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Abstract—The problems arising due to massive data storage 

and data analysis can be handled by recent technologies, like 

cloud computing and parallel computing. MapReduce, MPI, 

CUDA, OpenMP, OpenCL are some of the widely available tools 

and techniques that use multithreading approach. However, it is 

a challenging task to use these technologies effectively to handle 

the compute intensive problems in the fields like life science, 

environment, fluid dynamics, image processing, etc. In this 

paper, we have used many core platforms with graphics 

processing units (GPU) to implement one of very important and 

fundamental problem of sequence alignment in the field of 

bioinformatics.  Dynamic and concurrent kernel features offered 

by graphics card are used to speed up the performance. With 

these features, we achieved a speed up of around 120X and 55X. 

We have coupled well-known tiling technique with these features 

and observed a performance improvement up to 4X and 2X, as 

compared to non-tiling execution. The paper also analyses 

resource parameters, GPU occupancy and proposes their 

relationship with the design parameters for the chosen algorithm. 

These observations have been quantified and the relationship 

between the parameters is presented.  The results of study can be 
extended further to study similar algorithms in this area. 

Keywords—Dynamic kernel; GPU; Multithreading; occupancy; 

parallel computing 

I. INTRODUCTION 

Graphics hardware along with multi-core system has 
emerged as a new combination for the applications that has 
computationally demanding tasks to be performed. The 
conventional graphic processors are now being used in various 
application domains including general purpose processing. 
Compute Unified Device Architecture (CUDA) provides tools 
to exploit resources on graphics processing units (GPU).  With 
the help of this tool, it has become possible to handle compute 
intensive applications by invoking hundreds of parallel threads 
performing the task. However, in order to achieve 
performance improvement, it is essential to understand the 
architecture of the hardware, its limitations. Algorithms need 
to be restructured according to the underlying hardware in 
order to achieve speed up. 

The main aim of this paper is to study and analyse the 
huge computational power offered by the graphics processors 
and utilize it to enhance the performance of a well-known 
problem of pair-wise sequence alignment. The paper discusses 
the parallelization of sequence alignment problem on many 
core platforms. The algorithm deals with finding the 
similarities between two or more biological sequences 
[DNA/protein]. The functional and structural relationships 
between two or more biological sequences can be found out 
by sequence alignment methods like local & global alignment. 

The similarity index can be used to explore the evolutionary 
relationship between the sequences. Needleman-Wunch [NW] 
[1] algorithm for global alignment and Smith Waterman [SW] 
[2] algorithm for local alignment are two widely used 
approaches based on dynamic programming [DP] method. The 
algorithm generates a “score matrix” to track the similarities 
between two sequences.  It has three-fold data dependencies in 
north, west & northwest directions for every element of the 
matrix. As the size of the database increases, the searching 
time increases exponentially. Hence, the other approach is to 
use heuristic methods, such as FASTA and BLAST. Heuristic 
methods are faster than DP approach, but do not always 
guarantee the correctness of results. Dynamic programming 
method is preferred over heuristic approach for generating 
accurate results. With the availability of huge and ever 
increasing datasets, the serial CPU implementation by any 
method takes very large time to produce the results, even with 
the faster machines. Hence, over the past few years, the focus 
has been towards parallel implementation of the problem. 
With the availability of highly parallel programming platforms, 
like many and multi core machines, it has become possible to 
effectively use them to accelerate the performance of data 
parallel applications. 

Due to the large volume of data and heavy data 
dependencies in the alignment problem, it is very difficult to 
apply it directly on the parallel platform. Hence, for parallel 
implementation, it is necessary to resolve these dependencies 
and then utilize the power of thousands of cores supported by 
the graphics card (GPUs). 

In this paper, we have presented a method for generating 
score matrix for pair wise local sequence alignment problem 
using tilling technique.  This method is coupled with the 
features like dynamic and concurrent kernel execution 
supported by the GPU card.  The paper also presents the 
relationship of various design parameters with the resource 
parameters for improving the performance. The approach can 
easily be applied to the algorithms like global sequence 
alignment and multiple sequence alignment. 

II. RELATED WORK 

Various strategies have been proposed in the literature to 
apply parallel computing methodology for sequence alignment 
problem. The basic biological information about any species is 
represented in the form of sequences like DNA, and protein. 
The sequence of unknown species or the sequence under 
investigation is compared with the known sequences from the 
standard sequence repository. The result of the comparison 
shows, the analogy or the differences between them. For pair 
wise sequence alignment method, two strategies are mainly 
used by the researchers. 
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 Algorithms that are based on dynamic programming 
methodology giving accurate results but taking 
exponential time to produce the output. For example, 
Needleman and Wunsch [NW] [1], Smith and 
Waterman [SW], [2] proposed the algorithm for global 
and sequence alignment, respectively. 

