
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

537 | P a g e

www.ijacsa.thesai.org

An Efficient Algorithm to Find the Height of a Text

Line and Overcome Overlapped and Broken Line

Problem during Segmentation

Sanjibani Sudha Pattanayak
1
, Sateesh Kumar Pradhan

2

Department

of Computer Science and Application

Utkal University, Bhubaneswar, India

Ramesh Chandra Mallik
3

P.G. Department of Odia Language and Literature,

Utkal University, Bhubaneswar, India

Abstract—Line segmentation is a critical phase of the Optical

Character Recognition (OCR) which separates the individual

lines from the image documents. The accuracy rate of the OCR

tool is directly proportional to the line segmentation accuracy

followed by the word/character segmentation. In this context, an

algorithm, named height_based_segmentation is proposed for the

text line segmentation of printed Odia documents. The proposed

algorithm finds the average height of a text line and it helps to

minimize the overlapped text line cases. The algorithm also

includes post-processing steps to combine the modifier zone with

the base zone. The performance of the algorithm is evaluated

through the ground truth and also by comparing it with the

existing segmentation approaches.

Keywords—Document image analysis; line segmentation; word

segmentation; database creation; printed Odia document

I. INTRODUCTION

The Segmentation phase is one of the important phases of
the character recognition process which separates the
individual lines or words or characters from the image
documents. There are several challenges associated with this
segmentation process which are intended to discuss taking into
consideration of the printed Odia documents.

The Projection profile-based method is a traditional
method of segmentation. It has been noticed that a few
problems may appear if the projection-profile-bases method
will be adopted for segmentation. Therefore, the issues and
challenges involved in the process of segmentation are
discussed.

Odia language has a rich set of symbols. Approximately,
300 (three hundred) symbols comprising of the consonants,
vowels, conjuncts, modifiers, digits, special symbols, etc. The
modifiers for a symbol can be placed in different positions;
top, bottom, left or right. Odia symbols do not maintain any
headlines like other north Indian scripts (Devanagari,
Bangla...). Below shown is an example of an Odia line
(Fig. 1). The present example shows the different zones, such
as base zone, upper modifier zone, and lower modifier zone.

It is not necessary that every text line would contain a
lower or upper modifier zone. It may contain only base zone,
base zone with any one of the upper/lower modifier zone or
base zone with both the modifier zones.

A. Challenges Faced During Text Line Segmentation of

Printed Odia Document

During the segmentation, the contents of two text lines
might be overlapped or touched in different places making the
segmentation process challenging. This is shown here in
Fig. 2.

Furthermore, there are cases where during segmentation,
the upper and lower modifier zone get separated from the base
zone resulting in split or broken lines (Fig. 3).

The skewness of the image document cannot be avoided as
manual interpretation for scanning is involved (shown in
Fig. 4). There is a problem associated with document base-line
detection. Without correcting the skewness, the segmentation
becomes difficult.

A document may contain fonts of different sizes e.g. large
font for heading or large initial letter (Fig. 5). This is another
challenge in front of the text line segmentation.

There might be more than one column in the same
document which makes the segmentation process projecting
more challenges (Fig. 6).

In the proposed algorithm resolves issues like overlapped
text lines, splitted lines and documents with different font
sizes. It has been evaluated on different types of documents
like good quality, low text density, degraded images, etc.

Fig. 1. Different Zones of an Odia Text Line (a) Upper Modifier Zone (b)

Base Zone (c) Lower Modifier Zone.

Fig. 2. Example of Overlapped Lines.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

538 | P a g e

www.ijacsa.thesai.org

Fig. 3. Demonstration of Text Line Broken into 3 different Images; (Img1:)

upper Modifier Zone, (Img2:) base Zone, (Img3:) Lower Modifier Zone of a

Single Line.

Fig. 4. Example of a Skewed Document.

Fig. 5. Document with Large Font for Heading.

Fig. 6. Document having more than One Columns.

II. REVIEW OF LITERATURE

The segmentation algorithms which are successfully
applied for the English language, cannot be used for Odia
documents due to the inherent nature of Odia scripts. The
structure of Roman script and Odia script are different in
nature. Different algorithms have been proposed by the
researchers for line segmentation earlier. Here few
segmentation strategies that have been adopted for Telugu
documents are cited as Odia script has lots of similarity with
Telugu script [8].

