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Abstract—Internet applications, such as video streaming,
critical-mission, and health applications, require real-time or
near real-time data delivery. In this context, Software Defined
Networking (SDN) has been introduced to simplify the network
management providing a more dynamic and flexible configuration
based on centralizing the network intelligence. One of the main
challenges in SDN applications consists of selecting the number of
deployed SDN controllers, and their locations, towards improving
the network performance in terms of low delay and high
reliability. Traditional k-center and k-median methods have been
fairly successful in reducing propagation latency, but ignore other
important network aspects such as reliability. This paper proposes
a new approach for controller placement that addresses both
network reliability and reducing network delay. The proposed
heuristic algorithm focuses on four different robustness functions,
viz, algebraic connectivity (AC), network criticality (NC), load
centrality (LC), and communicability, and has been applied in
four different real-world physical networks, for performance
evaluation based on degree-, closeness-, and betweenness-based
centrality-based attacks. Experimental results show that the
proposed controller selection algorithms based on AC, NC, LC,
and communicability, achieve a high network resilience and
low C2C delays, outperforming the latest, widely-used baseline
methods, such as k-median and k-center ones, especially when
using the NC method.
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I. INTRODUCTION AND MOTIVATION

In recent years, the rapid growth in cloud computing
coupled with the high demand for massive-scale data centers,
have made it crucial to provide efficient network management
and resource utilization towards ensuring an optimal system
performance [1]. In this dynamic context, network design
requirements are subject to change, making it necessary to
periodically re-configure network devices, such as switches
and routers. Traditionally, this re-configuration used to be
performed manually. Nevertheless, as the number of deployed
devices increases, re-configuration becomes harder; this situa-
tion is particularly noticeable in the case of distributed back-
bone networks. In recent years, software defined networking
(SDN) technologies have been introduced to address such
network management and scalability issues [2]. SDN aims at
simplifying network management enabling a more dynamic
and flexible configuration by centralizing network intelligence.
Specifically, SDN decouples the data plane, i.e., the forwarding
process of network packets, from the control plane, i.e., the
routing process, thereby improving the efficiency and pro-
grammability of the former, while centralizing the latter in

a single device called an SDN controller that is responsible
for defining flow routes at each SDN switch [3]. Fig. 1 shows
a typical SDN architecture.

The introduction of SDN technologies signifies a paradigm
shift in the field of network infrastructure [4]. In particular, by
allowing logical centralization of feedback control, decisions
are based on a global view of the network, easing network
maintainability and enabling consistency in network policies.
In this way, SDN networks provide a favorable environment
for the development of innovative applications, and is an
important research area for both academia and industry. SDN
has been used to improve network performance [5], network
resilience [6], [7], [8], and energy consumption [9], [10].

A typical SDN network can operate with one con-
troller [11], which remotely configures SDN switches and
routers. However, to avoid single point failure, more than one
controller is needed to ensure a higher degree of resilience in
the event of network failure that disrupts controller connec-
tivity [12]. In addition, adding more controllers lowers the
control message latency between SDN switches, especially
for backbone networks where propagation delay can signif-
icantly increase the time needed to configure SDN switches
remotely. However, adding more controllers can negatively
impact the delay in some cases, as the distributed control
plane has to consistently exchange to synchronize the global
topology among all deployed controllers. Thus, adding more
controllers implies additional waiting time for synchronization.
The optimal number of deployed controllers can vary from
one application to another based on user requirements. Real-
time applications, such as video streaming need low-delay
to provide the best user experience for content viewers. On
the other hand, high-availability applications, such as hosting
servers, requires reliable and available connection with a
higher emphasis on delivery than instantaneous response. For
a successful deployment of SDN network these requirements
have to be satisfied while minimizing the deployment cost.

