
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

284 | P a g e
www.ijacsa.thesai.org

Analysis of Resource Utilization on GPU

M.R. Pimple
1
, S.R. Sathe

2

Department of Computer Science, Visvesvaraya National Institute of Technology, Nagpur, India

Abstract—The problems arising due to massive data storage

and data analysis can be handled by recent technologies, like

cloud computing and parallel computing. MapReduce, MPI,

CUDA, OpenMP, OpenCL are some of the widely available tools

and techniques that use multithreading approach. However, it is

a challenging task to use these technologies effectively to handle

the compute intensive problems in the fields like life science,

environment, fluid dynamics, image processing, etc. In this

paper, we have used many core platforms with graphics

processing units (GPU) to implement one of very important and

fundamental problem of sequence alignment in the field of

bioinformatics. Dynamic and concurrent kernel features offered

by graphics card are used to speed up the performance. With

these features, we achieved a speed up of around 120X and 55X.

We have coupled well-known tiling technique with these features

and observed a performance improvement up to 4X and 2X, as

compared to non-tiling execution. The paper also analyses

resource parameters, GPU occupancy and proposes their

relationship with the design parameters for the chosen algorithm.

These observations have been quantified and the relationship

between the parameters is presented. The results of study can be
extended further to study similar algorithms in this area.

Keywords—Dynamic kernel; GPU; Multithreading; occupancy;

parallel computing

I. INTRODUCTION

Graphics hardware along with multi-core system has
emerged as a new combination for the applications that has
computationally demanding tasks to be performed. The
conventional graphic processors are now being used in various
application domains including general purpose processing.
Compute Unified Device Architecture (CUDA) provides tools
to exploit resources on graphics processing units (GPU). With
the help of this tool, it has become possible to handle compute
intensive applications by invoking hundreds of parallel threads
performing the task. However, in order to achieve
performance improvement, it is essential to understand the
architecture of the hardware, its limitations. Algorithms need
to be restructured according to the underlying hardware in
order to achieve speed up.

The main aim of this paper is to study and analyse the
huge computational power offered by the graphics processors
and utilize it to enhance the performance of a well-known
problem of pair-wise sequence alignment. The paper discusses
the parallelization of sequence alignment problem on many
core platforms. The algorithm deals with finding the
similarities between two or more biological sequences
[DNA/protein]. The functional and structural relationships
between two or more biological sequences can be found out
by sequence alignment methods like local & global alignment.

The similarity index can be used to explore the evolutionary
relationship between the sequences. Needleman-Wunch [NW]
[1] algorithm for global alignment and Smith Waterman [SW]
[2] algorithm for local alignment are two widely used
approaches based on dynamic programming [DP] method. The
algorithm generates a “score matrix” to track the similarities
between two sequences. It has three-fold data dependencies in
north, west & northwest directions for every element of the
matrix. As the size of the database increases, the searching
time increases exponentially. Hence, the other approach is to
use heuristic methods, such as FASTA and BLAST. Heuristic
methods are faster than DP approach, but do not always
guarantee the correctness of results. Dynamic programming
method is preferred over heuristic approach for generating
accurate results. With the availability of huge and ever
increasing datasets, the serial CPU implementation by any
method takes very large time to produce the results, even with
the faster machines. Hence, over the past few years, the focus
has been towards parallel implementation of the problem.
With the availability of highly parallel programming platforms,
like many and multi core machines, it has become possible to
effectively use them to accelerate the performance of data
parallel applications.

Due to the large volume of data and heavy data
dependencies in the alignment problem, it is very difficult to
apply it directly on the parallel platform. Hence, for parallel
implementation, it is necessary to resolve these dependencies
and then utilize the power of thousands of cores supported by
the graphics card (GPUs).

In this paper, we have presented a method for generating
score matrix for pair wise local sequence alignment problem
using tilling technique. This method is coupled with the
features like dynamic and concurrent kernel execution
supported by the GPU card. The paper also presents the
relationship of various design parameters with the resource
parameters for improving the performance. The approach can
easily be applied to the algorithms like global sequence
alignment and multiple sequence alignment.

II. RELATED WORK

Various strategies have been proposed in the literature to
apply parallel computing methodology for sequence alignment
problem. The basic biological information about any species is
represented in the form of sequences like DNA, and protein.
The sequence of unknown species or the sequence under
investigation is compared with the known sequences from the
standard sequence repository. The result of the comparison
shows, the analogy or the differences between them. For pair
wise sequence alignment method, two strategies are mainly
used by the researchers.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

285 | P a g e
www.ijacsa.thesai.org

 Algorithms that are based on dynamic programming
methodology giving accurate results but taking
exponential time to produce the output. For example,
Needleman and Wunsch [NW] [1], Smith and
Waterman [SW], [2] proposed the algorithm for global
and sequence alignment, respectively.