A projection profile is a well-known method for
segmentation. In the plotted projection profile, the peaks and
valleys of the image are shown. The zero-valued valleys
indicate a white line or gap between two lines. When the lines
are well separated, the projection profile gives a satisfactory
result, whereas in many cases, it results splitting and
overlapping. In detail, it has been discussed and demonstrated
in the result section.

Kopullu et al. [1] generated connected components from
document images for segmentation. The pixels that are
connected are labeled with the same blob and then the blob is
extracted from the image. They have tested their method on
465 different Telugu documents. It shows good results for
high-quality documents but the output degraded with quality.
For Odia documents, it will separate the untouched modifiers
from the base, thus recognition complexity will increase.
Swamy et al. [2] combines the projection profile and
connected component for segmenting lines, words as well as
characters. It shows good results for high-quality documents
but gives segmentation error for touching lines and broken
characters. A method using a modified histogram obtained
from run-length smearing is proposed by N Priyanka [3]. This
method has been verified for different Indic language
documents like Telugu, Bengali, Devanagari, Kannada and
also for multilingual documents. Kopullu and Negi [4]
developed a robust method for text line segmentation using
the Fringe map where a fringe map is generated for the input
binary image; between text line, peak fringe number is located
to construct region between adjacent text lines. Then the
segmented path is generated by joining peak fringe number.
This method has been tested on 234 images and resulted in
97% accuracy. Tripathy and Pal [5] have proposed a water
reservoir based segmentation approach for extracting text lines
of unconstrained Odia handwritten documents. Then to extract
words, vertical projection profile and structural features of
Odia characters are taken into account. Then using structural,
topological and water reservoir based features, characters are
extracted. Senapati et al. [6] have worked on text line
segmentation of printed Odia documents where they have
considered the white space between two consecutive lines. For
word segmentation, the image is transposed to invert row and
column and the same line extraction algorithm is repeated.
This method works only in a case where lines are well
separated. Segmentation for Odia documents is yet to achieve
some milestone.

III. MOTIVATION

There is no substantial work done in the segmentation area
in Odia language which is the major motivating factor to work
in the same area.

The study of the projection profile output which is shown
in the following figure (Fig. 7) motivates height based
segmentation. The text line which is not splitted or overlapped
is considered as a normal line. The study of the output
generated by implementing the traditional projection profile
method on the Odia documents, reveals that most of the text
lines segmented are normal lines.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

539 | P a g e

www.ijacsa.thesai.org

Fig. 7. Overall Line Segmentation Result for all the Documents using the

Projection Profile-based Method.

In this case, more than 80% segmented lines are normal
lines whereas around 12% segmented lines are broken and
around 5% lines are overlapped. Also, document-wise line
segmentation results in more normal lines in comparison to
splitted or overlapped lines in most of the cases. So, the
average height of a normal line can be found easily which will
help verify if a line is broken or not. Also, it will help to find
the overlapped region between two lines.

IV. PROPOSED METHOD

The proposed algorithm named as height_based_
segmentation segments text lines from printed Odia
documents having a single column. A variety of documents;
good and poor quality, have been collected from different
sources. These documents are then converted to image form
(jpg, bmp, png, tiff, etc.). The no. of lines present in these
documents varies from 5 to 35. The algorithm considers an
image document as the input, segments individual text lines
and stores these as output. The output images are in jpg
format. The segmentation is done based on the approximate
height of a text line. So the height of the text line plays a very
important role here.

As a part of pre-processing, input image is binarized
applying Otsu’s method. Here the background of the image
document is white whereas the texts are written in black.

Consecutive nonzero rows (The row having at least one
black pixel) in the image document form a text line. So
counting the consecutive rows gives the height of the text line.
These consecutive text lines may include a normal text line,
overlapped lines or a broken line that contains the modifier
zone. Finding the approximate height of a text line can help us
to solve the problem of overlapped lines as well as a broken
line.

