
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

538 | P a g e

www.ijacsa.thesai.org

A Robust Optimization Approach of

SQL-to-SPARQL Query Rewriting

Ahmed Abatal
1
, Mohamed Bahaj

2
, Soussi Nassima

3

Mathematics and Computer Science Department

Hassan I University, Faculty of Sciences and Techniques Settat, Morocco

Abstract—In order to ensure the interoperability between

semantic web and relational databases, several approaches have

been developed to ensure SQL-to-SPARQL query

transformation direction, but all these approaches have the same

weakness. In fact, they convert directly the input SQL query to

its equivalent SPARQL one without any pre-processing phase

enabling the optimization of this input query filled by users

before starting the conversion process. This weakness has

motivated us to add a pretreatment phase aiming to optimize the

most important SQL statements which seem to have the biggest

impact on the effectiveness of the transformed queries. Our main

contribution is to enrich these rewriting systems by adding an

optimization layer that integrate a set of simplification rules of

Left, Right and Full Outer Join in order to avoid, firstly

unnecessary operations during the conversion process, and

secondly SPARQL queries with a high complexity due to

Optional patterns obtained from outer join in this conversion

context.

Keywords—SQL-to-SPARQL; outer join optimization; query

transformation; SQL simplification; query optimization layer

I. INTRODUCTION

In the last decades, the semantic web [10] has emerged as
an extension of the classic web aiming to exploit the full web
potential by providing a common framework for knowledge to
be shared across applications. It is a W3C recommendation
that offers an easier way to search, share, reuse and combine
information. It allows machines to understand the semantics of
data on the web in order to conceive a globally-extended
knowledge base that links data from different sources and
ensure a better cooperation between computers and people.
The semantic web uses numerous technologies to achieve the
previous goals: RDF (Resource Description Framework) [4]
as a flexible and standard data model for representing
information on the web and make it machine readable, OWL
(Web Ontology Language) [3] as the famous language of
knowledge representation for creating structured ontology and
SPARQL query language [5] for querying data from RDF graphs.

However, the majority of web data is stored in relational
databases, which motivate the web researchers to develop a set
of methods aiming to offer a better interoperability context
between the both systems. In this light, some approaches have
been made regarding SQL to SPARQL query transformation
in order to facilitate data extraction for relational users by
querying RDF stores with SQL language, but unfortunately,
all these approaches have the same weakness in their proposed
systems since they convert directly the input SQL query to its
equivalent SPARQL one without any optimization phase

enabling the pre-processing of this SQL query before starting
the mapping process.

This weakness has motivated us to operate in this topic so
as to remedy this gap and establish an intermediate step
aiming to improve existing SQL-to-SPARQL mapping
approaches by optimizing outer join clauses that leads to
generate equivalent SPARQL query with Optional patterns
responsible of the high complexity of the output query
(SPARQL complexity evaluation PSPACE-hard [9]).

The remainder of this paper is organized as follows:
Section II presents the key contribution of some related works.
Section III gives some theoretical background related to the
current topic. Section IV describes the main rules using by our
optimization layer. Section V presents the functional
architecture of the conceived layer and the proposed algorithm
that aims to simplify all outer join types (left, right and full
outer join) before starting the SQL-to-SPARQL conversion
process. In Section VI we expose the java application
implementing our solution and a comparison results summarizing

the executing time of generated SPARQL queries in the
optimized and direct mode. Finally, Section VII concludes our
work and suggests some future extensions of this topic.

II. RELATED WORKS

Since the exponential emergence of semantic web in the
last decades, researchers in the four corners of the earth have
been interested in the interoperability between the semantic
web and relational world, considered as one of the most used
database management system until today, without physical
transformation of data by elaborating a conversion context of
their query languages (SQL and SPARQL). Several researches
were particularly interested of SQL-to-SPARQL translation
direction such as RETRO, SQL2SPARQL and others.

SQL2SPARQL method [2] operates in this light aiming to
convert a classic and simple SQL queries into an equivalent
SPARQL ones combining the transformation rules presented
already in other works so as to realize a dynamic mapping. In
addition, RETRO method [6] provides interoperability
between relational database and RDF Stores by translating
basic and composed SQL query (Union, Intersect and inner
join in its simple form) to a semantically equivalent SPARQL
one. In the same context, R2D method [8] proposes a
mechanism integrating SQL-to-SPARQL translation by
converting SQL queries, with pattern matching and
aggregation, into the SPARQL equivalent ones. Similarly, the
researchers of [1] explain their proposing approach of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

539 | P a g e

www.ijacsa.thesai.org

interrogating RDF data using SQL queries via an algorithm
that convert each clause of SQL queries (simple and complex
ones without outer join) into an equivalent SPARQL ones.