 Heuristic approaches that are less accurate in finding 
the best possible alignment but are faster and widely 
used. For example, technique like FASTA & BLAST 
proposed by Wiber & Lipman [3], and later by Pearson 
& Lipman [4] is very popular. 

Complexity of the alignment algorithm is directly 
proportional to the number of sequences and length of each 
sequence (e.g. O(nm) for 2 sequences of length n & m) With 
the availability of huge data for analysis, it is really 
challenging for the researchers to process the data and return 
the results within reasonable time period, so that biologists can 
infer the results quickly and carry out further analysis. With 
sequential algorithm, it takes many hours or even days to 
produce correct results especially for large number of longer 
sequences. Hence, researchers have used accelerators to speed 
up the compute intensive part of the algorithm. Because of the 
heavy data dependency, divergence code flow, and non-
coalesced memory access it is very difficult to parallelize the 
sequence alignment algorithm and map it directly onto the 
processing platform. However, researchers have implemented 
the algorithm using various strategies and hardware 
accelerators. 

Field Programmable Gate Array (FPGA) and GPUs are the 
commonly used hardware accelerators for improving the 
execution time. Performance study of three applications on an 
FPGA & GPU is presented in [5]. Authors have studied 
Gaussian Elimination, Data Encryption, and Needleman-
Wunch algorithm. The factors like, overall hardware features, 
application performance, programmability, overhead are 
considered for mapping applications onto various accelerators. 

A space efficient global sequence alignment algorithm is 
presented by Scott Lloyd and Quinn O‟Snell [6]. Authors 
presented the performance improvement in forward scan and 
trace back in hardware, without memory and I/o limitations. 
Parallel implementation of sequence alignment problem was 
also studied for clustering system [7] using message passing 
interface [MPI] technique. The authors have discussed major 
models like pipeline model and anti-diagonal model for 
parallel implementation of the dynamic programming 
algorithm.  Gotoh [8] has proposed an improved version of 
SW algorithm with an affine penalty function. Algorithm 
proposed by Khajej-Saeed, Poole, and Perot [9] enhances the 
parallelism by reconstructing the recurrence relations for 
multiple GPUs. Implentation of SW algorithm on GPU is 
presneted  by Lukas Ligowski, and Witold Rudnicki [10]  on 
NVIDIA GPU platform. The paper presents the performance 
improvement by effiicient use of shared memory on graphics 
card. H.Khaled, R.EI Gohary, N.L. Badr, et al [11] have also 
presented GPU implementation of pairwise DNA sequence 
alignment problem. This implementation assigns differnet 
nucleotide weights and then merges the subsequences of 
match on GPU. The authors have obtained optimal local 

alignment according to predefined rules. Pair-wise sequence 
alignment for very long sequences was done in [12]. The 
authors have developed a single GPU implementation of the 
problem and have presented two algorithms, 
BlockedAntidiagonal and StripedScore. SW algorithm for 
protein database by using SIMD instruction of CPU and GPU 
is done in [13]. The paper presents CUDASW++ 3.0 
algorithm that uses SSE-based vector execution units as 
accelerators. Yongchao Liu and Bertil Schmidt [14] have 
presented GSWABE algorithm for a pairwise sequence 
alignment problem for short DNA sequences. They have 
implemented general tile based approach for global, semi-
global and local alignment algorithm on Kepler-based Tesla 
K40 GPU. The same problem is also implemented for long 
DNA sequences on Xeon Phi coprocessors by [15]. Authors 
have explored naive, tiled and distributed approaches on 
emerging platform. 