The text line which is not broken or overlapped is
considered as a normal line. To find the approximate height,
the frequency of the height of the text lines is considered. If
more normal lines are present in a document, the highest
frequency is considered as the approximate height of the text
line. To confirm the above, the second highest frequency of
height is found. If the ratio of the second-highest frequency of
height and highest frequency of height is more than 3, then

there are more broken lines in the document. (The height of
the upper or lower modifier which is separated from the base
zone of the text line usually occupies one-third of the height of
the base zone.). Here the second highest frequency of height is
considered as the approximate height of the normal text line.

When the ratio of the highest frequency of height and
second highest frequency of height is more than 2, then there
are more overlapped lines in the document. So the second
highest frequency of height is considered as the approximate
height of the normal text line.

Now for each identified text line, collect the first nonzero
row no. Find if the text line is overlapped, broken line or
normal line from its height. If it is a normal line, extract the
sub-image from the document image within the range (first
non-zero row and first non-zero row+ height of the text line).

If the text line is found to be overlapped, the quotient value
obtained from the height of the text line and approximate
height of the line will give the no. of text lines overlapped. To
extract the individual text lines from the overlapped text line,
the following code snippet is used.

i) threshold=8 // threshold value 8 gives the best

result for this experiment

ii) rem=height of text line% Approx._height

 q=height of text line/ Approx._height //maximum

q no. of text lines is overlapped

 r= Approx._height /3 //r is the approx. height of

the upper or lower modifier.

iii) if (Approx._height - rem <= r):

 /*(all those lines whose height is greater than

Approx._height, doesn't contain an overlapped line. e.g.:

calculated approx. height is 18. But, the height of a text line

may be slightly more or less than 18.) */

iv) starting_point=first_nonzero_row

v) for all the rows in the range

 (starting_point+Approx_height-r, starting_point +

Approx_height + r):

vi) if a row has less pixel than threshold:

 mark this row op as an overlapping row.

vii) Extract the sub-image from the document between

starting_point and op.

viii) starting_point=op+1. /* The next text line starts

from the next row after op/*

viii) repeat step (iv) to (viii) for q no. of times. To extract q

text lines.

After extracting images of all the text lines from the
document image, post-processing is applied to solve the
broken line problem. All the extracted images are saved
sequentially in a folder. The height of each text line is
computed. If the ratio of the approximate height and the height
of the text line is found to be around 3, then it is identified as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

540 | P a g e

www.ijacsa.thesai.org

an upper or lower modifier zone of the text line. It should be
merged with the base zone of the text line. Using the
algorithm which is mentioned in paper [7], it is identified
either as a lower or upper modifier zone image. If the image is
found to be an upper modifier zone, then it is merged with the

next image in the folder which is supposed to be the image of
the base zone. If the image is identified as the lower modifier
zone, then it is merged with the previous image in the folder
which is supposed to be the image of the base zone.

Fig. 8. Flow chart for the height_based_segmentation algorithm:

Collect the nonzero rows from

the image document

Read the image document

Find the height of the text lines

from the consecutive non zero

rows. Collect the first_nonzero_row

for each text line

Find the highest frequency of height of

text line: height_n.

Find the second highest frequency of

the height of text line: s_h_f.

height_n <= s_h_f / 3

The document contains

more broken lines.
Approx_height= s_h_f

yes

No

height_n >

2 × s_h_f

The document

contains more

overlapped lines.

Approx_height=

s_h_f

ye

s

The document contains

more normal lines.
Approx_height=

height_n

No

Start

For all identified text lines, find if

it is overlapped, splitted or a

normal text line from its height.

text line= =normal

line or overlapped line

no

For the broken line, identify if the
image contains a lower zone or upper

zone modifier using paper [7].

Image==uppe

r zone

modifier

Merge the image with the previous image

which is a base zone image.

N

o

End

Collect the image of

individual text line using

first_nonzero_row,

Approx._height and height

of this text line. Save the

collected or splitted image
to the output folder.

yes

yes

Merge the image

with the next image

which is a base
zone image.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 12, 2019

541 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTAL RESULT

The Experiment is carried out on a variety of printed Odia
books having different font sizes and font types. Few
documents are of very high quality and well-spaced whereas
many books are of degraded printing quality. There are cases
in which the font of the chapter heading is much larger than
the body.