Based on the previous analysis, we note that all these
approaches have the same and common weaknesses: firstly,
they operate just on simple SQL input queries without any
consideration of outer join operations. Furthermore, the first
work established in SQL-to-SPARQL conversion direction
that takes into consideration the outer join in their simple and
nested form is presented in [11]. Secondly, all existing
solutions convert directly the input SQL query to its
equivalent SPARQL one without any pre-processing phase
enabling the optimization of outer joins and avoiding
unnecessary operations during the conversion process.

To the best of our knowledge, this paper is the first work
developed in this topic treating a detailed simplification of the
input SQL queries before starting the SQL-to-SPARQL
transformation process, more precisely; the simplification of
outer joins clauses generating OPTIONAL patterns
responsible of the high complexity of SPARQL queries.

III. PRELIMINARIES

This section introduces our work by giving some
theoretical background of the different operations used in this
optimization approach.

A. SQL Outer Join

In relational terms, the data is distributed among several
tables. In fact, we can imagine a table containing a foreign key
to another one. In this case, we need to use joins in order to
retrieve information from these both tables in a single query
and exploit the full power of relational data-bases to achieve
results that combine data efficiently from multiple tables.
Joins are a powerful construction of SQL language, but they
have to be handled carefully, because a small missed join can
easily broke down a database server.

Outer join is one of relational join types used via SQL
language aiming to regroup data from two or more tables by
returning all rows from at least one of these tables indicated in
FROM clause. We can distingue three types of outer joins as
illustrated in Fig. 1:

 Left Outer Join: returns all rows from the left table and
the matched rows from the right table.

 Right Outer Join: returns all rows from the right table
and the matched rows from the left table.

 Full Outer Join: return all rows of left and right tables
when the join condition is respected.

Fig. 1. Descriptive Schema of SQL Outer Joins.

The Left and right outer join are called one-sided outer
joins because they preserve only one relation of its joined
ones. Whereas, the full outer join is called two-sided outer join
[12] because it preserves information from both relations.

As an example, at database level, we suppose that we have
two tables: Customer and Order. In fact, we aim to conceive a
list of customers with the total amount of their orders by
joining these two tables with a left outer join operator so as to
return all customers whether they placed any order or not. The
final SQL query is conceived as follows:

SELECT Customer.fullName, Order.amount

FROM Customer

LEFTOUTERJOIN Order

ON Customer.cust_id = Order.ord_id

B. SPARQL Optional Operator

The main part of SPARQL SELECT query is specified
using a graph pattern. In fact, several studies show that 45% of
SELECT queries are specified only by graph patterns [7].
They allow users and applications to query RDF data where
the entire query pattern must match for there to be a solution.
However, RDF has a semi-structured data; this is why
SPARQL [5] is able to make queries that allow information to
be added to the solution where the information is available,
but they do not fail when some part of the query pattern does
not match.

In order to realize the previous aim, SPARQL language
uses the Option-al operator that combines a pair of graph
patterns so as to extend the solution if the patterns matching
have been succeeded. Else, the whole query does not fail if the
optional pattern match fails.

The equivalent SPARQL query of the previous SQL one is
given below:

SELECT ?full_name ?amount

WHERE {

?cust_id :Customer ?full_name.

 OPTIONAL { ?cust_id :Order ?amount }}

IV. OPTIMIZATION RULES

In this section, we describe the main rules using by our
optimization layer in order to simplify SQL queries with outer
join operations (in this paper, we consider all outer join types).

Before starting the optimization process, as mentioned in
the previous work [11], the input SQL query (having left outer
join else we convert the other join types to a left one) has to
respect some semantic rules:

 Condition 1: checking the validity of the join condition.
In fact, shared variables between join relations must be
bound to the same values.

 Condition 2: ensuring that the left outer join succeed by
verifying the columns of the right relation which must
in no case be all nulls, else the left outer join is reduced
to a simple selection of the left table elements. For ex-
ample, if this condition is not verified for SELECT *
FROM R1 LEFT OUTER JOIN R2 ON (R1.a = R2.a),

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

540 | P a g e

www.ijacsa.thesai.org

our system will reduce it to a simple selection as
SELECT * FROM R1.

 Condition 3: Before the evaluation of the main Left
Outer Join clause, all containing clauses have
succeeded. Hence, the attributes of their right relations
must be NOT NULL.

