming to convert this 
expression to a Left outer join one before starting the 
optimization process using the rules defined in the previous 
section. 

Secondly, we check if the where clause contains a null-
rejected condition using the sub component IsNullRejected 
described subsequently, then we replace the one-sided outer 
join operator with the inner join one; Else we modify the 
FROM clause before returning the output SQL query. 

Algorithm 1: Outer Join Optimizer  
Input: SQL query with outer join clause(s), qin 

Output: Optimized SQL query, qout  

Begin 

Tree SQLtree ← parse(qin) 

qin
SELECT ← SQLtree.getSelectClause()    

qin
FROM  ← SQLtree.getFromClause() 

qin
WHERE  ← SQLtree.getWhereClause() 

Operator ← qin
FROM.getJoinOperator() 

 if(IsFullOuterJoin(Operator) = True) then 

/*Replace the FOJ by a one sided OJ whenever possible*/ 

   qin
FROM← FullOuterJoinSimplifier(qin

FROM, qin
WHERE) 

 End if  

 If (IsRightOuterJoin(Operator) = True) then 

   qin
FROM← Right2LeftOuterJoinconverter(qin

FROM) 

 End if 

 /*we check if the where clause contains a null rejected  condition*/ 

 RR ← qin
FROM.getRightRelation() 

/* LARR : List of the right relation attributes*/  
 LARR  ← parseList(RR) 

If (IsNullRejected(qin
WHERE, LARR) = True) then 

 /*Replace the one-sided outer join operator with the inner join*/            

        qin
FROM.setJoinOperator(„INNER JOIN‟) 

Else  

    RL ←  qin
FROM.getLeftRelation()   

    RR  ←  qin
FROM.getRightRelation()   

    qin
FROM    ←   qin

FROM  + „UNION‟ +  RL + „MINUS‟ + RR 

End if 

 qout ← qin
SELECT + qin

FROM  + qin
WHERE  

Returnqout 

End Algorithm 

Full Outer Join Simplifier This is the main component in 
our system as presented in the Algorithm 2. In fact, it takes as 
input an SQL query qin containing an outer This sub 
component takes as input the Full outer join expression and 
the where clause of the SQL query in order to return the 
equivalent one-sided join expression. Firstly, we extract the 
left and right relations of the input join expression and then we 
parse them to a list of attributes for an ulterior use. In the next 
step, we check if the null-rejected condition is checked on the 

left relation schema then the operation is reduced to a left 
outer join one (Rule 4), else if it is verified on the right 
relation schema then we replace the full join with the right 
outer join (Rule 5). 

Algorithm 2: Full outer join simplifier 

Input: Full outer join expression (Expin), Where conditions 

(WhereClause)  

Output: Equivalent one-sided join expression, Expout 

Begin 

    RL ← Expin.getLeftRelation() 

    RR ←  Expin.getRightRelation() 

OnCond ←  Expin.getOnCondition() 

    schRR ←  parseList(RR) 

schRL ←  parseList(RL) 

If (IsNullRejected(WhereClause, schRR) = True) then 

      ExpLOJ ←  RR + “Right Outer Join” + RL + OnCond 

Elseif(IsNullRejected(WhereClause, schRL) = True)then 

ExpLOJ ←  RR + “Left Outer Join” + RL + OnCond 

End if 

Return ExpLOJ 

End Algorithm 

Is Null Rejected Takes as input the where clause and the 
attribute list of one joined relation in order to test if this clause 
contains a null-rejected condition or not on the given schema 
relation (the second input) and return a Boolean value. 
Algorithm 3 presents below the detailed instructions to realize 
this goal. 