In this paper, a new framework is introduced to help
network designers to determine the number of SDN con-
trollers and their locations to satisfy application require-
ments. This framework includes a greedy algorithm and set
of graph metrics to study a given network to improve its
overall performance in terms of minimizing latency, improv-
ing network resilience while minimizing overall deployment
cost. The performance metrics that capture SDN network de-
lays include: switch-to-controller (S2C) and the controller-to-
controller (C2C) delays. Our introduced algorithm determines
k SDN controller based on four graph-robustness metrics:
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Fig. 1. SDN architecture.

algebraic connectivity (AC) [13], [14], [15], [16], network
criticality (NC) [17], load centrality (LC) [18], and com-
municability [19]. To evaluate the proposed approach within
the context of real-world physical networks, the proposed
algorithm is applied in four different US-based backbone
networks. In addition, the robustness of the proposed approach
is evaluated in terms of three different centrality-based attacks,
i.e., degree-, closeness-, and betweenness-based ones. Finally,
in order to evaluate the network performance of the proposed
approach with other state-of-the-art baseline approaches in use
at present, the obtained results in terms of S2C and C2C delays
and resilience, are compared with the ones obtained with k-
median and k-center methods.

The contribution of this paper is threefold. Firstly, it
proposes a new framework to aid network designers in de-
termining the number of SDN controller to satisfy network
requirements. The greedy-selection algorithm first introduced
in a prior work by the author of this paper [20] is gener-
alized towards determining locations of k SDN controllers
to meet network requirements in terms of lowering delay,
and improving network resilience while reducing deployment
cost. In particular, the location algorithm is based on four
different objective functions: AC, NC, LC, and communica-
bility. Secondly, the proposed approach is evaluated within the
context of four different real-world physical US-based back-
bone networks. Third, a novel resilience metric, called Attack
Resilience, is defined and computed in the presence of three
different centrality-based attacks, namely, degree-, closeness-
, and betweenness-based ones. Thirdly, a novel resilience
metric, called attack resilience, is defined and computed in
the presence of three different centrality-based attacks, namely,
degree-, closeness-, and betweenness-based ones.

The reset of this research article is organized as follows. A
brief theoretical background of SDN controller placement and

robustness metrics is presented in Section II. In Section III, the
relevant related work is discussed. The k-controller selection
algorithm proposed in this paper is introduced in Section IV.
In Section V, the used evaluation protocol is described. In
particular, in Subsection V-A, the used dataset is introduced,
while in Subsection V-B, the different graph attack models
used to test the proposed controller selection algorithm, are
presented. Finally, in Section VI, the obtained results are
presented and discussed. In particular, Section VI-A is devoted
to the network resilience analysis while Section VI-B is
devoted to the network delay analysis. Finally, a summary of
our work with some concluding remarks and future directions
for research are provided in Section VII.

II. THEORETICAL BACKGROUND

In this section, a theoretical background of the controller
placement problem (CPP) and graph robustness metrics, is
provided in Subsection II-A and Subsection II-B, respectively.
In addition, some relevant solutions proposed in the literature
to address such issues are also discussed.

A. Controller Placement Problem

In a small-size network one SDN controller can be suffi-
cient to remotely configure a set of SDN switches [11], [21].
However, as the size of the SDN network increases, more
than one network controller is needed to maintain scalability
requirements. To deploy a set of controllers for a large-size
network such as a backbone network, three questions need to
be answered during the network design phase [11]:

1) What is the minimum number of controllers to satisfy
user-application requirements?

2) Where are the locations of the selected controllers?
3) How many switches should be attached to each

selected controller?
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In this context, identifying the optimal number of SDN
controllers to be deployed and their locations, referred to
as the CPP, becomes vital [11]. Several approaches can be
found in the literature that addressing the CPP problem from
different perspectives, such as reducing network delays [11] or
increasing its reliability [22], [23], among others [24]. In [11],
controllers are selected based on the k-median method. In
this approach, controllers are selected to maintain minimum
average delay delay among the SDN switches and controllers.
Experimental results in [11], obtained by applying the pro-
posed method on several mid-sized WANs, indicate that the
propagation delay decreases as the number of controllers k
increases. In [22], a location selection algorithm based on a
reliability model computed using link operational probabilities,
is proposed. The obtained results on several publicly avail-
able network topologies, show that the cost of deployment
can be minimized while achieving reliability by carefully
determining the placement of controllers. In [23], a control
network reliability metric, based on the probability of path
failures, is introduced to re-route traffic in case of control
path loss. In addition, different placement algorithms are tested
such as simulated annealing (SA) [25], which yield improved
reliability against network failures. In addition, results in [23]
also show that it is possible to find an optimal number of
controllers to be deployed in terms of reliability, in the sense
that locating more controllers would not further improve the
results.

