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Abstract—Fault injection tools are designed to serve various
purposes, such as validate the design under test concerning reli-
ability requirements, find sensitive/critical locations that require
error mitigation, determine the expected circuit response in the
existence of faults. Fault Simulation/Emulation (S/E) applications
are involved in Field Programmable Gate Array (FPGA) based
design’s verification and simulation at the Hardware Description
Languages (HDL) code level. A tool is developed, named RASP-
FIT, to perform code modification of FPGA designs, testing of
such designs, and finding the sensitive area of designs. This
tool works on the FPGA designs written in Verilog HDL at
various abstraction levels, gate, data-flow and behavioural levels.
This paper presents a technical aspect and the user-guide for
the proposed tool in detail, which includes generation of the
standalone application (an executable file of the tool for Windows
operating system) and installation method.
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I. INTRODUCTION

Dependability is the study of error and failure. A robust
method that allows assessing the reliability of a target system
is the Fault Injection (FI) method. Therefore, fault injection
technique can be defined as “the dependability validation
technique that is performed in a controlled experiment for the
System Under Test (SUT) and observed its response in the
presence of faults” [1]. Fault injection technique is used to test
the fault-tolerant mechanisms of a system when known faults
take place, and evaluate in this way for their effectiveness.
The primary goals of fault injection in the design process are
validation and design aid.

In the validation process, fault injection is intended to
test the mechanisms implemented by the system to achieve
dependability (fault tolerance mechanisms) concerning the
faults that they are injected during the fault injection campaign.
The validation process through fault injection has two primary
purposes: fault removal, which is based on the design verifica-
tion, and fault forecasting, which depends on the assessment of
the system. When the objective is fault removal, a qualitative
analysis is performed to check if the fault tolerance mecha-
nisms are suitable regarding dependability requirements of the
system. On the other hand, in the case of fault forecasting,
fault injection is intended to perform quantitative evaluation
(with a probabilistic approach), and the coverage of the fault
tolerance mechanisms evaluated by the system [2], [3]. In the
design aid, fault injection experiments are executed at several
steps of the development flow. Results of fault injection are
then used to initiate an iterative process that allows improving
the test procedures and the fault tolerance mechanisms of the
system being exploited.

Fault injection is a useful technique to estimate design
characteristics such as reliability, safety, and fault coverage.

The method consists of intentionally injecting faults into the
device under test and observing the behaviour of faults/errors
[1], [4]. Fault injection covers many fundamentals objectives:

1) Validate the design under test concerning reliability.
2) Detect critical areas require mitigation of errors.
3) Determine the expected circuit behaviour in the faulty

environment.

The fault injection environment set-up consists of fault loca-
tion, time of injection, duration of active faults, and the input
data for the system.

Hardware Description Language (HDL) has been involved
in designing the digital system during the last many years
for Field Programmable Gate Array (FPGA) and Application
Specified Integrated Circuits (ASIC). Testing and other fault
simulation applications can now be applied directly at the
HDL code level. Due to this, the gap between the tools and
methods used by design and test engineers is reduced [5]. The
HDL represents a higher abstraction level in the design flow.
Testing should be carried out at lower abstraction levels to
obtain the best responses. However, an HDL model at the
behavioural level can be simulated to produce useful circuit
response vectors for test purposes efficiently. The SUT and its
hardware simulation model at the code level can be analysed
for testability method.

This paper describes the technical user-guide for a novel
fault injection tool and explains the way the user can
use this tool for Verilog HDL at any abstraction level.
The tool is named RASP-FIT (RechnerArchitektur und
SystemProgrammierung-Fault Injection Tool) after the German
name of the department in which it is developed. This fault in-
jection tool can be used to modify the design for the Automatic
Test Pattern Generation (ATPG) and other fault simulation
applications. This tool is programmed in Matlab in a Graph-
ical User Interface Development Environment (GUIDE). This
paper presents the method to develop a standalone application,
its installation on the computer without having a Matlab tool.
Also, it describes the way to use this tool step by step.

