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Abstract—We will present a simple and efficient algorithm
for solving the path planning problem for civil UAV operating in
a dynamic or incomplete environment. This algorithm searches
for a continuous waypoints sequence starting from the initial
configuration, visiting all the desired locations and reaching the
final position. We will present our proposed algorithm on two
steps: The first produces a sorted location set. The second step
generates an optimal path for the overall mission. The same
algorithm constructs the initial path or re-plans a new one
when changes occur to the configuration space. To prove the
effectiveness of our proposed algorithm, we will provide computer
simulations. A comparison of many results will show that this
algorithm yields good experience performance over a wide variety
of examples.
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I. INTRODUCTION

In recent years, the interest in using Unmanned Aerial Ve-
hicle (UAV) systems for civil purposes has been growing [1],
[2], [3], [4]. Civil UAVs are expected to perform autonomously
complex tasks. They are used in many applications such as
delivery [5], security, surveillance, reconnaissance, tracking
[6], inspection [7], monitoring [8]. This increase is thanks
mainly to their capacity to fly, their ease of deployment, their
low cost, their high mobility, their fast speed, and their ability
to collect and send data.

The main challenge to be addressed in the development
of civil UAV is path planning [9], [10]. The path planning
problem involves computing an appropriate waypoint sequence
that enables the UAV to reach the desired targets while
avoiding both obstacles and No-Fly Zones [11].

In the case of civil UAV, a good path planning algorithm
must fit an optimal path through a set of locations. The
generated waypoints sequence should be of a minimal length
and also satisfy the aircraft’s constraints [12], [13]. The path
planning algorithm must solve the planning problem in high-
dimensional configuration spaces. It should generate collision-
free motions in a 3D workspace [14]. The path planning algo-
rithm must be compatible with the cooperative UAV mission.
A complex mission might involve multiple UAVs performing
different tasks [15]. The path planning algorithm is expected
to be coded in software that runs on the UAV system. It must
be computationally efficient. As well as, it should enable the
UAV to re-plan its path when a new event occurs [16].

This paper presents a new method for resolving the path
planning problem for UAVs operating in the civil domain. Our
method produces a path that enables the UAV to visit the
desired locations while avoiding obstacles and No-Fly Zone.

This method offers the advantage of finding a fast path of
minimal length. It involves two steps: the first step sorts the
desired locations according to their distance from the initial
position. The second step uses the result of the first one, then
computes the free-collision path based on the obstacle’s corner.

Furthermore, we present a re-planning algorithm for repair-
ing the initial path if new events occur to the configuration
space. Instead of abandoning the invalid solution, our re-
planning method determines, removes and repairs the invalid
parts, and maintains the rest. This method offers the advantage
of searching for a new solution based on recomputing just the
path’s sections that are no longer valid.

Moreover, we provide computer simulations to confirm
the effectiveness of our proposed algorithm. Also, we show a
comparison of many results to prove that this algorithm yields
good experience performance over a wide variety of examples.

We organize our paper as follows: in the second section, we
will present the path planning problem for civil UAVs. We will
outline the proposed path planning solution in the third section.
In the case of dynamic or incomplete configuration space, the
fourth section explains our re-planning algorithm for repairing
an invalid path. Section five will show a comparison of many
simulations. In section six, we will explain our motivation
behind this paper. Finally, we will present a brief conclusion
of this work in section seven.

II. PATH PLANNING PROBLEM FORMULA

The simplest way to represent a mission for civil UAV can
be generalized as visiting a set of locations, in which the UAV
executes given tasks. Typically, a mission plan defines a set
of waypoints and targets [11]. A waypoint represents a simple
position to be visited. While a target specifies a location and
defines a task command to be executed at this location. For
example, a task command can be taking an image, doing a
simple take-off, or operating a specific payload.

Fig. 1 illustrates an example of an operating environment
of civil UAVs. Starting from the initial point (the red point), the
UAV should visit all the targets (the cyan point) and then go to
the goal point (the blue point). This environment is enclosed
and contains either a set of obstacles or No-Fly zones. Each
of which is represented by a simple rectangle (see Fig. 1).

Given the six components presented below:

• wi : a particular configuration in the UAV’s environ-
ment.

• winit: the initial configuration of the UAV.

• wfinal: the final configuration of the UAV.
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Figure 1. The path planning problem formula

• LG : a set of target. A target represents a location to
be visited by UAV.

• Cspace: the configuration space.

• Cobstacle: the obstacle space.

• Cfree: the free space.

The problem of computing an optimal path planning for civil
UAV consists of searching for a continuous waypoint sequence
(i.e., an sorted set of wi) from winit to wfinal that reaches
all the task’s locations defined in LG. Every two successor
waypoints must define a free-collision path (i.e., a path in
Cfree).

