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Abstract—The oil-gas pipeline is a complicated and expensive 

system in terms of construction, control, materials, monitoring, 

and maintenance which includes economic, social and 

environmental hazards. As a case study of Iraq, the system of 

pipelines is above the ground and is liable to disasters that may 

produce an environmental tragedy as well as the loss of life and 

money. Hence, this article presents a performance evaluation of 

different short path algorithms to improve oil-gas pipelines. The 

chosen algorithms in this paper were Parallel Short Path 

Algorithm (PSPA), Ant Colony Optimization (ACO) algorithm 

and Genetic Algorithm (GA). The main performance metric is 

the cost of the pipelines. Simulation trials were performed using 

the MATLAB program for the chosen algorithms. The 

performance comparison showed that the lowest cost of laying oil 

and gas pipelines was by applying the GA algorithm when the 

number of wells was set to 50-600. Conversely, the PSPA 

algorithm showed the best performance in terms of required 

implementation time for all scenarios. Besides, PSPA appeared to 

have acceptable performance in terms of the cost of the pipeline 

when the number of wells was arranged between50-600. 

Furthermore, PSPA showed the best performance for 700 and 

840 wells in terms of the cost of laying the oil and gas pipelines 

compared to ACO and GA. It should be noted that the ACO 

algorithm showed medium performance in terms of the cost of 

laying oil and gas pipelines compared to PSPA and GA. 
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I. INTRODUCTION 

Oil is a crucial source of energy. It is used in many 
industries, transportations and electricity supplies. Oil is 
transferred from the oil fields to the main stations (oil 
refineries) that require a network of pipes, which include 
valves and pipes of different diameters and pumping stations. 
When oil passes through the pipelines, there occurs a loss of 
3% of the total oil due to the evaporation process since the oil 
pipelines carry large quantities of oil. The oil pipelines are 
used to transport (import and export) petroleum products 
between different cities around the world with about 17.95 
million barrels per day [1]. This has led to the development of 
large and extensive design as well as operations of pipelines 
which have become more complex in recent years [2]. The 
main issue discussed in this proposal is in applying the 

proposed algorithm to find the shortest path that links the oil 
wells with the gathering facilities, hence obtaining the least 
cost for the work of the oil-gas pipeline network. 

The optimization network of pipelines for gathering and 
transporting oil and gas should include the location, 
parameter, and topology. The topology structure mentioned 
here is the multilevel star (MS), multistage star-ring (MSR) 
and the multistage star-tree (MST). In the past few years, 
some optimization algorithms have been used to improve the 
oil-gas pipeline network such as the ant colony optimization 
(ACO) algorithm, the particle swarm (PS) algorithm, artificial 
neural network (ANN) algorithm, and the Genetic algorithm 
(GA). Many researchers studied the improvement of pipeline 
networks since the early 1970s. For example, Gabriele (1977) 
[3] proposed the Steiner algorithm, whereas Edgar (1978) 
used a generalized reduced gradient method for the first time. 
Also, Simposon et al. (1990) [4] provided a GA to the 
optimization design, while Shuwen (1998) proposed the 
Kruskal algorithm as well as the Prime algorithm. On the 
other hand, in prior work [5], the authors used a genetic 
algorithm to supply the natural gas distribution network, while 
in the same year, Jiancheng in [6], who was the first 
researcher to use GA in the oil-gas pipeline network, used 
ANN to determine the multilevel star network. Furthermore, 
Jianjun combined the Simulated Annealing algorithm (SAN) 
and GA to solve the star network topology. In a previous work 
[7], the paper presented an optimization algorithm fitted for 
the oil-gas gathering network which considered several 
obstacles. 

Fig. 1 shows the map of numerous oil fields in Iraq. Many 
oil fields are scattered around southern and northern Iraq, 
where the city of Basra is one of the largest cities in Iraq 
containing oil fields. It consists of 530 geological formations 
which indicate the existence of a large quantity of oil. One 
hundred and fifteen oil fields were drilled, including 27 fields 
proven to contain a large oil reserve estimated at 65 billion 
barrels. Fifty-nine percent of the total oil reserves were 
distributed to other fields including the North Rumaila, South 
Rumaila, Majnoon, Zubair, River Omar, West Qurna, Al-
Tuba, Al-Sabah, Al-Halafiyya, and Abu-Gharb and Al-
Bazarkan fields [9]. 
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Fig. 1. Map of Numerous oil Fields in Iraq. [8]. 

II. LITERATURE REVIEW 

A. Oil-Gas Pipeline Network 

The transportation of solid, liquid and gaseous substances 
is crucial and necessary for humans. The ancient Chinese 
began this by using the stems of Bamboo plants to transport 
liquids and water up to three inches in diameter, using sloping 
passages to transport liquids. The idea of pipelines came from 
here. 