The organisation of the paper is as follows: Section II
describes the various fault injection techniques and tools for
FPGA-based designs. Section III introduces the structure of
the RASP-FIT in Matlab along with the method to build and
install the standalone application for the user of the tool. The
working procedure is also described in the section. Result and
discussion for an example design using the RASP-FIT tool are
mentioned in Section IV. In the end, Section V concludes the
paper.
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II. RELATED WORK

Fault injection and fault simulation are typical methods to
investigate the impact of a fault on a hardware/software system.
Usually, fault injection is performed on abstract models of the
system either to retrieve early results when no implementa-
tion is available, yet, or to speed up the run-time fast fault
simulation of the specified models. Fault injection is mainly
used to evaluate fault-tolerant mechanisms [5]. In the last
few decades, fault injection has become a popular technique
for experimentally determining dependability parameters of a
system, such as a fault latency, fault propagation and fault
coverage. Types of FI tools for FPGA in the literature are
described in the sequel.

A. FI Techniques/Tools based on Simulation

Tools based on simulation involve the simulation model of
the design under analysis. The errors or failures for the SUT
are distributed with proposed mechanisms [6]. These tech-
niques and tools are divided into two, i.e. Code-Modification
(CM) and Simulator Command (SC):

1) Code-Modification technique:- This technique re-
quires the modification of HDL code by adding some
fault models such as stuck-at, bit-flip, mutant and
saboteur.

2) Simulator Command technique:- In this type of tools
and techniques, the particular simulator command is
used to change the values of the signal or variable
of HDL models available with the simulator (e.g.
Modelsim, Xilinx ISIM).

The advantages are summarized below for the Simulation-
Based Fault Injection (SBFI) tools [2], [1]:

• As simulation model is used instead of the actual
hardware model hence there is no risk of damage.

• Being cost effective.

• Provides higher controllability and observability dur-
ing FI experiments.

• Different fault models can be modelled with ease.

• Supporting any type of HDL code.

Most the SBFI tools in the literature, are available for the
VHDL language, such as VERIFY [7], (MEFISTO-C, HEART-
LESS, VFIT (VHDL-based Fault Injection Tool), FTI (Fault
Tolerance Injection)) [8], [2], Full System simulator-based
Fault Injection (FSFI) [9], etc. These tools are based on
simulator command and code-modification techniques. Fault
modelling is achieved by a saboteur, and mutant injection.
Verilog Programming Language Interface (PLI) application is
used in the test generation method during fault simulation
applications [5]. The top-level design module can also be
modified in some cases to achieve test generation and fault
simulation applications with the help of simulator command
technique, as presented in [10].

B. FI Techniques/Tools based on Emulation

The emulation-based fault injection tools are most often
used with FPGA for speeding up the fault injection experi-
ments to achieve a faster solution. Design from specifications

to implementation takes several steps. Emulation-based FI
tools are divided by following the stages of the design flow.
The two main categories are given in the sequel shortly, i.e.
instrumentation and reconfiguration.

1) Instrumentation technique:- This technique requires
the modification of HDL code by adding some fault
models such as stuck-at, bit-flip, mutant and saboteur
in the system, netlist or other formats of the FPGA-
based design.

2) Reconfiguration technique:- Reconfiguration or par-
tial reconfiguration is the technique in which the
configuration memory of the FPGA is modified or
changed with some other logic to inject faults in the
SUT.

The fault injection tools develop to work on the net-list
obtained by the synthesis process are presented in [11], [12],
[13]. Some tools work on the code level and modify the
design by instrumentation technique are presented in [14],
[15]. However, some hybrid techniques (simulation/emulation)
can be achieved by combining two or more fault injection
techniques as given in [16], [17], [18], [19]. HDL environ-
ment can generate a list of faults, and it is used for fault
emulation/simulation of the SUT. The author compared the
RASP-FIT tool with the work presented in [20] and found that
the RASP-FIT tool uses three fault models (bit-flip and stuck-
at (1/0)) provides better performance in testing and hardness
analysis.

III. STRUCTURE OF THE RASP-FIT TOOL

The RASP-FIT tool, with its Graphical User Interface
(GUI) is developed in Matlab. The tool consists of three major
functions, namely [21], [22]:

1) Fault Injection Analysis
2) Hardness Analysis
3) Static Compaction

All these functions are developed in Matlab under the function
RASP_FIT(). It is a tabbed-based GUI as shown in Fig.
4, 5 and 6. Each tab performed certain specific functions
and described in this work. To ease of use, a standalone
Matlab GUI is developed for the proposed tool using the
deploytool command [23]. This command generates the
executable file for the RASP-FIT tool which can be installed
on any computer containing Windows operating systems. The
procedure for building a standalone application is given in the
sequel.