Regarding the optimization process, we have used a set of
algebraic equivalence rules based on null-rejected condition so
as to simplify, whenever possible, the outer join operation and
avoid generating Option-al patterns after the SQL-to-SPARQL
conversion process.

In fact, a condition is said null-rejected in attribute set A
for an outer join operation if it evaluates to False or Unknown
on every tuple in which all attributes in A are null.

We consider the previous tables Customer and Order. For
example, in the following query (Eq. 1) that aims to make a
list of all customers who lives in Casablanca city:

σ City =„Casablanca Customer‟ (1)

The condition on customer‟s city (City = „Casablanca‟)
reject nulls on the attribute City and on any superset of City
(sch(Customer)).

In this study, we use relational operators on a condition C

such as a selection (σC), left outer join (=), right outer join

(=) and full outer join (= =). The Inner join, returning

records that have matching values in both tables, is denoted.

The set of attributes referenced by a condition C is called the

schema of C, and denoted sch(c).

A. Left Outer Join Simplification

The Left outer join operation can be converted to an inner
join one if and only if the WHERE condition is null-rejected
on the right relation schema (Eq. 2 in rule 1), else we use the
second rule (Eq. 3) to guarantee this equivalence that is
presented as a union of the Inner Join and Minus be-tween the
both joined relations.

Rule 1: if C1 is null-rejected on sch(C1) ⊆ sch(R2), then:

 (2)

Rule 2:if the previous condition is not checked, then:

 (3)

It is not necessary that the condition of null-rejecting is
checked just on relation schemas, but also on any set of
attributes satisfying the conditions.

B. Right Outer Join Simplification

Regarding the Right Outer Join operation, its
simplification (Eq. 4) is obtained by permuting the joined
relation so as to have a left outer join expression and continue
to use the rules 1 and 2 defined in the previous paragraph.

Rule 3 :

 (4)

C. Full Outer Join Simplification

Regarding the Full Outer Join, the test is applied to each
side of operation. In fact, if the null-rejected condition is
checked on R1 schema then the operation is reduced to a left
outer join one (Eq. 5 in rule 4), else if it is checked on R2
schema then we replace the full join with the right outer join
(Eq. 6 in rule 5).

Rule 4: if C1 is null-rejected on sch(C1) ⊆ sch(R1), then:

 (5)

Rule 5: if C1 is null-rejected on sch(C1) ⊆ sch(R2),

 (6)

After performing the simplification of two-sided outer join
to one-sided outer join, we process with the same manner as
left and right ones.

V. STRATEGY OVERVIEW

A. Functional Architecture

In order to avoid direct transformation of input SQL
queries to the equivalent SPARQL ones in existing conversion
systems, we have proposed to add an optimization layer to
these mapping systems in order to bridge the previous gap by
conceiving a functional architecture, schematized in Fig. 2 and
composed of five components: Query Analyser & Corrector,
Is Null Rejected, Full Outer Join Simplifier, Right to Left
Outer Join Converter and Outer Join Optimizer.

B. Optimization Algorithms

Query Analyser & Corrector: This step is very helpful
especially in the case when the SQL queries were built based
on user input that can be scanned and analyzed in order to
correct syntactic errors, if they exist, before starting the
optimization process.

Outer Join Optimizer: This component is considered as the
main one in our proposed architecture. In fact, it operates on
an SQL query filled by users and having an outer join clause
in order to return the optimized SQL query at the end of
Algorithm 1.

Fig. 2. Functional Architecture of our Optimization Layer.

C

C

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

541 | P a g e

www.ijacsa.thesai.org

Firstly, our algorithm extracts each clause of SQL query
separately by parsing it to a binary tree, and then we check if
the FROM clause contains full outer join expression then we
call FullOuterJoinSimplifier in order to replace it by a one-
sided join whenever possible. Else if the FROM clause
contains a right outer join expression then we use the
Right2LeftOJConverter component aiming to convert this
expression to a Left outer join one before starting the
optimization process using the rules defined in the previous
section.

Secondly, we check if the where clause contains a null-
rejected condition using the sub component IsNullRejected
described subsequently, then we replace the one-sided outer
join operator with the inner join one; Else we modify the
FROM clause before returning the output SQL query.