 Heuristic approaches that are less accurate in finding
the best possible alignment but are faster and widely
used. For example, technique like FASTA & BLAST
proposed by Wiber & Lipman [3], and later by Pearson
& Lipman [4] is very popular.

Complexity of the alignment algorithm is directly
proportional to the number of sequences and length of each
sequence (e.g. O(nm) for 2 sequences of length n & m) With
the availability of huge data for analysis, it is really
challenging for the researchers to process the data and return
the results within reasonable time period, so that biologists can
infer the results quickly and carry out further analysis. With
sequential algorithm, it takes many hours or even days to
produce correct results especially for large number of longer
sequences. Hence, researchers have used accelerators to speed
up the compute intensive part of the algorithm. Because of the
heavy data dependency, divergence code flow, and non-
coalesced memory access it is very difficult to parallelize the
sequence alignment algorithm and map it directly onto the
processing platform. However, researchers have implemented
the algorithm using various strategies and hardware
accelerators.

Field Programmable Gate Array (FPGA) and GPUs are the
commonly used hardware accelerators for improving the
execution time. Performance study of three applications on an
FPGA & GPU is presented in [5]. Authors have studied
Gaussian Elimination, Data Encryption, and Needleman-
Wunch algorithm. The factors like, overall hardware features,
application performance, programmability, overhead are
considered for mapping applications onto various accelerators.

A space efficient global sequence alignment algorithm is
presented by Scott Lloyd and Quinn O‟Snell [6]. Authors
presented the performance improvement in forward scan and
trace back in hardware, without memory and I/o limitations.
Parallel implementation of sequence alignment problem was
also studied for clustering system [7] using message passing
interface [MPI] technique. The authors have discussed major
models like pipeline model and anti-diagonal model for
parallel implementation of the dynamic programming
algorithm. Gotoh [8] has proposed an improved version of
SW algorithm with an affine penalty function. Algorithm
proposed by Khajej-Saeed, Poole, and Perot [9] enhances the
parallelism by reconstructing the recurrence relations for
multiple GPUs. Implentation of SW algorithm on GPU is
presneted by Lukas Ligowski, and Witold Rudnicki [10] on
NVIDIA GPU platform. The paper presents the performance
improvement by effiicient use of shared memory on graphics
card. H.Khaled, R.EI Gohary, N.L. Badr, et al [11] have also
presented GPU implementation of pairwise DNA sequence
alignment problem. This implementation assigns differnet
nucleotide weights and then merges the subsequences of
match on GPU. The authors have obtained optimal local

alignment according to predefined rules. Pair-wise sequence
alignment for very long sequences was done in [12]. The
authors have developed a single GPU implementation of the
problem and have presented two algorithms,
BlockedAntidiagonal and StripedScore. SW algorithm for
protein database by using SIMD instruction of CPU and GPU
is done in [13]. The paper presents CUDASW++ 3.0
algorithm that uses SSE-based vector execution units as
accelerators. Yongchao Liu and Bertil Schmidt [14] have
presented GSWABE algorithm for a pairwise sequence
alignment problem for short DNA sequences. They have
implemented general tile based approach for global, semi-
global and local alignment algorithm on Kepler-based Tesla
K40 GPU. The same problem is also implemented for long
DNA sequences on Xeon Phi coprocessors by [15]. Authors
have explored naive, tiled and distributed approaches on
emerging platform.

Parallelization of similar problems like approximate string
matching on GPU [16], finding edit distance for large sets of
string pairs using MapReduce technique [17] and on GPUs
[18] have been done for performance improvement. Problem
of multiple sequence alignment [MSA] is one of the widely
used and computationally complex problem in the deomain of
computational biology. Algorithms for MSA must produce
the highest score from the entire set of sequences and it is one
of the complex optimization problems. Hence, heuristic
methods are preferred over accurate methods. Jurate
Daugelaite, Aisling O‟Driscoll, and Roy D. Sleator [19] have
summarized various MSA algorithms in distributed and cloud
environment. High performance computing techniques have
been used for MSA tools in [20]. Authors have developed
MTA-TCofee tool. Optimal alignment of three sequences is
presented by Junjie Li, Sanjay Ranka, & Sartaj Sahani [21].
The authors have also implemented a variant of global
alignment, called syntenic alignment in their paper [22]. Paper
[23] presents combination of G-MSA and T-Coffee algorithm
for improving the performance of MSA on GPU. Comparison
and analysis of various high performance computing
archetectures in the field of bioinformatics, computational
biology and systmes biology is presented in [24]. Global
sequence alignment on multi-core platform using GPU is
discussed by Siriwardena and RanaSinghe [25].

This paper presents a GPU implementation of pair wise
sequence alignment algorithm (SW) as a case study to map the
resource requirement of the algorithm to the available
resources. The main features of our work are as follows:

 The pair-wise SW algorithm on CPU + single GPU
platform is implemented. Multiple GPU
implementations are presented in [9]. Allocation of
strings, score matrix, deciding the block (tile) size,
number of blocks, threads, launching concurrent
kernels, is done on CPU side. The generation of score
matrix, use of registers, invoking large number of
threads, launching child kernel, is done on GPU side.