A. Building a Standalone Tool

The standalone application helps the user of the tool to
operate with ease. As described earlier, this tool is programmed
in Matlab using the programmatic environment. To run the
Matlab code, it is necessary to have a Matlab compiler installed
on the computer. The standalone application can be run on
any computer without Matlab. To run the RASP-FIT tool,
a standalone app is generated. The procedure for creating a
standalone application for the RASP-FIT device is described
in the sequel.

1) Run the following command on the Matlab prompt.
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Fig. 1. Matlab compiler

Fig. 2. Matlab compiler window for creating project

>> deploytool

and press ENTER.
2) A window appears as shown in Fig. 1, select the first

option “Application Compiler”.
3) After selecting the above option, another window

appears, as shown in Fig. 2. Add the main code file
and fill the required pieces of information. Select the
option “RASP-FIT Installer web” and click on the
“Package” option to start the process. After the pro-
cess, the project is saved under the extension ‘*.prj’
and generates the executable file for the project.

4) When this process stops, the executable file is avail-
able in the folder named “for redistribution”.

B. Installation Procedure

The stepwise procedure is explained to install the stan-
dalone application [24].

1) Open the RASP-FIT Installer executable file located
in the for redistribution folder generated by the Mat-
lab compiler.

2) Run the installer file (*.exe) by double click on it.
The first window of the Fig. 3 is appeared.

3) Click on the Next option and it leads to the Installa-
tion Options page.

4) Set the folder location, check the box to generate
short-cut to the desktop and click Next. See the
second window of the Fig. 3.

5) Agree to the license agreement and click yes to it.

6) Click Next moves to the confirmation page and press
the install button. It checks whether the Matlab run-
time is installed in your computer or not. If needed, it
also downloads and installs the Matlab runtime. See
the third window of the Fig. 3.

7) When the installation is completed, the fourth win-
dow of Fig. 3 appears. Click finish and complete the
installation.

8) Run the standalone application.

C. Working Procedure

After the successful installation, the user has to double
click the RASP-FIT icon available on the desktop. At first, the
RASP-FIT tool asks for the user-defined primitive file which is
available with the tool by the provider. The user has to locate
the file only, and graphical user interface for the tool is opened
for use. As described earlier, the RASP-FIT tool performs three
functions. The sequel portrays the details of each tab of the
device and its related options.

1) Fault Injection Analysis: The second tab of the RASP-
FIT tool is the fault injection analysis, as shown in Fig. 4. The
user must provide three input for modifying the design for the
fault injection analysis.

1) Synthesizable Verilog design file.
2) Select fault model for analysis from a drop-down

menu.
3) Enter number of copies the user wants to generate

with evenly distributed faults in them.

By clicking on the generate button, faulty modules
and top module are produced and stored in a
folder where the source file is located. The faulty
modules are named (moduleName_faultycopy1.v,
moduleName_faultycopy2.v and so on). The top file
consists of fault injection testing logic. This logic contains the
comparator logic, dynamic compaction scheme and memory
declaration for storing the results of the comparisons, and it is
stored under the name (moduleName_top.v) in the same
folder. These modified designs help design and test engineers
to perform fault simulation, digital testing and dependability
analysis without much effort. Verilog HDL code modification
techniques for each abstraction level are presented in [21],
[25], [26]. Along with the faulty copies, the RASP-FIT also
provides the number of copies generated, the number of faults
per copies which is used to calculate the number of select
port pins, the number of total defects injected in the design.
In the end, it calculates the select port pins for faults per
copy. Eq. 1 describes the method to calculate select port pins
[27].

FS = dlog2(Fcopy)e (1)

where Fcopy denotes the number of faults injected per copy of
the SUT and Fault Select (FS) is the number of select port
pins.