Here it is important to highlight that, although [11], [22]
and [23] propose different CPP solutions, not all their results
cannot be used for comparison purposes in this paper. In
general, in order to be comparable, results should be obtained
from a well-designed, clearly explained, and feasible to repro-
duce evaluation protocol. In particular, many of the parameters
used in [23] are randomly selected, making it impossible to
reproduce their results. The results in [22], are obtained on
a publicly available dataset, making them useful benchmark
results. Nevertheless, in [22] the controller locations are de-
termined based on link operational probabilities, which are
assumed to be identical, thus providing equally weightage
to all the selected nodes. In this context, random results are
generated, which cannot be reproduced. Finally, as discussed
in Section I, the k-median method used in [11], is used in
this paper for comparison. Nevertheless, the results reported
in [11] cannot be directly compared with our results as they
are not obtained on the same network topologies.

B. Robustness Graph Metrics

Graph metrics are used to evaluate the topological prop-
erties of a given network. They are used as indicators to
differentiate between network topological designs in terms
of performance and resilience. In particular, the topology
of a given network can determine, among other essential
aspects, its robustness against node removals. For instance,
removing the central node in a star network can lead to full
dysconnectivity. On the other hand, a full-mesh network can
provide optimal resilience against such a challenge. However,
a full-mesh network is infeasible in large-area topologies such
as backbone, due to its excessive costs [26]. In our earlier
studies, we have introduced a graph metric, namely ’nodal
path disjoint’, which captures the node centrality in terms of
the number of disjoint paths to other nodes. This metric has

been useful in determining the placement of SDN controllers
to achieve network resilience [27].

In this paper, we selected four graph robustness metrics
based on a comprehensive evaluation of most graph metrics
to capture network resilience against network failures [28],
specifically, AC and NC are used. In particular, the AC
metric is focused on measuring the graph robustness against
node removals [29], [26], while the NC metric measures the
network robustness in case of topological failures [17]. In
addition, to further evaluate the robustness of the proposed
approach, two betweenness-based measures, such as the LC
and communicability metrics, are also used. The four selected
robustness metrics are described as follows:

• Algebraic Connectivity: AC, usually denoted as
a(G) = λ2, is the second smallest eigenvalue of its
Laplacian matrix. AC has been extensively researched,
showing several advantages when compared to other
well-known robustness metrics, such as, for instance,
the average node degree, for evaluating network re-
silience [30], [31], [32]. In addition, in [14], [15], [16],
the AC capability of predicting graphs flow robustness
is also highlighted.

• Network Criticality: NC, denoted as τ̂ , is a spectral
graph metric calculated as follows:

τ̂ =
2

n− 1
Trace(L+) (1)

where n represents the number of nodes while
Trace(L+) is the trace of the Moore–Penrose inverse
of the Laplacian matrix of the graph [17]. A lower
value of NC, calculated as in Eq. 1, indicates a
higher network robustness. A comprehensive study of
this metric within the context of different network
topologies as well as a comparison with other widely
used robustness measures, can be found in [33].

• Load Centrality: LC, first introduced in [18], measures
the load incurred by other nodes, in terms of node
betweenness, by computing the shortest paths passing
the given node. A larger value of LC indicates a higher
network robustness.

• Communicability: The communicability measure, first
introduced in [19], evaluates the number of walks
that connects every pair of nodes. A larger value of
communicability indicates a higher degree of network
robustness.