III. UAV PATH PLANNING SOLUTION

As shown in Fig. 2, the path planning solution described in
this paper generates an optimal path. This path starts from the
initial point, visits all desired locations and reaches the final
configuration. Our proposed solution computes two-step: the
first step sorts a set of targets according to their distance from
the initial position. The second step generates a free-collision
waypoints sequence that visits all the desired targets.

A. First Step

Algorithm 1 describes the process of the first step.

1) Sorting a set of locations according to their cost: The
procedure SortTarets sorts a set of targets according to their
distance from the initial configuration.

Let T be the final sorted targets set, T is initially empty
(line 2). We start the construction by adding the initial point
winit to T (line 3). We consider winit as the current node (line
4), and we search for the nearest target to this node (line 6).
We add the nearest target to T (line 7) as the next target to
visit and we remove it from Lg (line 8). In line 9, we consider
the current node as the nearest target, then we repeat the same
process until Lg is empty. We add the final point wfinal as
the last node to T (line 11). Finally, we return T (line 12).

Figure 2. The path planning solution

2) Searching for the nearest target: The NearestTarger pro-
cedure finds the nearest target defined in L to the configuration
w. To do so, for each target wi in L, it first calculates the cost
between w and wi, then chooses the target for which the cost
is the smallest.

3) Computing the cost between two targets: The Distance
procedure calculates the cost between two locations. If the
two locations are free-collision, then the Distance procedure
calculates the weight of the straight line between the two loca-
tions. Otherwise, this procedure sums the Euclidean distance
of the line that connects these locations and the result of the
FreeDistance function.

4) Computing the distance between two non-connected
targets: The FreeDistance procedure calculates the cost of
the free-collision path between two non-connected locations
(vi, vi+1). Using the SearchObstacles procedure, this function
first searches for the obstacles set O, which collide with the
link connecting (vi, vi+1). Then, the FreeDistance procedure
sums the half of each obstacle’ perimeter of oi in O, to Finally
returns the computed sum.

5) Searching obstacles between two non-connected targets:
Given two non-connected targets (wi, wi+1), the SearchOb-
stacles procedure looks for the current obstacles between
(wi, wi+1). This method first creates a direct link ei from vi to
vi+1, then identifies all obstacles that intersect with ei. To do
so, this method creates an empty set O (line 3) for representing
the obstacles set that intersect with ei. For each obstacle o in
E (E is the operating environment of the UAV), it checks
whether o collides with ei. If so, o it automatically adds o to
O. Finally, this procedure returns O (line 9).

As shown in Fig. 3, using the first step, the optimal targets
set is obtained as: initial point - T1 - T2 - T3 - T4 - T5 - final
point.

B. Second Step

Algorithm 2 describes the process of the second step used
to establish the optimal free-collision path of the UAV.
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Algorithm 1 First step

1: procedure SORTTARETS( winit, wfinal, LG )
2: Let T be an empty way-points sequence
3: T ← winit

4: wcurr ← winit

5: while LG is not empty do
6: wnear ← NearestTarget(wcurr, LG)
7: add wnear to T
8: remove wnear from LG

9: wcurr ← wnear

10: end while
11: add wfinal to T
12: return T
13: end procedure

1: procedure NEARESTTARGET(w,L)
2: for each wi target in L do
3: di ← Distance(wi, w)
4: end for
5: return wi with minimal di
6: end procedure
1: procedure DISTANCE(winit, wgoal)
2: if freeCollision ( winit ,wgoal ) = True then
3: return dist (winit, wgoal)
4: else
5: O ← SearchObstacles(winit, wgoal)
6: return FreeDistance(O) + dist (winit, wgoal)
7: end if
8: end procedure
1: procedure SEARCHOBSTACLES(vi, vi+1)
2: ei ← (vi, vi+1)
3: Let O be an empty set
4: for each o Obstacle ∈ E do
5: if o collides with ei then
6: O ← O ∪ o
7: end if
8: end for
9: return O

10: end procedure
1: procedure FREEDISTANCE(O)
2: sum← 0
3: for each oi obstacle in O do
4: add (width(oi) + height(oi)) to sum
5: end for
6: return sum
7: end procedure

1) Generating an optimal path planning: The Path
planning procedure generates an optimal free-collision path
for the overall mission. V represents the sorted target sequence
generated by the first step.

Let E be the final path. Initially E is empty (line 2).
For each successor targets (vi, vi+1) in V , the path planning
procedure determines whether the link (vi, vi+1) is collision-
free (line 4). If yes (line 5), this process first creates a straight
link ei which connects the two targets (vi, vi+1), then it adds
ei to the final path (line 6). Otherwise (line 8), this process
determines the obstacles that collide with ei. Then (line 9), it
searches for Ei ( Ei an optimal free-collision sequence of link
that reaches vi+1 from vi). It adds Ei to the final path (line 10).