Pipelines are a reliable and safe way to transport products 
necessary for the national economy of many countries in the 
world such as water, oil, and gas [10]. Dandy et al. in [11] 
applied the genetic algorithm and developed a technique to 
improve the water pipeline networks to find the minimum cost 
of construction. Concerning oil and gas pipeline networks, 
they transported and distributed large quantities of oil and gas 
worldwide. It was considered the safest way to transport 
because of its limited number of failures. In 1879, in 
Pennsylvania, the United States built the first oil pipeline with 
a length of 109 miles and a diameter of 6 inches [12]. Now, 
there are more than 60 countries with pipeline networks, with 
a length of more than 2000 km. The United States has the 
longest pipeline network in the world followed by Russia [13]. 
Many researchers had discussed the improvement of oil and 
gas pipeline networks, specifically in the 1970s. Some 
optimization algorithms such as Prime and Kruskal were 
proposed by Shuwen in [14] to improve the natural gas 
networks. The Prime algorithm is a greedy algorithm that 
finds the minimum extension tree for an unweighted graph. 
This implies that it finds a subset of the edges that make up a 
tree including each top of the head every time and adds the 
least possible connection from the tree to another’s top. This 
algorithm was developed by the computer scientist Edsger W. 
Dijkstra in 1959 [15]. Therefore, it is also sometimes known 
as the Dijkstra algorithm. The Kruskal algorithm was also 
used to solve the same problem. 

In 1996, the genetic algorithm technique was developed to 
improve pipeline networks, and its formulation was 
continuously improved to solve the problem of spending in 
New York. The genetic algorithm was considered better than 
traditional methods of improvement such as dynamic 
programming methods as well as linear and nonlinear 

programming [11]. This technique was powerful and was able 
to create the minimum cost of pipeline network constructions 
compared to the size of the search area. It was used to improve 
the water pipeline networks, taking into account the length and 
size of the pipe in the design to evaluate the target function 
[4]. 

Multi-objective optimization methods for the 
transportation of gas differ fundamentally from individual 
target improvement methods. On this basis, the technique of 
improving the ant colony of multipurpose was developed to 
improve the transportation of gas in pipelines by reducing the 
consumption of the compressor fuel as well as increasing the 
production to maximum [16]. The design of the gas pipeline 
networks was complex where it consisted of pipes and 
element controls such as pumps and valves. Control of the gas 
pipeline network required a suitable environment for all 
elements without violating the physical and operational 
limitations during the process of transferring gas from the 
moment the network enters to the moment it exits. In 2011, 
Ermin et al. [17] presented the article provided a procedure to 
calculate the appropriate network accessories and optimal cost 
based on rigorous mathematical programming methods. In 
1978, Edgar [18] presented a study of a calculation algorithm 
to improve the design of the gas pipeline networks by 
determining the number of compressors, the length and 
diameter of the pipes, as well as the factors affecting the 
operation of the storage compressors to reduce the operating 
costs and capital using two solution techniques. The first 
method was applied to cases where the capital costs came 
from a non-zero initial fixed cost plus some horsepower 
output function, whereas the second method was known as the 
low gradient method, which is a nonlinear programming 
algorithm used directly in cases where the capital cost of 
compressors is a function of the horsepower output but does 
not contain any initial fixed cost [18]. 

Marine pipelines transporting oil and gas are exposed to 
erosion and degradation. It is, therefore, necessary to predict 
and monitor those pipelines to minimize accidents that may 
occur as well as optimize the operation. Models for the 
forecasting and evaluation of the state of oil and gas pipelines 
were developed using artificial neural network technology 
(ANN) based on the data provided for three oil and gas 
pipelines in Qatar. These models were able to predict the state 
of pipelines by a success rate of 97% [13]. 

Crude oil with high viscosity, freezing point, and wax 
content is usually transported through hot pipelines, known as 
the hot oil pipeline (HOP), equipped with pumping and 
heating stations. The cost of fuel and energy for pumping 
stations and heating ranges from 1-3% of total energy 
consumption. On this basis, a model was designed to reduce 
the cost of the operating power of HOP with the temperature 
of the output of each heating station and the operation of each 
pump as variables for improvement. The differential evolution 
(DE) algorithm was combined with the particle swarm 
optimization (PSO) algorithm to solve this model, where the 
optimum operating model saved 17.95% of the cost of energy 
needed to transport crude oil to a distance of 2640 m3/h [5]. 
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B. Oil-Gas Parallel Shortest Path Algorithm  

The proposed algorithm in [19] was based on finding the 
distances between the wells by giving the site (Cartesian 
coordinates) of each well and then choosing the shortest path 
that connects the two wells. We take into consideration the 
obstacles that may be located on the track which leads to 
finding an alternative path and finally reaching the shortest 
path connecting all the wells with the main station. 