III. RELATED WORK

In recent years, several SDN protocols have been proposed
in the literature that implement SDN networks in different
scenarios, such as healthcare [34] and traffic [35] applications.
One of the most widely used SDN protocols is OpenFlow.
Since it was first introduced in 2011, this SDN protocol,
originally developed at Stanford University [36], has gained
high popularity, calling the attention of both academia and
industry. In this section, some of the most relevant works
addressing SDN technologies are discussed.

In [34], an SDN protocol is proposed to separate the
application from the underlying physical infrastructure towards
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reducing the total capital and maintenance costs. The pro-
posed protocol allows intelligent health monitoring as well
as customized data collecting, transmitting, and processing.
The promising results reported in [34] provide a solid for
further innovation in the field of healthcare applications. In [4],
authors highlight that SDN can favor big data acquisition,
transmission, storage, and processing. Further this line, authors
in [4] studied the feasibility of applying SDN protocols in
the context of big data networking. In particular, the available
technologies allowing a joint design of big data and SDN
were analyzed towards achieving a synergistic environment
capable of exploiting SDN and big data advantages making
both of them both benefit from each other. The reported results
in [4] are promising highlighting the potential benefits of using
SDN technologies in the context of big data applications.
In [37], a software-defined IoT infrastructure, consisting of
physical, control and application layers, is applied in the
context of a new industry concept called Industry 4.0, with
the purpose of providing flexible network resource allocation
management and improving data exchange. Simulation results
in [37], obtained from different Industry 4.0 scenarios, show
that SDN technology is essential to the successful development
of such new industry concept. In [35], a time-sensitive SDN
(TSSDN) is introduced towards providing real-time guarantees
in time-sensitive and non-time-sensitive traffic systems. The
proposed TSSDN is based on bounding the non-deterministic
queuing delays for time-sensitive traffic by exploiting the logi-
cal centralization paradigm of SDN to compute a transmission
schedule for time-sensitive traffic initiated by the end systems
based on a global view. Results in [35], show that the proposed
TSSDN achieves deterministic end-to-end delays with low and
bounded jitter.

The above discussion shows that SDN technologies can
be implemented in diverse scenarios, such as healthcare, big
data, industry, and traffic applications, to achieve different
objectives, including customizing, reducing costs, minimiz-
ing delays, and improving performance. Regardless of the
scenario, the successful implementation of SDN networks is
highly dependent on network reliability. Although as previ-
ously discussed in Subsection II-A, while some network re-
quirements can be fulfilled using only one controller, deploying
more controllers, i.e., making the network more redundant, can
increase its reliability [24]. Several researchers have focused
their works in developing multi-controller approaches towards
improving the network reliability and resilience. In [24],
a comprehensive survey of multi-controller based on SDN
can be found. In Subsection II-A, the proposed approaches
in [11], [22], and [23], have been discussed. In addition, some
other approaches can be found in [38] and [39]. In [38], the
possibility of improving the resilience of smart grids through
SDN applications is evaluated using three illustrative use cases,
showing that SDN technologies allow the strengthening of
smart grid resilience, even under catastrophic circumstances.
In [39], a CPP solution based on mobility-aware adaptative
flow-rule placement is proposed for a software-defined access
network (SDAN) to support IoT applications; good simulation
results were obtained in terms of network delay, optimal
number of activated access points (APs), control overhead,
energy consumption, and costs.

Finally, despite the huge efforts made in the literature
towards addressing the CPP problem in SDN applications,

researchers agree that there still exist many research gaps
and open challenges in the field [24]. In particular, according
to the extensive analysis conducted in [24], further research
needs to be conducted towards addressing scalability, con-
sistency, reliability, resilience, and load balancing issues. In
addition, most of the reported results in the literature have
been obtained based on simulation experiments rather than
experiments conducted in the real-world scenario. Then, in
order to give some insight into the identified research gaps, a
novel SDN controller selection approach aimed at improving
the network resilience against targeted attacks is proposed in
this paper and tested within the context of four different real-
world US-based backbone physical networks.