Algorithm 3: Is Null Rejected  

Input: Where condition (WhereClause), Set of relation attribute 

(AttrListR) 

Output: Response as aBoolean value  

Begin 

int i ← 0  

List WCL ← parseList(WhereClause)  

while (i < WCL.size()){ 

   cond ← WCL[i] 

   attribute ← cond.getAttribute() 

if (attribute.isIncluded(AttrListR) = True) then 

 If (cond is like a joined tables attribute with „IS NOT NULL‟ 

condition  

OR 

      cond is evaluated to False or Unknown for the generated null 

tuples) then 

Return True 

End if  

end if   

    i ←  i +1 

End while 

Return False 

End Algorithm 
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Right to Left Outer Join Converter the main aim of this 
sub-component is to convert a ROJ expression to an 
equivalent LOJ one applying this swapping ruleRelationL 
Right Outer Join RelationR RelationR Left Outer Join 
RelationL as presented in Algorithm 4 presented below. 

Algorithm 4: Right to Left Outer Join Converter 

Input: ROJ expression, ROJexp 

Output: Equivalent LOJ expression, LOJexp 

Begin 

    LeftRelation = ROJexp.getLeftExpression() 

    RightRelation = ROJexp.getRightExpression() 

    OnCond ←  ROJexp.getOnCondition() 

    LOJexp ←  RightRelation + „Left Outer Join‟ + 

LeftRelation + OnCond 

Return LOJexp 

End Algorithm 

VI. IMPLEMENTATION 

In order to improve the effectiveness of our proposed 
approach, we have developed a java application offering to 
relational users an efficient tool to query RDF stores with 
optimized SPARQL queries. The experiments were carried out 
on a PC with 8 GB RAM, intel Xeon X7460 2.7 GHz. 

We present below some examples of SQL queries 
supported by our system and its equivalent SPARQL ones 
obtained by a direct conversion and optimized one. In the 
example illustrated in Fig. 3, we have operated on an SQL 
query with left outer join aiming to select researchers having 
supervisors. Thus, the equivalent SPARQL query is composed 
obviously of an Optional pattern that corresponds to the left 
join in the input query. However, if we analyze deeply the 
input query, we note that it contains a null rejected condition 
(Supervisor.sup_id IS NOT NULL) in where clause that leads 
to transform left outer join operation to an inner join one (Rule 
1). Consequently, the SPARQL equivalent query conceived 
from the optimized SQL one is composed by a simple graph 
pattern instead of an optional pattern responsible of the high 
complexity of SPARQL queries (Fig. 4). 

In order to compare our optimized approach with others 
converting SQL queries to SPARQL ones without any 
preprocessing phase, we have used JENA framework and an 
RDF file with 5 million triples to execute a set of SPARQL 
queries generated by our application via the direct and 
optimized way, and then we have compared the execution 
time of each one. The comparison results are summarized in 
Fig. 5, which ensure the effectiveness of our proposed work 
that generates optimized SPARQL queries as shown in the 
diagram. 

 

Fig. 3. Direct Conversion Example of SQL Query with Left Outer Join. 

 

Fig. 4. Optimized Conversion Example of SQL Query with Left Outer Join. 

 

Fig. 5. Diagram of SPARQL Queries Execution Time via the Simple and 

Optimized Conversion Mode. 
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VII. CONCLUSION 

In this paper, we have contributed in the enhancement of 
existing SQL-to-SPARQL conversion approaches by adding 
an optimizer and pretreatment layer to these systems in order 
to simplify all outer join types (left, right and full) in SQL 
queries aiming to avoid the generation of optional pattern(s), 
whenever possible, in the output SPARQL queries responsible 
of its high complexity. In addition, we have implemented our 
algorithm in order to improve its performance on a real data 
and make our strategy easily and effortless exploitable by the 
target audience. 

The major limitation of our approach that is based only on 
null rejected properties of join condition so as to simplify SQL 
queries and avoid the generation of optional pattern(s), 
whenever possible, in the output SPARQL queries responsible 
of its high complexity. 

In the future work, an obvious extension of the approach is 
to add more simplification rules to our Optimizer component 
and to integrate this framework into the relational database 
management system in order to offer relational users a direct 
and optimized extension to the semantic world. 
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