Parallelization of similar problems like approximate string 
matching on GPU [16],  finding edit distance for large sets of 
string pairs using MapReduce  technique [17] and on GPUs 
[18] have been done for performance improvement.  Problem 
of multiple sequence alignment [MSA] is one of the widely 
used and computationally complex problem in the deomain of 
computational biology.  Algorithms for MSA must produce 
the highest score from the entire set of sequences and it  is one 
of the complex optimization problems. Hence, heuristic 
methods are preferred over accurate methods. Jurate 
Daugelaite, Aisling O‟Driscoll, and Roy D. Sleator [19] have 
summarized various MSA algorithms in distributed and cloud 
environment. High performance computing techniques have 
been used for MSA tools in [20]. Authors have developed 
MTA-TCofee tool. Optimal alignment of three sequences is 
presented by Junjie Li, Sanjay Ranka, & Sartaj Sahani [21]. 
The authors have also implemented a variant of global 
alignment, called syntenic alignment in their paper [22]. Paper 
[23] presents combination of G-MSA and T-Coffee algorithm 
for improving the performance of MSA on GPU. Comparison 
and analysis of various high performance computing 
archetectures in the field of bioinformatics, computational 
biology and systmes biology is presented in [24]. Global 
sequence alignment on multi-core platform using GPU is 
discussed by Siriwardena and RanaSinghe [25]. 

This paper presents a GPU implementation of pair wise 
sequence alignment algorithm (SW) as a case study to map the 
resource requirement of the algorithm to the available 
resources. The main features of our work are as follows: 

 The pair-wise SW algorithm on CPU + single GPU 
platform is implemented. Multiple GPU 
implementations are presented in [9]. Allocation of 
strings, score matrix, deciding the block (tile) size, 
number of blocks, threads, launching concurrent 
kernels, is done on CPU side. The generation of score 
matrix, use of registers, invoking large number of 
threads, launching child kernel, is done on GPU side. 

 The performance improvement using memory 
hierachies of the graphics card (like global memory, 
shared memory, constant memory, text memory) has 
been discussed by [10] [11]. However, the study of 
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GPU resources like cores, threads, warps, blocks, 
registers is done. 

 The focus of our implementation is to effectively use 
GPU resources, to explore the features like multiple 
kernel execution supported by Kepler based NVIDIA 
CUDA cards (K5200, K6000). These features were not 
considered by previous studies [11-14]. The paper [15] 
has implemented the problem on Xeon-Phi coprocessor, 
and not on GPU. 

 Our study mainly focuses on the use of resources like 
computing cores, registers per thread, shared memory 
per thread, thread block size.  These parameters 
contribute towards GPU occupancy.  Large number of 
cores available on graphics card can be very effectively 
utilized by exploring the features like dynamic kernels, 
concurrent kernel, thereby increasing the GPU 
occupancy. 

 The paper mainly concentrates on parallelization of the 
score matrix generation part, which is the major 
compute intensive portion of the SW algorithm. The 
generation of aligned sequence (without gaps) is a 
backtracking process, carried out on CPU side. 

 The implementation consists of splitting the score 
matrix into horizontal strips and then into the blocks or 
tiles. Tile size is decided by considering GPU 
resources. Every tile is then processed by anti-diagonal 
parallelization method using concurrent or dynamic 
kernel method. Whereas, the approach used in [12] is 
of vertical stripped SW algorithm considering the 
parameters of the global & shared memory of the GPU 
itself. 

 The features like dynamic parallelism, use of multiple, 
concurrent kernels using streams supported by 
NVIDIA graphics cards have been explored. 

The rest of the paper is organized as follows: 

Section 3 describes the architecture of Graphics Card. 
Description of algorithm is presented in Section 4. Score 
matrix generation using various approaches is described in 
Section 5.  Section 6 presents implementation of algorithm 
and comparative performance improvement.  The conclusion 
is presented in Section 7. 

III. GPU ARCHITECTURE 

GPUs have large number of processing elements called as 
streaming multiprocessors (SMs) to host thousands of threads 
and blocks of threads.  Higher throughput is achieved by 
concurrently executing these large number of threads. This is 
thread level parallelism (TLP).   The implementation has been 
done on multi-core machines with NVIDIA graphics cards 
Quadro K5200, K6000. CUDA C is the programming 
language supported for accessing GPU cards. These are 
professional class GPU cards for integrating high performance 
computing applications. The cards connect to the host 
processor via a PCIe 3.0 bus. It is a programming challenge to 
effectively manage the data traffic between the host (CPU) 
and the device (GPU).  If this data traffic is handled properly, 

it would lead to performance improvement by proper 
utilization of memory bandwidth.  The other issue in 
executing algorithm is to judiciously manage the memory 
traffic between the streaming multi-processors and various 
memory components on the card.  Both the cards have Kepler 
micro architecture that supports dynamic parallelism.  With 
this feature, CUDA kernel can create a child kernel (as shown 
in Fig. 1) that can perform new independent, parallel task, 
create and use new streams, events, without CPU involvement. 
The Kepler architecture supports L1 cache per SM with a 
unified memory request path for loads and stores. Memory 
model is shown in Fig. 2. The detail technical specification of 
cards used is shown in Table 1.  The multi-core system with 
16 cores, Intel Xeon E5-2698 processor with 2.3 GHz clock 
frequency with GPU card, was used for implementation. 