Figure 3. The path planning first step

Figure 4. The path planning: second step

The path planning procedure repeats the same process until the
E reaches wfinal. Finally it returns the final path E (line 13).

Fig. 4 shows the computer simulation produced by the path
planning process.

2) Generating the corners graph: As described in Algo-
rithm 2, CornersGraph procedure constructs a tree based on
the obstacle’s corners [17].

Initially this procedure creates an oriented graph Gi (line
2) and an empty corners set C (line 3). The CornersGraph
procedure adds the initial point as the root node to Gi (line
4). For each obstacle oi defined in O, it computes four corners
of oi then, it adds these corners to C (line 5 to line 7). The
CornersGraph procedure connects each corner defined in C to
Gi according to its distance to the root node (line 8 to line 12).
As a result, this procedure creates a tree rooted at vi and that
contains all corners defined in C.

Fig. 5(a) shows the computer simulation got by the execu-
tion of CornersGraph procedure.

3) Finding the better path between two non-connected
target: Fig. 5(b) shows the simulation result generated by the
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Algorithm 2 The Second step

1: procedure PATH PLANNING(V :target set)
2: Let E be an empty set
3: for each (vi, vi+1) ∈ V do
4: if (vi, vi+1) is collisionFree then
5: ei ← (vi, vi+1)
6: E ← E ∪ ei
7: else
8: O ← SearchObstacles (vi, vi+1)
9: Ei ← FindPath(vi, vi+1,O)

10: E ← E ∪ Ei
11: end if
12: end for
13: return E
14: end procedure

1: procedure CORNERSGRAPH(v,O)
2: Let Gi = (Vi, Ei) be an oriented graph
3: Let C be an empty set
4: Vi.init(v)
5: for each oi ∈ O do
6: C ← Corners(oi)
7: end for
8: for each c ∈ C do
9: vnear ← NearestNode(Vi, c)

10: Vi ← Vi ∪ c
11: Ei ← Ei ∪ (vnear, c)
12: end for
13: return Gi
14: end procedure

1: procedure FINDPATH( v,G)
2: Let P be an empty set
3: vnear ← NearestNode(G, v)
4: G.addVertex(v),G.addEdge(vnear, v)
5: P ← Path(v, rootNode)
6: return P
7: end procedure

execution of the FindPath procedure. Let the green trees be
the oriented graphs computed by the CornerGraph function.
For every two non-connected targets, the FindPath procedure
looks for an optimal paths that links these targets.

As described in Algorithm 2, the FindPath procedure
searches for the optimal free-collision path that connects v
to the root node of G. First, this procedure creates an empty
set P (line 2) which represents the optimal path. In line 3, this
procedure searches for the nearest corner to v defined in G. Let
vnear be this corner, the FindPath procedure adds (vnear, v)
as new link to the oriented graph G (line 4), then it looks for
the path that connects v to the rooted node of G. Finally, it
returns P (line 6).

IV. RE-PLANNING

In real UAV missions, the initial configuration space is
often incomplete or dynamic. In these situations, the initial
path may become invalid as new information is gathered [18].

Abandoning the invalid path and constructing a new one is
a very time-consuming operation. This section presents a re-
planning method able to repair the invalid path when changes

Figure 5. Path planning second step: detailed process

occur in the configuration space. It does this by finding which
parts of the path need to be recomputed and which parts are
still valid.

Instead of abandoning the previous solution, our approach
efficiently determines, removes, and repairs the invalid parts
and maintains the rest. This method presents the advantage of
founding a new solution based on re-planing just the sections
of the tree that are no longer valid. Our approach, as we will
show, resolves the re-planning problem for UAVs navigation.
It uses the corners graph, which searches for the collision-free
path. Furthers, it found a fast solution, specifically when many
changes occur in the configuration space.

Fig. 6 illustrates the re-planning process. Starting with
a valid path generated by our previously proposed method.
When new obstacles appear in the configuration space, the re-
planning process trims just the invalid parts and maintains the
rest of the generated path.

The re-planning process recomputes an optimal free-
collision path for every two non-connected targets. As a result,
the re-planning process produces a valid solution that starts
from the initial point, visits all desired targets, and reaches the
final point.
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Figure 6. Path Re-planning process

Algorithm 3 describes the process of re-planning a new
free-collision path in case of newly added obstacles. Let L
be the sorted targets set produced by the first step, and P the
optimal waypoints sequence generated by the second step. T
is the recomputed path with new changes (line 1). T is initially
empty (line 2). For each two successor targets (ti, ti+ 1) in
L, let Pi be the sub-path that reaches ti+ 1 from ti (line 5),
we first verify if Pi is a free-collision path (line 6). If so,
we automatically maintain Pi (line 7). Otherwise, we need
to recompute Pi. This involves trimming the sub-path and
generating a new valid solution.