Parallel Shortest Path Algorithm (PSPA)  

1 Inputs :               // Location Table for all wells  

2 Output:                

3 Begin: 

4 Calculate              

5 For       Do // i=1, 2,n ;  

6 For       Do  

7 If Obstacles(i,j) == 1 THEN  

8          

9 ELSE 

10 D(i,j)=    [(     )
 
 (     )

 
] 

11 End IF  

12 Next  

13 Next  

14 For             Do 

15 Determine Short path for Well (       ).  

16 SET            

17 S_ID =                   { }             ,  

18 SET Well(       ).Links= S_ID 

19 SET                    

20 SET         

21 Z =             { }  
22 SET                    

23                                             

24 NEXT  

25 END Algorithm  

C. Formulation of ACO Algorithm in a Mathematical Model 

Fig. 2 shows the ACO algorithm flowchart. We have the 
following mathematical model as given by: 
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where 

 : the ant. 

   
 : The ant moving from   to  . 

   : The amount of pheromone along the transition from node 

  to  . 

   : The parameter to control the influence of    . 

   : The desirability of node transition    (a priori knowledge, 

typically 1/dij, where   is the distance). 

    : is a parameter to control the influence of    . 

       : represents the attractiveness and trail level for the 

other possible node transitions. 

 Pheromone update 

When all the ants have completed a solution, the trails are 
updated by [20]: 

              ∑    
 

 

 

and 

    
   {

 

  

                                                 

where 

  : the cost of the     ant’s tour. 

 : is a constant 

 Discussion variable 

The discussion variable is presented as follows: 

V= {            }. The set of wells (nods) and their 

number   

E= {                   }. 

dij = √       
         

          . 

dij = The matrix of distant between wells. 

E: The set of ribs that reaches between the wells (nodes). 

  : The wells from which the path starts. 

Cij: The cost matrix for moving from the well from   to , (i.e., 

distance dij*cost). 

tij: time of arrival between wells   and , (tij >0). 

ti: time of arrival to well  . 

// ACO for Oil-Gas Pipeline Wells Problem // 

● Input:                                  
              

● Output :           

● Apply ACO ShortPath (Data) // for all well locations  

●                             // Estimate the 

minimum cost / shortest path for all wells locations  

● Estimate the final cost based on the Wells problem as 

the follows 

                            
where        is the cost of the last well . // 

 

D. GA Algorithm 

It is known that the genetic algorithm is a smart algorithm 
to choose the best solution among a large number of solutions 
and to make interventions and modifications between these 
solutions to create a better solution. In general, the genetic 
algorithm contains several basic steps to resolve various issues 
that differ in the method of formulation and implementation 
according to the issue and scope of application. The following 
is an explanation of the proposed genetic algorithm steps to 
solve the issue of the shortest path linking the oil-gas wells 
with the main station. 
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Fig. 2. ACO Algorithm Flowchart [21]. 

Step 1: (Initial data): This is a reading of the variables' 
values for the issue of linking oil-gas wells and is a cost or 
distance matrix. It represents the cost or the distance between 
the wells. 

Step 2: (Generation initial population): The first point is 
the process of building the primary generation in a random 
way where several initial chromosomes are created so that 
each chromosome represents an integrated path. The length of 
the path is the number of points to pass where each gene of the 
chromosome represents the location of a well. The figure 
below shows a chromosome of length L. 

Step 3: (Objective function): In this step, the objective 
function of the issue and each of the generation segments, 
which represent the sum of the costs or distances, are 
evaluated. 

Step 4: (Selection): All chromosomes of the primary 
generation are selected as parents. Each chromosome mates 
with all chromosomes in the primary generation where each 
mating process produces two new individuals. 

Step 5: (Generation): After selecting parent segments, 
subsequent generations are generated, and the number is 

specified by the value entered at the beginning of the 
execution. Fig. 3 illustrates the flow chart for generations. 

Step 6: (Crossover): The overlapping process is the 
selection of two segments. Then, the process of transition is 
performed to obtain the offspring. The process of creative 
interference in the issue of the traveling salesman problem 
differs from other issues because each gene represents the 
sequence of a city and the city cannot be repeated within the 
chromosome. 

Step 7: (Mutation): In this algorithm, the mutation occurs 
on the same gene. After configuring the generation segments, 
the target function for each section of the new generation is 
calculated in the same way that the initial generation segments 
were calculated. After configuring the specified number of 
generations, the execution of the function stops, and the 
results are evaluated to observe the closeness to decide 
whether to continue generational formation or to stop if the 
results are appropriate. The type of proposal is in the method 
of formulating and applying each step of the proposed 
algorithm. The chromosome is a complete pathway (each gene 
represents a city sequence). 