 

Fig. 1. Dynamic Parallelism in CUDA. 

 

Fig. 2. Kepler Memory Hierarchy. 

TABLE I. SPECIFICATIONS OF GPU 

Specification Quadro K5200 Quadro K6000 

GPU  Memory 8 GB GDDR5 12 GB GDDR5 

Memory Interface 256 -bit 384-bit 

Memory Bandwidth 192.0 GB/s 288 GB/s 

CUDA Cores 2304 2880 

System Interface PCI-E3.0x16 PCI-E3.0x16 

Shared Memory per Block 49152 bytes 49152 bytes 

Maximum Threads per Block 1024 1024 

Number of Multiprocessors 

(SM) 
12 15 

Number of CUDA cores per 

SM 
192 192 

Thread 

Shared 

Memory 
L1 

Cache 

Read only 
Memory 

L2 Cache 

DRAM 
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IV. ALGORITHM DESCRIPTION 

In the biological literature, global alignment is often 
known as NW alignment and local alignment as a SW 
alignment [1][2]. Global alignment method is used to catch the 
regions of high similarity between two sequences. But, it may 
not be possible to find out the regions of high local similarity, 
during overall optimal global alignment.  Hence, local 
alignment is used to effectively tap the regions of high local 
similarity. There are certain issues to be considered while 
aligning two sequences for similarity quotient. 

 Length of sequences may not be equal. 

 There may be small matching regions in the sequences. 

 Whether to allow partial matches or not. (i.e. some 
amino acid pairs can replace the other one)  

 There may be the cases of insertions, deletions, or 
substitutions from the common ancestral sequence. 
This may lead to variable length regions, mutations, or 
gaps in the new alignment. 

Consider strings S1 & S2, (over the alphabet {A,C,G,T}) of 
lengths    &   respectively. Then dynamic programming 
approach solves local alignment problem in       time. The 
score matrix    is created, which is used to generate similarity 
index between two strings. The recurrence relation establishes 
a recursive relationship between the element        and other 
elements of the score matrix. The base conditions 
are:        , and           The recurrence relation for 
         when both   and   are strictly positive is given in 
Fig. 3, where  α, β denote gap penalty. Fig. 4 shows data 
dependency. 

        

{
 

 
             

              

                 

 

 

Fig. 3. Recurrence Relation in Score Matrix. 

 

Fig. 4. Data Dependency of SW Algorithm. 

V. SCORE MATRIX GENERATION 

This section describes parallel approach for alignment 
problem, CUDA kernels for generating score matrix, and 
algorithm parameters. 

A. Many Core Implementation on GPU 

CUDA enabled GPU card with compute capability greater 
than 3.5 supports the features like dynamic parallelism, 
concurrent kernels.  Dynamic parallelism is expressed by 
invoking nested kernels. Fig. 5 shows the algorithm for 
dynamic parallelism.  Here, “gpuBC” is parent kernel that 
creates and calls child kernel “fillmatrix”. Parent kernel 
creates a grid of size (       of blocks (where T is number of 
threads per block). Total number of blocks in each direction is 

           , where “N” is length of query string. The 
child kernel “fillmatrix” generates the entries in the score 
matrix(C), in the diagonal parallelization manner. There is an 
implicit synchronization between a child & parent grid. Main 
program on the host allocates and initializes the score matrix 
C on the host, copies it on the device and calls the parent 
kernel. The parent kernel calls the child kernel on the device. 
Concurrent kernel execution can be invoked by using 
independent “stream” for every host thread. Fig. 6 shows the 
algorithm for this approach. For example, generation of score 
matrix can be split into four parts. Due to diagonal 
dependency, these four parts can be wrapped into three 
independent streams as shown in Fig. 7. These streams can be 
executed concurrently in the following order. Stream1 
executes kernel1, stream2 executes kernel2 & kernel3, and 
stream3 executes kernel 4.  The execution sequence is shown 
in Fig. 8. CudaStreamCreate(&stream(i)) creates three 
streams for kernel 1, kernels 2 & 3, and kernel 4, respectively. 
Streams are synchronized using CudaStreamSynchronize(). 
The grid pattern (number of blocks, number of threads per 
block) is specified as an argument to each kernel. 