IV. SDN CONTROLLER SELECTION ALGORITHM

In this section, the proposed approach aimed at selecting
the locations of k controllers subject to the four objective func-
tions, namely, AC, NC, LC, and communicability—towards
optimizing network performance not only in terms of the S2C
and C2C delays, but also of the resilience against centrality-
based attacks, is introduced. The proposed greedy algorithm
is implemented as follows, being the corresponding pseudo-
code shown in Algorithm 1. First, the nodes are divided into k

Functions:
graphMetric(G) := a generic graph metric of G
k-means(k,G) := k partitions of a graph G
nodeSelection(List) :=select a node based selected
graph metric function
Input:
Gi := input graph
k := number of returned SDN controllers
Output:
kControllers := a list of the selected controllers
begin

selectedControllers = []
partitions = k-partitions(k,Gi)
for partition in partitions do

graphMetricsVales = []
for node in partition.nodes() do

Gi.remove(node)
nodeImpact = graphMetric(Gi)
graphMetricsVales.append(node,nodeImpact)
Gi.add(node)

end
bestCandidateNode =
nodeSelection(graphMetricsVales)

kControllers.add(bestCandidateNode)
end
return kControllers

end
Algorithm 1: A greedy algorithm for selecting k-
controller.

groups using a k-clustering algorithm. Then, for each cluster,
the node satisfying the objective function is selected. The
three functions defined in Algorithm 1: graphMetric(G), k-
means(G), and nodeSelection(List), are applied as follows.
First, the graphMetric(G) function returns the graph metric
value of a given graph G. This function is especially defined
to support any graph metric, allowing the use of any of
the four metrics proposed in this paper (AC, NC, LC, and
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TABLE I. US-BASED BACKBONE NETWORK TOPOLOGIES

Graph Nodes Links Radius Diameter
Internet2 57 65 8 14
Level 3 99 132 10 19
Sprint 264 313 19 37
AT&T 383 488 20 39

communicability). Then, the k-means(G) function divides N
nodes into k partitions based on their Euclidean locations.
Finally, the nodeSelection(N ) function returns the node that
maximizes the network robustness.

V. EVALUATION FRAMEWORK

In this section, the evaluation Framework used in this paper
is described. In particular, subsection V-A describes the used
dataset is introduced, while subsection V-B presents the three
different centrality-based attacks used to test the robustness of
the proposed approach.

A. Dataset

In this paper, four different backbone fiber-level network
topologies available in the KU-TopView Network Topology
Tool [40], particularly, Internet21, Sprint, Level 3 [41], and
AT&T, are used to evaluate the performance of the proposed
approach. In order to illustrate their graph properties, some
commonly used graph metrics are shown in Table I.

B. Centrality-based Attacks

In this paper, graph-theoretic models are used to attack
the network and evaluate its robustness against node removals.
In particular, three different centrality-based attacks are con-
sidered as follows the degree-, closeness-, and betweenness-
based ones [42]. The degree-based attack targets nodes with
the highest number of connected links while closeness-based
attack targets the nodes closest to central nodes with respect
to hop-count. The betweenness-based attack targets the node
through which the highest number of shortest paths pass. For
each one of them, the list of removed nodes is determined
in an adaptive way, allowing a better selection of the highest
centrality than in the case of using a single evaluation for
selecting the highest number of targeted nodes [43].

VI. RESULTS AND DISCUSSION

In this section, the results obtained from the implemen-
tation of the proposed controller selection approach based
on the four robustness functions, namely, AC, NC, LC, and
communicability, in the four physical-level networks shown in
Table I, are presented and discussed. In addition, the k-center
and k-median methods are also applied within the context of
these four networks for the sake of comparison.

1http://www.internet2.edu

A. Controller Selection Evaluation

In order to select the controller locations with each of
the six different tested methods, that is, for the AC, NC,
LC, communicability, k-center and k-median methods, the
number of controllers is varied from k = 1 to k = 20. The
obtained results are geographically illustrated in Fig. 2, where
the optimal controller locations computed by the six methods
for the AT&T network are shown. In particular, for the sake
of a better visualization, only the locations for k = 4, k = 8,
k = 12, and k = 16 are shown. The results obtained for the
other three physical networks yield similar conclusions and are
not included here due to space constraints.