Gene1 Gene2 Gene3 … … Gene L 

Fig. 3. Generations Flowchart. 

// GA for Oil-Gas Pipeline Wells Problem // 

● Input:                                   
           

● Output :           

● Apply GA ShortPath (Data) // for all well locations 

●                            // Estimate the 

minimum cost / shortest path for all wells locations 

● Estimate the final cost based on the Wells problem as 

the follows 

                            
where        is the cost of the last well . // 

 

III. SIMULATION AND RESULTS  

The scope of this study was around the northern Rumaila 
field, known as the largest oil field in Basra. It was discovered 
in 1953 with a length of 80 km and a width of 4 km, where the 
number of wells found was between 600 - 840 oil and gas 
wells [19]. All simulation experiments reported in this paper 
applied the model attributes as shown in Table I. 

TABLE. I. SIMULATION MODEL ATTRIBUTES AND PARAMETERS VALUE 

Parameter  Value  Note  

No. wells  50-840 For all algorithms (PSPA, GA , and ACO ) 

Pop.Size 10-50  For GA and ACO [23];[25] 

numIter 1e5 For GA 

maxIts 300 For ACO 

numAnts 10-50 For ACO [22];[24]  

beta 1 For ACO 

Q 1 For ACO 

rho 0.4817 For ACO 

q_0 0.2770 For ACO 
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where 

numIter  : number of iteration for GA Algorithm. 

maxIts  : number of iteration for ACO Algorithm. 

numAnts  : number of ants for ACO Algorithm. 

beta  : A parameter which determines the weight of the 

heuristic function eta 

Q    : constant that determines how to update tau. 

rho  : the pheromone evaporation rate. 

q_0   : A parameter determining how often we take the route 

with the best. 

TABLE. II. COMPARISON OF DIFFERENT METHODS 

N
o

. 
o

f 
w

el
ls

 

PSPA algorithm ACO algorithm 
GA  

algorithm 

Cost 

Run 

Time 

(sec.) 

Cost 

Run 

Time 

(sec.) 

Cost 

Run 

Time 

(sec.) 

50 74626.56 1.08 69389.00 18.45 63026.76 792.10 

100 123310.83 1.45 122160.47 31.65 108717.03  850.27 

200 365176.59 2.86 316753.14 59.07 300203.50 921.23 

300 489842.80 4.65 383333.61 113.59 360297.20 1013.17 

400 526711.57 7.42 484269.53 149.67 439977.22 1068.95 

500 586227.15 9.58 547907.20 200.69 539163.68 1146.49 

600 635362.30 12.39 634612.61 272.91 619332.93 1259.24 

700 693048.53 15.84 695105.33 359.73 745123.53 1279.89 

840 740728.59 21.74 775026.42 459.05 903172.01 1461.05 

Table II and Fig. 4 show the comparison results of 
different methods. The studied algorithms (PSPA, ACO, and 
GA algorithms) were applied to determine the short path for 
various scenarios, where the number of wells was set to 50, 
100, 200, 400, 500, 600, 700 and 840. From the results, it was 
clear that the lowest cost of laying oil and gas pipelines was 
by applying the GA algorithm when the number of wells was 
set to 50-600. Conversely, the PSPA algorithm showed the 
best performance in terms of required implementation time for 
all scenarios. Besides, PSPA appeared to have acceptable 
performance in terms of the cost of the pipeline when the 
number of wells was arranged between 50 and 840. 
Furthermore, PSPA showed the best performance for 700 and 
840 wells in terms of the cost of laying oil and gas pipelines 
compared to ACO and GA. It should be noted that the ACO 
algorithm showed medium performance in terms of the cost of 
laying oil and gas pipelines compared to PSPA and GA. 

 

Fig. 4. The Comparison of different Methods in Terms of Cost. 

IV. CONCLUSIONS 

This paper presents a performance evaluation of different 
short path algorithms to improve oil-gas pipelines. The chosen 
algorithms in this paper are PSPA, ACO, and GA algorithms 
where the main performance metric is the cost of pipelines. 
The performance comparison showed that the lowest cost of 
laying oil and gas pipelines was by applying the GA algorithm 
when the number of wells was set to 50-840. Conversely, the 
PSPA algorithm showed the best performance in terms of 
required implementation time for all scenarios. Besides, PSPA 
appeared to have acceptable performance in terms of the cost 
of the pipeline when the number of wells was between50-840. 
Furthermore, the PSPA algorithm showed better performance 
for 700 and 840 wells in terms of the cost of laying oil and gas 
pipelines compared to ACO and GA. Note that the ACO 
algorithm showed middle performance in terms of the cost of 
laying oil and gas pipelines compared to PSPA and GA. 
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