B. Tiling Approach 

For the strings of very large sizes (especially string lengths, 
that generate the score matrix of size more than the size of 
global memory of the card), score matrix on host side is 
divided into suitable chunks (or tiles). It is essential to 
calculate proper tile size and the effective address calculations 
of all subsequent threads, using Block ID and Thread ID 
model of CUDA environment. For example, if tile size is      , 
element size is „e‟, size of memory is „m‟, then, in order to 
accommodate the entire tile in the global memory of GPU 
card, equation 1 should be satisfied. 

                       (1) 

 

Fig. 5. Dynamic Kernels in CUDA. 

//  Dynamic Kernels 

//   Parent Kernel 

__global__ void gpuBC(int *c_d, int *b_d) 

{  // create grid for child kernel, with block size TxT 

dim3 thrperblk(T,T); 

dim3 numblks ((int)((N+1)/T+1), (int)((N+1)/T+1)); 

maxsum=N+N; 

for (sum = 0; sum <= maxsum; sum++) 

{      //  calling Child Kernel 

fillmatrixC<<<numblks, thrperblk>>>(c_d, sum); 

cudaThreadSynchronize();     }  } 

// Parent Kernel ends here 

Main( ) 

{  //  allocate score matrix (c), strings s1, s2 on host 

// initialize the c, s1 & s2 on host 

//  copy s1, s2, matrix C on device using CudaMalloc() 

//  Match= +m, mismatch= -t,gap = -g 

//    Call to Parent Kernel 

gpuBC<<<1,1>>>(c_d); 

//  copy  matrix c back to host CudaMalloc() 

// thread synchronization 

cudaThreadSynchronize();    

// timing calculations &  cleanup... 

    free(c_h);   cudaFree(c_d); cudaFree(b_d); 

    return(0); 
} 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 10, No. 2, 2019 

288 | P a g e  
www.ijacsa.thesai.org 

Score matrix is split into horizontal strips. Each strip is 
then broken into blocks or tiles. Within every strip, each tile is 
executed one by one as shown in Fig. 9. The algorithm is 
presented in Fig. 10. 

 

Fig. 6. Concurrent Kernels in CUDA. 

 

Fig. 7. Four Kernels to Fill Score Matrix. 

 

Fig. 8. Concurrent Execution of Kernels. 

 

Fig. 9. Horizontal Strips and Tiles. 

 

Fig. 10. Tiling Algorithm. 

//t x t tiles of (NxN)matrix, total t2 tiles to be 

processed  
Main( ) 

{  //  allocate & initialize score matrix (c_h), strings 

S1, S2 on host 

   // allocate tile (c_h1)of size t*t on host , copy s1, s2 

on device (s1_d, s2_d)  

   // For each horizontal strip & tile of size txt  

    // copy tile from host to device(c_d), execute & 

copy back to host 

    for (i = 0; i<N; i=i+N/t) 

       for (j=0; j<N; j=j+N/t) 

   {   rowmin = i; colmin =j; rowmax = i+N/t;  

colmax= j+N/t; 
       create_c_h1(c_h1, c_h, rowmin, rowmax, colmin, 

colmax); 

cudaMemcpy(c_d,c_h1,(N/t+1)*(N/t+1)*sizeof(int),c

udaMemcpyHostToDevice); 

      K-Scoremat<<<1,1>>>(c_d, s1_d, s2_d, rowmin, 

colmin, rowmax, colmax); 

          cudaThreadSynchronize(); 

cudaMemcpy(c_h1,c_d,(N/t+1)*(N/t+1)*sizeof(int),c

udaMemcpyDeviceToHost); 

       create_c_hback(c_h1, c_h, rowmin, rowmax, 

colmin, colmax); 
       cudaFree(c_d);    cudaThreadSynchronize(); 

       cudaMalloc((void 

**)&c_d,(N/t+1)*(N/t+1)*sizeof(int));   } } 

  // kernel execution 
__global__ void K-Scoremat(int *c_d, char *s1_d, 
char *s2_d, int rmin, int cmin, int rmax, int cmax) 

{     int sum,maxsum, rowmin, colmin; 

      int T=32;    // Block size 

      rowmin = rmin;  colmin = cmin;  rowmax = rmax, 

colmax = cmax; 

      maxsum = N; 

      dim3 thrperblk(T,T); 

      dim3 numblks ((int)(((N/t)+1)/T+1), 

(int)(((N/t)+1)/T+1)); 

      for (sum = 0; sum <= maxsum; sum++)  