B. Delay Analysis

In this subsection, the obtained end-to-end delay results
are analyzed. Typically, while a packet is sent through the
Internet it experiences four types of delay: nodal processing,
queuing, transmission, and propagation delays. In this paper,
the propagation delay is particularly addressed, assuming that
routes are selected by means of the shortest lengths or hop-
count between the SDN switches and the nearest controllers. In
this sense, different delay related metrics, namely, the C2C and
the S2C ones, are considered. The former is analyzed in sub-
section VI-C, while the latter is analyzed in subsection VI-D.

C. Controller-to-Controller Delay

In a distributed SDN network, multiple controllers are de-
ployed to ensure load-balancing and network resilience against
attacks. In this context, controllers should be able to deal with
real-time data exchange towards sharing a global network view
and providing proper flow rules to the switches. In the case
of backbone networks, these controllers can be in different
cities, increasing the signal propagation time and the number
of required hops, causing additional delay. In this paper, the
inter-controllers delay is evaluated based on these two factors
through the C2C delay and the C2C hop-count, respectively.
The former, defined as the average of the propagation delay
between the deployed controllers, is computed as the shortest
path length divided by the propagation speed2. The latter, is
defined as the average number of hops corresponding to the
shortest paths between the deployed controllers.

In this subsection, the C2C delay is analyzed as a function
of the number of deployed controllers k. In particular, the
impact of increasing k on the end-to-end delay (C2C delay)
and on the number of hops (C2C hop-count) for the four
physical networks is shown in Fig. 3 and 4, respectively.

Results in Fig. 3 show that k-median and k-center meth-
ods yield high C2C delays, for all the network topologies.
For instance, for the Internet2 topology, the maximum value
reaches 15 ms. This is due to the fact that these methods select
controllers to minimize the S2C delay, rather than the C2C
delay. Then, controllers are distributed uniformly, increasing
the shortest path distance between them. In addition, Fig. 3
also shows that, for the k-median and k-center methods, the
C2C delay decreases as the number of deployed controllers k
increases, reaching a maximum for k = 2, for all topologies.
Note the reader that the C2C delay is not defined for k = 1

2The propagation speed is assumed to be 2× 108m/s.
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Fig. 2. Controller Placement for AT&T.

because, in such a case, only one controller is deployed. For the
AC, NC, LC and communicability methods, the C2C delay is
very low for all the topologies, as they tend to select controller
locations that are close to each other, as shown in Fig. 2.
In these cases, in contrast to the the k-median and k-center
methods, the C2C delay tends to increase as k increases for
all the topologies excepting the Internet2 one, where the C2C
delay increases for k values between 2 and 4, and for k values
greater than 11, but showing no delay penalty as k reaches
11. Nevertheless, even for the largest number of controllers
considered here (k = 20), the C2C delay obtained with the AC,
NC, LC, and communicability methods, are still lower than the
ones obtained with the k-median and k-center ones. Finally,
similar results can be observed in Fig. 4, making it possible to
conclude that the AC, NC, LC, and communicability methods
outperform k-median and k-center methods in terms of the
C2C delay and hop-count.

D. Switch-to-Controller Delay

In a distributed SDN network, SDN switches are com-
monly connected to the nearest controller, making it crucial
to minimize the delay between them. In this paper, this delay
is captured taking into account two delay related metrics,
specifically, the S2C delay, defined as the average of the
propagation delay between the deployed switches and the
nearest controller, and the S2C hop-count, defined as the
average number of hops of the shortest paths between the
deployed switches and the nearest controller. In this subsection,
the S2C delay is analyzed as a function of k. In particular, the
impact of increasing k on the end-to-end delay (S2C delay) and

on the number of hops (S2C hop-count) for the four physical
networks is shown in Fig. 5 and 6, respectively.