2) Hardness Analysis: Hardness analysis is carried out
for the SUT to find the characteristic of those faults which
can be detected very often or rarely. The third tab of the
RASP-FIT tool is for hardness analysis. It consists of three
panels, namely, file merger section, an input data file section
of hardness analysis and an input parameters required for
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Step 1: First window Step 2: Second window (installation folder)

Step 3: Third window (confirmation window) Step 4: Fourth window

Fig. 3. Installation procedure step by step

Fig. 4. Fault injection analysis tab.

hardness analysis calculations. File merger is a program which
takes many data files and merges them to produce one file.
It is used if needed. When data files for hardness analysis
are imported, and some parameter’s information should be
provided as inputs to perform hardness analysis. Fig. 5 shows

Fig. 5. Hardness analysis tab.

the tab for hardness analysis. These inputs are:

• Name of the SUT: All hardness analysis results are
saved under this name.

• Number of copies of SUT: This represents the number
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of copies of SUT considered for the project.

• Number of inputs of SUT: Data is stored during
experimentation as inputs and outputs. So for the
removing of stored input patterns from the data, the
user needs to provide this information.

• Total Number of Faults in SUT: This is a crucial
parameter to calculate hardness analysis. This infor-
mation provides the number of fault injection in the
SUT during experiments.

• Threshold for Hardness Distribution: To divide the
sensitive locations into hard to detect and most often
detected, the user assign threshold values.

3) Static Compaction: Static compaction technique reduces
the number of test vectors further after their generation. As
static compaction techniques are not part of Test Pattern
Generation (TPG), hence they do not change the TPG process.
Therefore, It can be developed in any programming language
or tool. The proposed static compaction algorithm is pro-
grammed in the Matlab, which needs few input parameters and
data files from experiments. It calculates the fault coverage,
compaction and reduces the number of test vectors. Fig. 6
shows the tab for static compaction. All the input parameters
required to calculate compact test vectors and fault coverage
are the same as that of hardness analysis except the second
parameter. This parameter requires the number of fault models
used in the test approach. The RASP-FIT uses three fault
models at this stage of development. Hence, these parameters
get value 3. Also, the user needs to provide three files, one
for each fault model. In the next work, other fault models are
also developed and added to the RASP-FIT tool easily.

It is seen that this RASP-FIT tool is straightforward, easy
to use, and it does not require much computer skills to operate
it. It validates our claims about the simplicity, ease of use and
user-friendly tool.

Fig. 6. Static compaction tab.

IV. RESULT AND DISCUSSION

After successful installation of the RASP-FIT tool on
the host computer, the user can run it by double click the
RASP-FIT icon. Firstly, the tool asks the user to locate
the “user-defined-netlist.csv” file, which is provided with the
executable file. This file contains the user-defined primitives

and functions. There are two columns in the file separated by
the semicolon ‘;’. The first column consists of the name of
primitives or task and the second column contains the fault
insertion location. When RASP-FIT is run, the contents of the
file are read and added to the predefined respective libraries
accordingly. For example, the user defines FD as a user-defined
primitive for a flip-flop with input/output ports in some design,
as shown below. Now, the user wants to inject faults in the first
three positions.

FD fd instance(clk,Din, rst,Q,Qn);

So, the user needs to define in the “user-defined-netlist.csv”
file as follows:

FD; [1, 2, 3]

The RASP-FIT tool reads the file and adds the FD keyword
in the file where all primitives are defined, and their positions
are concatenated in the library containing positions. When this
line of code parsed under RASP-FIT for bit-flip fault model,
the output is as follows,

FD fd inst(f0 ˆ clk, f1 ˆ Din, f2 ˆ rst,Q,Qn);

In the above example, f0, f1, f2 represents the bit-flip faults
in this line of the code.

The smaller design is considered to illustrate the example
for the user-defined primitives or functions. This design is
taken from the ISCAS’89 benchmark circuits named ‘s27.v’.
In this design, the user has defined three D-flip-flops as ‘dff’
as a user-defined-primitive. This user-defined keyword (dff)
must be added to the ‘user defined primitives.csv’ file with
the desired locations for injection of faults as (dff; [2 3]).
The user wants to generate three faulty copies of the design.
Therefore, the user needs to provide this file as an input, select
fault model (bit-flip in this case) and the number of copies (in
this case 3) to the RASP-FIT tool. Fig. 7 shows the original
Verilog design with the first faulty copy of the design. It is seen
that ‘dff’ contains only two faults at the positions mentioned
above.