      {      // calling Child kernel FiilmatrixC             
           fillmatrixC<<<numblks, thrperblk>>>(c_d, 

s1_d, s2_d, sum, rowmin, colmin);   }   } 

// kernel ends here 

 

Tile 1 

Score 

Matrix 

//Concurrent Kernel execution using “Streams”  

Main( ) 

{ // allocate score matrix (c), strings S1, S2 of size N  on host 

// initialize the c[N+1][N+1], s1 & s2 on host,  sum=N+N 

//  rowmin, rowmax, colmin, colmax are data boundaries for kernel 

execution, copy s1, s2, matrix C on device using CudaMalloc() 

//  Match= +m, mismatch= -t,gap = -g  //  create grid with block size 

T 

      dim3 thrperblk(T,T); 

      dim3 numblks ((int)((N+1)/T+1), (int)((N+1)/T+1)); 

 //   create streams   

      for (i=0; i<3; i++) 

      cudaStreamCreate (&stream(i)); 

  //  Kernel calls using streams,  kernel1, then kernel2 & kernel3 

concurrently , and then kernel4 

       for (sum = (rowmin+colmin); sum <= (rowmax+colmax); 

sum1++)  

       { kernel1<<<numblks, thrperblk, 0, stream0>>>(c_d, sum1); 

             cudaThreadSynchronize(); 

             cudaStreamSynchronize(stream);  } 

       for (sum = (rowmin+colmin); sum <= (rowmax+colmax); 

sum1++)  

       {    kernel2<<<numblks, thrperblk, 0, stream1>>>(c_d, sum1); 

            cudaThreadSynchronize();   } 

       for (sum = (rowmin+colmin); sum <= (rowmax+colmax); 

sum1++)  

       {    kernel3<<<numblks, thrperblk, 0, stream2>>>(c_d, sum1); 

            cudaThreadSynchronize();   } 

      cudaStreamSynchronize(stream0); 

      cudaStreamSynchronize(stream1); 

      cudaStreamSynchronize(stream2); //synchronizing previous 

streams 

      for (sum = (rowmin+colmin); sum <= (rowmax+colmax); 

sum1++)  

      {    kernel4<<<numblks, thrperblk, 0, stream1>>>(c_d, sum1); 

           cudaThreadSynchronize();   } 

     cudaStreamSynchronize(stream1); }   // synchronizing ALL 

streams  
  //  copy  matrix C back to host,  destroy streams 
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C. Resource Requirement & GPU Occupancy 

Occupancy is a function of GPU card parameters and 
resource requirement of the algorithm. Hence, potential 
limitations for occupancy are the resources like registers, 
memory and number of streaming multi-processors (SM) 
required by the algorithm. Resources would be fully utilized, 
only when 

                                                   
                                      

For pair wise sequence alignment problem, maximum 
occupancy would be experienced, if  

√                             (2) 

Where,  N is length of string,   and Cg is total number of 
GPU cores on device. 

             
                        

              
           (3) 

Occupancy can be determined by considering device 
parameters as well as certain design parameters. These 
parameters are shown in Table 2. 

 Register usage-The number of registers needed per 
thread limits the register usage. Occupancy can be 
decided by thread ratio. 

Active Threads per Block,        ⁄  

                   ⁄              (4) 

 Shared Memory usage-Occupancy can also be decided 
by considering the shared memory usage. 
                          

       ⁄  

                
                        

              
 

                   ⁄              (5) 

 Thread Block Size-Block size is a design criteria, which 
decides how many SMs can be utilized depending upon 
the number of active blocks used by each kernel.  One 
warp consists of 32 threads. 

                                     ⁄  

                                             

                  
                              

                    
   

                   ⁄             (6) 

                                        

Every resource parameter contributes to the GPU 
occupancy. Occupancy may not be the measure of the 
performance, but low occupancy codes reflect underutilization 
of the enormous resources offered by the execution platform. 