The results in Fig. 5 show that the average S2C delay
obtained with the k-median and k-center methods are sig-
nificantly lower than the ones obtained in the case of the
C2C delay for all the topologies. This was expected since, as
mentioned in Subsection VI-C, k-median and k-center methods
select controllers by minimizing the S2C delay. These results
are also better than the ones corresponding to the AC, NC,
LC and communicability methods for all the topologies. In
addition, Fig. 5 also shows that the S2C delay decreases as k
increases for all the methods and topologies. This tendency is
particularly noticeable in the case of the AC, NC, LC, and
communicability methods, because of which the difference
between these methods and the k-median and k-center ones
to decrease as k increases. Moreover, as k increases, the S2C
delay tends to a low value (almost the same one) for all the
methods and topologies. Take, for instance, the case of the
Internet2 topology, where the S2C delay of k-median and k-
center methods for k = 11 is around 2.0 ms, while for the other
four methods the delay is around 3.6 ms. This difference is
not particularly significant. Moreover, depending on the type
of application and its requirements, this difference could be
taken into consideration or be even neglected.

Finally, the results in Fig. 6, show a similar behavior in
terms of the S2C hop-count for all the methods and topologies.
As such, the same comments stand.
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Fig. 3. Inter-controller delay.

E. Robustness to Targeted Attacks Analysis

In this section, the network resilience of the proposed
approach against targeted attacks is evaluated as a function
of the number of deployed controllers k. ITherefore, a new
metric, termed as attack resilience (AR), that captures the con-
nectivity to SDN controllers during a given attack, is defined.
The AR is computed as the sum of controller reachability,
first introduced in [20], during a given attack. The Attack
Resilience results of the four physical networks are shown in
Fig. 7, 8, 9, and 10, for the six controller selection methods
(AC, NC, LC, communicability, k-median and k-center), and
the three centrality-based attacks. In particular, Fig. 7a, 7b
and 7c show resilience results for the Internet2 topology,
Fig. 8a, 8b, and 8c, show the corresponding results for the
Level-3 topology, Fig. 9a, 9b, and 9c show the results for the
Sprint topology, and Fig. 10a, 10b, and 10c show results for the
AT&T topology, for the degree-, closeness- and betweenness-
based attacks, respectively. In all cases, the AR is minimum
at k = 1, confirming that network resilience against targeted
attacks is poor when the SDN network has only one controller,
as previously suggested in [24]. Similarly, AR increases as
k increases for all methods [24]. In all cases, the behavior
of all methods remains similar until a particular value of
k is reached, becomes different when k further increases,
indicating that different methods have different impacts on
the network resilience. In this regard, the behavior is similar

for all topologies, differing only in the value of k for which
the difference among the methods becomes appreciable. These
different behaviors are described as follows:

• Internet2:For the Internet2 topology, the resilience
values are similar for the six methods for values
of k between 1 and 7, after which the NC method
outperforms the other ones. For instance, from Fig. 7a
it can be seen that for k = 11 the attack resilience
against the degree-based attack is 75 for the k-median
method and 145 for the NC method, showing ap-
proximately 95% improvement in resilience. Here, it
is important to highlight that, although increasing k
does always increase AR, it is not always a good
strategy. For instance, the AR against the degree-based
attack improves by 3% as k increases from 11 to 17.
This will be cost-inefficient since, while there exists
a significant extra cost for deploying 6 additional
controllers, the corresponding resilience improvement
is not significant.

• Level-3: For the Level-3 topology, the AR increases
for all methods (and attacks) correspondingly between
k = 1 and k = 5. When k further increases, the AC
and NC methods are the ones that most distinguish
themselves from the rest. For k values between 5 and
9, the AC method provides the best results, while when
k is greater than 9, the NC method outperforms all the
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Fig. 4. Inter-controller hop-count.

other methods. For instance, when k = 9, the AR is
100 for all methods but for the AC one that provides
approximately 30% of improvement in the presence
of the degree-based attack.

• Spring: For the Spring topology, the AR increases for
all the methods in a similar way for k between 1 and
11, for all the attacks, being particularly noticeable
in the case of the degree-based one. For k values
greater than 11, the NC method outperforms the other
methods. For instance, for k = 14, the closeness-
based Attack Resilience value achieved by the NC
method is 350, which is around 75% higher than
communicability, which provides the worst results.