Algorithm 1: Outer Join Optimizer
Input: SQL query with outer join clause(s), qin

Output: Optimized SQL query, qout

Begin

Tree SQLtree ← parse(qin)

qin
SELECT ← SQLtree.getSelectClause()

qin
FROM ← SQLtree.getFromClause()

qin
WHERE ← SQLtree.getWhereClause()

Operator ← qin
FROM.getJoinOperator()

 if(IsFullOuterJoin(Operator) = True) then

/*Replace the FOJ by a one sided OJ whenever possible*/

 qin
FROM← FullOuterJoinSimplifier(qin

FROM, qin
WHERE)

 End if

 If (IsRightOuterJoin(Operator) = True) then

 qin
FROM← Right2LeftOuterJoinconverter(qin

FROM)

 End if

 /*we check if the where clause contains a null rejected condition*/

 RR ← qin
FROM.getRightRelation()

/* LARR : List of the right relation attributes*/
 LARR ← parseList(RR)

If (IsNullRejected(qin
WHERE, LARR) = True) then

 /*Replace the one-sided outer join operator with the inner join*/

 qin
FROM.setJoinOperator(„INNER JOIN‟)

Else

 RL ← qin
FROM.getLeftRelation()

 RR ← qin
FROM.getRightRelation()

 qin
FROM ← qin

FROM + „UNION‟ + RL + „MINUS‟ + RR

End if

 qout ← qin
SELECT + qin

FROM + qin
WHERE

Returnqout

End Algorithm

Full Outer Join Simplifier This is the main component in
our system as presented in the Algorithm 2. In fact, it takes as
input an SQL query qin containing an outer This sub
component takes as input the Full outer join expression and
the where clause of the SQL query in order to return the
equivalent one-sided join expression. Firstly, we extract the
left and right relations of the input join expression and then we
parse them to a list of attributes for an ulterior use. In the next
step, we check if the null-rejected condition is checked on the

left relation schema then the operation is reduced to a left
outer join one (Rule 4), else if it is verified on the right
relation schema then we replace the full join with the right
outer join (Rule 5).

Algorithm 2: Full outer join simplifier

Input: Full outer join expression (Expin), Where conditions

(WhereClause)

Output: Equivalent one-sided join expression, Expout

Begin

 RL ← Expin.getLeftRelation()

 RR ← Expin.getRightRelation()

OnCond ← Expin.getOnCondition()

 schRR ← parseList(RR)

schRL ← parseList(RL)

If (IsNullRejected(WhereClause, schRR) = True) then

 ExpLOJ ← RR + “Right Outer Join” + RL + OnCond

Elseif(IsNullRejected(WhereClause, schRL) = True)then

ExpLOJ ← RR + “Left Outer Join” + RL + OnCond

End if

Return ExpLOJ

End Algorithm

Is Null Rejected Takes as input the where clause and the
attribute list of one joined relation in order to test if this clause
contains a null-rejected condition or not on the given schema
relation (the second input) and return a Boolean value.
Algorithm 3 presents below the detailed instructions to realize
this goal.

Algorithm 3: Is Null Rejected

Input: Where condition (WhereClause), Set of relation attribute

(AttrListR)

Output: Response as aBoolean value

Begin

int i ← 0

List WCL ← parseList(WhereClause)

while (i < WCL.size()){

 cond ← WCL[i]

 attribute ← cond.getAttribute()

if (attribute.isIncluded(AttrListR) = True) then

 If (cond is like a joined tables attribute with „IS NOT NULL‟

condition

OR

 cond is evaluated to False or Unknown for the generated null

tuples) then

Return True

End if

end if

 i ← i +1

End while

Return False

End Algorithm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

542 | P a g e

www.ijacsa.thesai.org

Right to Left Outer Join Converter the main aim of this
sub-component is to convert a ROJ expression to an
equivalent LOJ one applying this swapping ruleRelationL
Right Outer Join RelationR RelationR Left Outer Join
RelationL as presented in Algorithm 4 presented below.

Algorithm 4: Right to Left Outer Join Converter

Input: ROJ expression, ROJexp

Output: Equivalent LOJ expression, LOJexp

Begin

 LeftRelation = ROJexp.getLeftExpression()

 RightRelation = ROJexp.getRightExpression()

 OnCond ← ROJexp.getOnCondition()

 LOJexp ← RightRelation + „Left Outer Join‟ +

LeftRelation + OnCond

Return LOJexp

End Algorithm

VI. IMPLEMENTATION

In order to improve the effectiveness of our proposed
approach, we have developed a java application offering to
relational users an efficient tool to query RDF stores with
optimized SPARQL queries. The experiments were carried out
on a PC with 8 GB RAM, intel Xeon X7460 2.7 GHz.