 Resource requirement of the algorithm 

Number of GPU Cores-Let the tile size be    , length of 
diagonal be  . For diagonal parallelization method, number of 
threads required per block is maximum at diagonal.  For 100% 
occupancy, all the cores should be utilized. Then for 
maximum utilization of GPU cores, 

             but,      √     

√       

               √ ⁄              (7) 

Memory Size-It is required that, tile should be 
accommodated into the memory completely.              
        , 

where   „s‟  is the size of element 

             

             √   ⁄              (8) 

Combining equations (7)   (8),  we get 

  

√ 
   √   ⁄               (9) 

Table 3 shows the corresponding values for GPU card 
K5200 & K6000 

D. Date Transfer Issues 

Time required to transfer the data from host memory to 
device memory depends upon the bandwidth of PCI bus. On 
device side, memory may be allocated as pinned memory or 
non-pinned (pageable) memory.  It is observed that, the peak 
bandwidth between various device memories is much higher 
than the peak bandwidth between the host and device memory.  
Thus, data transfer time between host and device, is the major 
contributor towards the overall performance. Higher 
bandwidth is possible between the host and the device when 
transfer overheads are minimal, and data transfer is 
overlapped with kernel execution and other data transfers. 

TABLE II. PARAMETERS FOR OCCUPANCY 

Device Parameters Design Parameters 

Registers per SM Rg 
Registers used by the 

kernel  
Ra 

Threads per SM Tg Threads per block Ta 

Shared memory per SM Sg 
Shared memory required 

per thread by kernel 
Sa 

Warps per SM Wg Active warps per block Wa 

Number of GPU cores G 
No. of active blocks per 

kernel 
Ba 

  
No. of Active Threads per 

block 
Za 
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TABLE III. TILE SIZE LIMITS FOR GPU CARDS 

GPU Card Tile size limits 

K5200              

K6000              

VI.  RESULTS AND DISCUSSION 

A. Many Core Implementation 

Experiments were carried out for parallel implementation 
of SW algorithm on many core systems. Parallelization was 
done using following approaches: 

1) Using only dynamic kernel. 

2) Using only concurrent kernel. 

3) Using tiling technique, coupled with above two 

methods. 
For approach „a‟, dynamic parallelism was tested. Parent 

kernel on device launches the child kernel. For „b‟, multiple 
kernels, wrapped in different streams were launched from the 
host.  However, for approach „c‟, tiling method was used. 
Entire score matrix was split into horizontal strips and then 
into tiles of size that could be accommodated into the global 
memory of the device.  Processing of each tile was carried out 
using anti-diagonal method of parallelization. In this method, 
both the features (a & b above) were tested.  The 
implementation was compared against serial CPU based 
implementation on the same platform. Speed up was 
calculated with respect to time taken to execute the serial 
version of the algorithm on CPU. 

          
                                           

                                   
        (10) 

Speed up of about 120X and 55X was observed using 
dynamic kernel and concurrent kernel features respectively. 
Initially, the speed up achieved by both the approaches is 
comparable.  As the string size increases, the size of score 
matrix and searching time also increases. The speed up 
saturates for higher string sizes, when bandwidth is fully 
utilized.  Tiling technique outperforms above two approaches, 
for larger string sizes. Speed up of about 240X  is observed 
with the use of combined (tiling + dynamic & concurrent 
kernel) technique. Fig. 11 shows the results.  Nearly same 
speed up is observed when tiling method is used with either 
concurrent or dynamic kernel approach.  The comparative 
speed up with and without using tiling technique with both the 
approaches (dynamic & concurrent kernel) was carried out. 

          

 
                                                   

                                             
         (11) 

Fig. 12 shows the speed up when tiling technique is 
coupled with concurrent & dynamic kernel features. With this 
method, speed up  of  4.2X (for tiling + concurrent kernel over 
only concurrent kernel) and 2X (for tiling+dynamic kernel 
over only dynamic kernel) is achieved. 

 
Fig. 11. Speed up for Tiling and Non-Tiling Approaches. 

 
Fig. 12. Speed up When Tiling is used with Respect to Non-Tiling 

Technique. 

The main focus was on score matrix generation part of the 
algorithm, since, it is the major contributor towards the 
execution time.   The serial execution of trace-back part of the 
algorithm was not considered. Therefore, it would be 
inappropriate to compare the results directly, with the results 
of any previous outcomes. 