• AT&T: For the AT&T topology the AR increases
correspondingly for k values between 1 and 3, for
all methods and attacks. For this topology, the k-
median method provides the best resilience results
when k values between 3 and 7 for all the attacks.
For greater values of k, the NC method outperforms
the other ones for the closeness- and betweenness-
based attacks, while for the degree-based attack, the
k-median remains as the best one.

Based on the above discussion, it can be concluded that the
NC method provides the best results in most of the cases, while
AC and k-median methods show better results than the LC,

communicability, and k-center. In addition, once the optimal
method to place the controllers has been selected, which in this
paper is the NC method, the minimum number of deployed
controllers should be determined in terms of minimizing both
network resilience and deployment costs. The elbow method
can be used for finding the minimum k with the maximum
resilience gain, in the sense that further increasing k would
not result in significant resilience improvement. Based on the
elbow method, the optimal k when using the NC method
has been computed for each of the four network topologies,
being k = 11 for the Internet2 topology, k = 17 for the
Level-3 and AT&T topologies, and k = 16 for the Spring
topology, showing that this optimal number highly depends
on the structure of the physical network.

VII. CONCLUSIONS AND FUTURE WORK

Nowadays, real-time or near real-time data delivery is a
crucial aspect in many Internet applications. In this context,
SDN technologies can provide efficient solutions, being widely
used in diverse scenarios, such as healthcare and traffic ap-
plications, for customizing, reducing costs, and minimizing
delays. As they are publicly available, the vulnerability of SDN
networks is high, making it crucial to evaluate its robustness
against different attacks. In this line, increasing the number of
deployed controllers can be used to improve reliability through
resilience. Nevertheless, deploying multiple controllers is a
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Fig. 5. Switch delay.

challenging task, especially in terms of determining their
number and location. In this paper, a new controller placement
approach based on four robustness metrics, namely, AC, NC,
LC, and communicability, has been proposed to minimize both
S2C and C2C delays, as well as to maximize the network
resilience. To bridge the research gap regarding benchmark re-
sults obtained in real-world networks, the proposed approach is
tested within the context of four different physical graphs, and
compared with the present state-of-the-art baseline methods.

The performance of the proposed approach has been
evaluated in terms of the C2C and S2C delays as well as
the resilience against three different centrality-based attacks,
i.e., degree-, closeness-, and betweenness-based methods. In
particular, for evaluating the network resilience, a novel ro-
bustness metric, the attack resilience, has been defined. The
obtained results showed that the NC method serves as a good
metric to select the optimal number of deployed controllers
for an SDN environment in terms of achieving low C2C
delay and high resilience against centrality-based attacks in
backbone networks. Moreover, for the S2C delay, although
being outperformed by the baseline methods (k-median and
k-center), the deployment of the NC method does not have a
significant influence.

Finally, for future work, it is the authors’ intention to
extend the present analysis by applying the proposed controller
selection approach to other widely used topologies, such as

data centers and smart cities.
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(a) Internet2 degree-based attack
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(b) Internet2 closeness-based attack
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(c) Internet2 betweenness-based attack

Fig. 7. Centrality-based attacks evaluation of internet2 backbone network
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(a) Level 3 degree-based attack
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(b) Level 3 closeness-based attack
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Fig. 8. Centrality-based attacks evaluation of Level 3 backbone network
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(a) Sprint degree-based attack
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(b) Sprint closeness-based attack
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(c) Sprint betweenness-based attack

Fig. 9. Centrality-based attacks evaluation of Sprint backbone network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Deployed Controllers (k)

0

100

200

300

400

500

600

700

800

At
ta

ck
 R

es
ilie

nc
e

Algebraic Connectivity
Network Criticality
Load Centrality
Communicability
k-median
k-center

(a) AT&T degree-based attack
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(b) AT&T closeness-based attack
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Fig. 10. Centrality-based attacks evaluation of AT&T backbone network
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