We present below some examples of SQL queries
supported by our system and its equivalent SPARQL ones
obtained by a direct conversion and optimized one. In the
example illustrated in Fig. 3, we have operated on an SQL
query with left outer join aiming to select researchers having
supervisors. Thus, the equivalent SPARQL query is composed
obviously of an Optional pattern that corresponds to the left
join in the input query. However, if we analyze deeply the
input query, we note that it contains a null rejected condition
(Supervisor.sup_id IS NOT NULL) in where clause that leads
to transform left outer join operation to an inner join one (Rule
1). Consequently, the SPARQL equivalent query conceived
from the optimized SQL one is composed by a simple graph
pattern instead of an optional pattern responsible of the high
complexity of SPARQL queries (Fig. 4).

In order to compare our optimized approach with others
converting SQL queries to SPARQL ones without any
preprocessing phase, we have used JENA framework and an
RDF file with 5 million triples to execute a set of SPARQL
queries generated by our application via the direct and
optimized way, and then we have compared the execution
time of each one. The comparison results are summarized in
Fig. 5, which ensure the effectiveness of our proposed work
that generates optimized SPARQL queries as shown in the
diagram.

Fig. 3. Direct Conversion Example of SQL Query with Left Outer Join.

Fig. 4. Optimized Conversion Example of SQL Query with Left Outer Join.

Fig. 5. Diagram of SPARQL Queries Execution Time via the Simple and

Optimized Conversion Mode.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 11, 2019

543 | P a g e

www.ijacsa.thesai.org

VII. CONCLUSION

In this paper, we have contributed in the enhancement of
existing SQL-to-SPARQL conversion approaches by adding
an optimizer and pretreatment layer to these systems in order
to simplify all outer join types (left, right and full) in SQL
queries aiming to avoid the generation of optional pattern(s),
whenever possible, in the output SPARQL queries responsible
of its high complexity. In addition, we have implemented our
algorithm in order to improve its performance on a real data
and make our strategy easily and effortless exploitable by the
target audience.

The major limitation of our approach that is based only on
null rejected properties of join condition so as to simplify SQL
queries and avoid the generation of optional pattern(s),
whenever possible, in the output SPARQL queries responsible
of its high complexity.

In the future work, an obvious extension of the approach is
to add more simplification rules to our Optimizer component
and to integrate this framework into the relational database
management system in order to offer relational users a direct
and optimized extension to the semantic world.

REFERENCES

[1] Alaoui, L., Abatal, A., Alaoui, K., Bahaj, M., & Cherti, I. (2015, July),
"SQL to SPARQL Mapping for RDF querying based on a new Efficient
Schema Conversion Technique", International Journal of Engineering
Research and Technology, Vol. 4, No. 10.

[2] Antal, M., Anechitei D., & Cuza, A. I. (2012), "SQL2SPARQL".

[3] Bechhofer, S. (2009), "OWL: Web ontology language", In Encyclopedia
of Database Systems, Springer US.

[4] Cyganiak, R., Wood, D., Lanthaler, M., Klyne, G., Carroll, J. J., &
McBride, B. (2014), "RDF 1.1 concepts and abstract syntax", W3C
recommendation, 25(02).

[5] Harris, S., Seaborne, A., & Prud‟hommeaux, E. (2013), "SPARQL 1.1
query langu-age", W3C Recommendation, 21.

[6] Rachapalli, J., Khadilkar, V., Kantarcioglu, M., & Thuraisingham, B.
(2011), "RETRO: a framework for semantics preserving SQL-to-
SPARQL translation", The University of Texas at Dallas, 800, 75080-
3021.

[7] Picalausa, F., & Vansummeren, S. (2011, June), "What are real
SPARQL queries like? ", Proceedings of the International Workshop on
Semantic Web Information Manage-ment, p. 7, ACM.

[8] Ramanujam, S., Gupta, A., Khan, L., Seida, S., & Thuraisingham, B.
(2009), "In Seman-tic Computing", IEEE International Conference, pp.
303-311.

[9] Schmidt, M., Meier, M., & Lausen, G. (2010, March). "Foundations of
SPARQL query optimization", In Proceedings of the 13th International
Conference on Database Theo-ry ACM, pp. 4-33.

[10] Shadbolt, N., Berners-Lee, T., & Hall, W. (2006), "The semantic web
revisited", IEEE intelligent systems, 21(3), 96-101.

[11] Soussi, N., & Bahaj, M. (2017), "Semantics preserving SQL-to-
SPARQL query trans-lation for Nested Right and Left Outer Join",
Journal of Applied Research and Tech-nology.

[12] Pérez, J., Arenas, M., & Gutierrez, C. (2006, November), "Semantics
and Complexity of SPARQL", In International semantic web conference
, Springer, Berlin, Heidelberg, pp. 30-43.