Trimming the sub-path involves stepping through Pi in the
order in which nodes were added and marking all of them as
invalid nodes. As a result, it breaks the branch which collides
with new obstacles (line 9). Once the Pi has been trimmed,
we recompute it to find a free-collision path. This can be
performed by using the same process as described in our path
planning algorithm for initial construction (line 10 to line 13).

Depending on how the configuration space has changed,
the SearchObstacles method determines which new obstacles
collide with Pi (line 10). Based on this result, the CornersGraph
method constructs a tree rooted at ti (line 11) and that contains

Algorithm 3 Re-planning process

1: procedure RE-PLANNING (L: targets set,P: initial path )
2: Let T be the recomputed path
3: T is initially empty
4: for each (ti, ti+1) ∈ L do
5: Pi ← path reaching ti+1 from ti
6: if Pi is freeCollision then
7: T ← T ∪ Pi

8: else
9: Trim Pi

10: Oi ← SearchObstacles(ti, ti+1)
11: Gi ← CornersGraph(ti, Oi)
12: Ti ← FindPath(ti+1,G〉)
13: T ← T ∪ Ti
14: end if
15: end for
16: return T
17: end procedure

all the obstacle’s corners. The FindPath method uses the tree
generated by CornersGraph then produces an optimal path that
reaches ti+1 from ti (line 12). This solution is then added to the
recomputed path T (line 13). We repeat the same process until
we reach the final location. The re-planning process returns T
as the final result (line 16).

As a summary, when changes occur to the configuration
space, the process of re-planning a new path represents a
good solution for UAV navigation in a dynamic or incomplete
environment.

V. SIMULATION

To prove the effectiveness of the method proposed in this
paper, we present computer simulations, as shown in Fig. 7.
The configuration space is enclosed and contains a set of static
obstacles each of which is in a rectangular shape. We ignore
the size of the UAV, we present this aircraft as a “spot robot”.
The computer simulations presented here show a comparison
of many results and yield good experience performance over
a wide variety of examples.

Each of Fig. 7-a-1, Fig. 7-b-1, and Fig. 7-c-1 shows a path
planning problem to resolve. Starting from the initial point
(the red point), the UAV should visit each target (the cyan
point) one time, and then reach the final configuration (the
blue point).

In each of Fig. 7-a-2, Fig. 7-b-2, and Fig. 7-c-2 an optimal
path has been generated using the method described in the
third section. The black lines design the computed path. The
corners (the green point) represent the intermediate way-points
traversed to avoid obstacles.

In each of Fig. 7-a-3, Fig. 7-b-3 and Fig. 7-c-3 new
obstacles (the yellow rectangles) have been added. Using the
re-planning method presented in section Four, the invalid parts
of the tree have been removed and replaced by an optimal free-
collision solution (the blue lines).
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Figure 7. Path planning simulations

VI. FUTURE WORK

The motivation behind this work is to develop an efficient
UAV path planning for civil application. In particular, we
interest in the problem of multi-UAV path planning operating
in a dynamic environment, where a team of low-cost UAV
is designed to perform complex missions while visiting the
desired locations. As the number of UAV increases in the
team, path planning algorithms such as A* [19] [20], Dijkstra
[21], [22] or RRT [23], [13], may require high-performance
capabilities (memory and processing time) to find a valid
solution. Our proposed algorithm is a good choice for solving
this problem’s type since this method is not coupled with its
high dimensionality.

Further, this algorithm may be used in high-dimensional
configuration spaces, it could be extended to resolve the same
path planning problem described in this paper in a 3D work-
space. To do so, the obstacles will be represented by cube
shape, each of which contains eight corners. Then, based on
these corners, the CornerGraph method will generate a tree on
minimal length. And finally, the FindMethod will search for

an optimal path in a 3D configuration space.

VII. CONCLUSION

We have presented an efficient algorithm for solving path
planning problems for civil UAV operating in a dynamic or
incomplete environment. Our algorithm generates an optimal
path that starts from the initial configuration, visits all the
desired locations, and reaches the final position. We can use
the same algorithm to repair the existing path when changes
occur on the configuration space. We have proved its effec-
tiveness with the single UAV navigation. The path planning
algorithm presented here offers several advantages regarding
the problem of fast and optimal UAV path planning. First,
our algorithm is simple to implement and involves knowledge
of the current obstacles. Second, when new obstacles are
added to the configuration space, our algorithm repairs the
affected branch rather than compute the path from scratch.
This can be very beneficial with UAV navigation in a dynamic
environment.
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