B. Resource Utilization and GPU Occupancy 

GPU occupancy defines how efficiently the algorithm 
utilizes the resources provided by the underlying hardware.  
Occupancy will be less, if more registers, more shared 
memory  per thread are  needed by the kernel and the thread 
block size is small. For large data sets, occupancy is more than 
100%.  The tile size limits given in Table 3 has been verified 
and the results are shown in Table 4. It is observed that there 
is about 50% reduction in execution time, when tile size limits 
are followed.  For all experiments, thread block size is 
minimum 256 and maximum 1024 threads per block. If the 
block size is less, number of blocks required for the given data 
size would be much more, and occupancy would be less. 
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TABLE IV. TESTING TILE SIZE LIMITS 

GPU Card 
String 

Length  
Tile Size t < tmin Tile Size  t > tmin 

 
(KB) t 

Execution      

time 

(sec) 

t 

Execution 

time  

(sec) 

K5200 

tmin= 1629 

8 1024 34.433426 2048 15.896714 

10 1280 41.521371 2560 27.354436 

12 1536 62.6178184 3072 45.267902 

K6000 

tmin= 2036 

8 1024 30.952559 2048 14.506293 

10 1280 50.319086 2560 22.117568 

12 1536 69.889266 3072 34.735937 

C. Issues in Data Transfer 

The aspects like, allocating memory on GPU using 
cudamalloc() or cudaHostAlloc(), use of pinned or non-pinned 
memory allocation, use of constant memory for read only data 
were explored. Memory allocation on GPU can be done using 
non-pinned (pageable) or pinned allocation method. The 
pinned transfers are faster than non-pinned transfers for 
smaller data sizes (for string sizes from 16KB upto 44KB), as 
shown in Table 5. But too much allocation of pinned memory 
degrades the performance. Hence, for large string sizes, 
pageable, i.e. non-pinned memory allocation is preferred. 
Constant memory of the GPU card can be used to store all 
read only data of the algorithm.  A request for constant 
memory for the entire warp is split into two parts.  When all 
the threads in a warp access the same memory location, two 
requests for each half warp are generated. Reading from 
constant memory location is thus as fast as reading from the 
registers.  There is a serialized access to the addresses by the 
threads in a half warp, leading to performance improvement. 
Table 6 shows the improvement in execution time while using 
constant memory for non-pinned allocation. Use of pinned 
memory and constant memory contribute towards the 
performance improvement only for limited data sizes. But, due 
to limited size of constant memory (64KB), dynamic memory 
allocation is required even for storing constant data. 

TABLE V. PINNED AND NON-PINNED MEMORY 

String Size  

(KB) 

Execution time   

Non-pinned memory  

(sec) 

Execution time  

Pinned memory 

(sec) 

16 159.347031 155.331391 

20 309.529562 302.237375 

24 538.443125 515.289562 

28 845.583813 815.48725 

32 1204.949 1209.99325 

36 1725.6545 1721.26288 

40 2449.70975 2357.2095 

44 3284.45625 3005.6027 

TABLE VI. CONSTANT MEMORY 

String Size  

(KB) 

Execution time  for using  

Constant memory 

(sec) 

Execution time for  No use 

of Constant memory 

(sec) 

1 0.051225 0.060482 

4 2.608883 2.682937 

8 19.793088 19.999418 

12 64.76441 65.431309 

16 151.555297 159.347031 

20 298.78875 309.529562 

24 513.011656 538.443125 

28 812.932937 845.583813 

32 Not Working Not Working 

VII. CONCLUSION 

The main focus of our study was to explore the features of 
the graphics cards and map the resource requirement of the 
algorithm under consideration with the available resources. 
Experiments with compute intensive part of pair-wise SW 
algorithm, i.e. score matrix generation were performed. Hence, 
our results are not directly comparable to the previous results. 
Heavy data dependent applications can be parallelized on 
GPU platform by coupling traditional tiling technique with the 
features like concurrent and dynamic kernel execution. 
Speedup up to 120X and 55X was observed, while using 
dynamic and concurrent kernel features respectively. Further 
performance improvement of about 240X was possible by 
using tiling method.  Tile size was decided by considering the 
relationship between various device and algorithm parameters. 
This led to achieving a speed up of about  2X relative to using 
only dynamic kernel and about 4.2X relative to using only 
concurrent kernel approach. The utilization of GPU resources 
was tested with respect to register usage, shared memory 
usage and thread block size. It is observed that, for higher 
occupancy, it is necessary to do more work per thread, use 
more registers per thread in order to access slower shared 
memory.   The relationship between the tile size and available 
resources on the device for better resource utilization and 
performance improvement is presented. We plan to extend our 
work on incorporating  memory and compiler optimization 
issues on parallelizing the dynamic programming based 
algorithms on GPU. The proposed strategy can also be 
extended for global sequence alignment, multiple sequence 
alignment problems as well. 
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