After adding the user-defined-netlist file, the RASP-FIT
tool can be used for the fault injection modification, fault injec-
tion testing, hardness analysis and compaction of test vectors.
There are various benchmark designs written in Verilog HDL
are considered for these functions. These benchmark designs
are ISCAS’85, EPFL designs and some behavioural designs.

V. CONCLUSION

In this paper, a technical perspective and guidance for the
use of this novel tool (RASP-FIT) are presented. It includes the
generation of standalone applications in Matlab, installing the
RASP-FIT tool on any host computer and usage of the tool for
different functions. The RASP-FIT tool can modify the Verilog
HDL code for various abstraction levels for fault injection
analysis. Also, the tool helps designers and test engineers to
perform testing, compaction and hardness analysis. All these
functions are used for these fault models (e.g. bit-flip & stuck-
at 1/0). The tool is fast, automatic, technology-independent and
user-friendly.
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/ / s27
/ / O r i g i n a l d e s i g n
module s27 (GND,VDD, CK, G0 , G1 , G17 , G2 , G3 ) ;
input GND,VDD, CK, G0 , G1 , G2 , G3 ;
output G17 ;

wire G5 , G10 , G6 , G11 , G7 , G13 , G14 , G8 , G15 , G12 ,
G16 , G9 ;

d f f DFF 0 (CK, G5 , G10 ) ;
d f f DFF 1 (CK, G6 , G11 ) ;
d f f DFF 2 (CK, G7 , G13 ) ;
not NOT 0 ( G14 , G0 ) ;
not NOT 1 ( G17 , G11 ) ;
and AND2 0 ( G8 , G14 , G6 ) ;
or OR2 0 ( G15 , G12 , G8 ) ;
or OR2 1 ( G16 , G3 , G8 ) ;
nand NAND2 0 ( G9 , G16 , G15 ) ;
nor NOR2 0 ( G10 , G14 , G11 ) ;
nor NOR2 1 ( G11 , G5 , G9 ) ;
nor NOR2 2 ( G12 , G1 , G7 ) ;
nor NOR2 3 ( G13 , G2 , G12 ) ;
endmodule

/ / s27
/ / F a u l t y Module 1
module s27 1 ( s e l e c t ,GND,VDD, CK, G0 , G1 ,

G17 f1 , G2 , G3 ) ;
input GND,VDD, CK, G0 , G1 , G2 , G3 ;
output G17 f1 ;
wire G5 , G10 , G6 , G11 , G7 , G13 , G14 , G8 , G15 , G12 ,

G16 , G9 ;
input [ 2 : 0 ] s e l e c t ;
wire f i s =1 ;
reg f0 , f1 , f2 , f3 , f4 , f5 , f6 , f7 ;
always @ ( s e l e c t ) begin

i f ( s e l e c t == 3 ’ d0 ) begin
f0 = f i s ; f1 =0; f2 =0; f3 =0; f4 =0; f5 =0; f6 =0;

f7 =0; end
e l s e i f ( s e l e c t == 3 ’ d1 ) begin

f0 =0; f1 = f i s ; f2 =0; f3 =0; f4 =0; f5 =0; f6 =0;
f7 =0; end

.

.

.
e l s e begin

f0 =0; f1 =0; f2 =0; f3 =0; f4 =0; f5 =0; f6 =0; f7
=0; end

end
d f f DFF 0 (CK, f0 ˆ G5 , f1 ˆ G10 ) ;
d f f DFF 1 (CK, f2 ˆ G6 , f3 ˆ G11 ) ;
d f f DFF 2 (CK, f4 ˆ G7 , f5 ˆ G13 ) ;
not NOT 0 ( G14 , f6 ˆ G0 ) ;
not NOT 1 ( G17 f1 , f7 ˆ G11 ) ;
and AND2 0 ( G8 , G14 , G6 ) ;
or OR2 0 ( G15 , G12 , G8 ) ;
or OR2 1 ( G16 , G3 , G8 ) ;
nand NAND2 0 ( G9 , G16 , G15 ) ;
nor NOR2 0 ( G10 , G14 , G11 ) ;
nor NOR2 1 ( G11 , G5 , G9 ) ;
nor NOR2 2 ( G12 , G1 , G7 ) ;
nor NOR2 3 ( G13 , G2 , G12 ) ;
endmodule

Fig. 7. Code snippet (original design and modified design).
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