The pdf formats of the books are collected from different
sources. To maintain heterogeneity, books published in
different time period have been chosen. Pages that are
considered for the experiment are free from all sorts of
graphical contents; contain only textual data. The books
contain writing only in a single column.

Then the pdf forms of the books are converted to image
documents. These image documents are the input for our
segmentation system. Here, a total of 265 documents are
considered for the experiment. No. of text lines present in
these documents varies from 5 to 40.

The proposed algorithm height_based_segmentation is
implemented in Python numpy and scipy package. The
performance of the algorithm is evaluated with the ground
truth manually as well as with the popular projection profile-
based method.

From the result (which is demonstrated in above graph
Fig. 8 and Table I), it can be observed that using
height_based_segmentation algorithm, broken lines have been
reduced by 96% whereas overlapped line cases have been
reduced by 71%. Training more varieties of modifiers may
reduce more broken lines.

Using a horizontal projection profile-based algorithm,
around 26000 nos. of words are segmented from the
segmented lines.

With these collected words and lines, two separate
databases have been built. The line database contains nearly
6000 normal lines, 300 overlapped lines, and 800 broken lines.
Similarly, the word database contains approximately 26000
words. The database contains data of varied font type and size.
These databases will be available to the researchers who work
in the related field by contacting the authors.

TABLE. I. COMPARISON OF PROJECTION PROFILE-BASED METHOD AND

OUR ALGORITHM

Segmentation

method

No. of

documents

No. of

normal

lines

No. of

broken

lines

No. of

overlapped

lines

Projection profile

based method
265 5450 841 319

Our Algorithm 265 5993 26 61

Fig. 9. Comparison of Projection Profile-based Algorithm and Proposed

Algorithm.

VI. CONCLUSION

Line segmentation is a very important phase of the optical
character recognition method. The accuracy of the whole
system is largely dependent on line-segmentation accuracy.
Here, an attempt has been made to experiment line
segmentation based on the height of the normal lines as it is
observed that comparatively few lines in a document suffer
from broken-line or overlapped issues. Here, our new
algorithm gives a ray of hope. The accuracy of our algorithm
can be increased even more by correcting the skewness of the
document. More variations of modifier symbols may be
collected and trained to reduce more broken line problem.

REFERENCES

[1] V. K. Koppula, N. Atul and U. Garain, "Robust Text Line, Word And
Character Extraction from Telugu Document Image," Second
International Conference on Emerging Trends in Engineering and
Technology, Nagpur, 2009, pp. 269-272.

[2] Das, M. Swamy, and Dr. CRK Reddy. “Segmentation of Overlapping
Text Lines , Characters in Printed Telugu Text Document Images.” 2010.

[3] Nallapareddy Priyanka, Srikanta Pal and Ranju Manda. Article:Line and
Word Segmentation Approach for Printed Documents. IJCA,Special
Issue on RTIPPR (1):30–36, 2010.

[4] V. K. Koppula and A. Negi, "Fringe Map Based Text Line Segmentation
of Printed Telugu Document Images," 2011 International Conference on
Document Analysis and Recognition, Beijing, 2011, pp. 1294-1298.

[5] N. Tripathy and U. Pal, "Handwriting segmentation of unconstrained
Oriya text," Ninth International Workshop on Frontiers in Handwriting
Recognition, Kokubunji, Tokyo, Japan, 2004, pp. 306-311.

[6] D. Senapati, S. Rout and M. Nayak, "A novel approach to text line and
word segmentation on Odia printed documents," Third International
Conference on Computing, Communication and Networking
Technologies (ICCCNT'12), Coimbatore, 2012, pp. 1-6, 2012.

[7] S S Pattanaik, S K Pradhan, R C Malik, Printed Odia Symbols for
character Recognition: a Database study, In the proceeding of 3rd Intl.
conference on Advanced Computing and Intelligent Engineering,2018,
Bhubaneswar, India.

[8] P Mohanty, On script Complexity and the Odia script, Dedicated to
Gabriel Altmann on the Occasion of his 75th Birthday,2007.