 The performance improvement using memory
hierachies of the graphics card (like global memory,
shared memory, constant memory, text memory) has
been discussed by [10] [11]. However, the study of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

286 | P a g e
www.ijacsa.thesai.org

GPU resources like cores, threads, warps, blocks,
registers is done.

 The focus of our implementation is to effectively use
GPU resources, to explore the features like multiple
kernel execution supported by Kepler based NVIDIA
CUDA cards (K5200, K6000). These features were not
considered by previous studies [11-14]. The paper [15]
has implemented the problem on Xeon-Phi coprocessor,
and not on GPU.

 Our study mainly focuses on the use of resources like
computing cores, registers per thread, shared memory
per thread, thread block size. These parameters
contribute towards GPU occupancy. Large number of
cores available on graphics card can be very effectively
utilized by exploring the features like dynamic kernels,
concurrent kernel, thereby increasing the GPU
occupancy.

 The paper mainly concentrates on parallelization of the
score matrix generation part, which is the major
compute intensive portion of the SW algorithm. The
generation of aligned sequence (without gaps) is a
backtracking process, carried out on CPU side.

 The implementation consists of splitting the score
matrix into horizontal strips and then into the blocks or
tiles. Tile size is decided by considering GPU
resources. Every tile is then processed by anti-diagonal
parallelization method using concurrent or dynamic
kernel method. Whereas, the approach used in [12] is
of vertical stripped SW algorithm considering the
parameters of the global & shared memory of the GPU
itself.

 The features like dynamic parallelism, use of multiple,
concurrent kernels using streams supported by
NVIDIA graphics cards have been explored.

The rest of the paper is organized as follows:

Section 3 describes the architecture of Graphics Card.
Description of algorithm is presented in Section 4. Score
matrix generation using various approaches is described in
Section 5. Section 6 presents implementation of algorithm
and comparative performance improvement. The conclusion
is presented in Section 7.

III. GPU ARCHITECTURE

GPUs have large number of processing elements called as
streaming multiprocessors (SMs) to host thousands of threads
and blocks of threads. Higher throughput is achieved by
concurrently executing these large number of threads. This is
thread level parallelism (TLP). The implementation has been
done on multi-core machines with NVIDIA graphics cards
Quadro K5200, K6000. CUDA C is the programming
language supported for accessing GPU cards. These are
professional class GPU cards for integrating high performance
computing applications. The cards connect to the host
processor via a PCIe 3.0 bus. It is a programming challenge to
effectively manage the data traffic between the host (CPU)
and the device (GPU). If this data traffic is handled properly,

it would lead to performance improvement by proper
utilization of memory bandwidth. The other issue in
executing algorithm is to judiciously manage the memory
traffic between the streaming multi-processors and various
memory components on the card. Both the cards have Kepler
micro architecture that supports dynamic parallelism. With
this feature, CUDA kernel can create a child kernel (as shown
in Fig. 1) that can perform new independent, parallel task,
create and use new streams, events, without CPU involvement.
The Kepler architecture supports L1 cache per SM with a
unified memory request path for loads and stores. Memory
model is shown in Fig. 2. The detail technical specification of
cards used is shown in Table 1. The multi-core system with
16 cores, Intel Xeon E5-2698 processor with 2.3 GHz clock
frequency with GPU card, was used for implementation.

Fig. 1. Dynamic Parallelism in CUDA.

Fig. 2. Kepler Memory Hierarchy.

TABLE I. SPECIFICATIONS OF GPU

Specification Quadro K5200 Quadro K6000

GPU Memory 8 GB GDDR5 12 GB GDDR5

Memory Interface 256 -bit 384-bit

Memory Bandwidth 192.0 GB/s 288 GB/s

CUDA Cores 2304 2880

System Interface PCI-E3.0x16 PCI-E3.0x16

Shared Memory per Block 49152 bytes 49152 bytes

Maximum Threads per Block 1024 1024

Number of Multiprocessors

(SM)
12 15

Number of CUDA cores per

SM
192 192

Thread

Shared

Memory
L1

Cache

Read only
Memory

L2 Cache

DRAM

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

287 | P a g e
www.ijacsa.thesai.org

IV. ALGORITHM DESCRIPTION

In the biological literature, global alignment is often
known as NW alignment and local alignment as a SW
alignment [1][2]. Global alignment method is used to catch the
regions of high similarity between two sequences. But, it may
not be possible to find out the regions of high local similarity,
during overall optimal global alignment. Hence, local
alignment is used to effectively tap the regions of high local
similarity. There are certain issues to be considered while
aligning two sequences for similarity quotient.

 Length of sequences may not be equal.

 There may be small matching regions in the sequences.

 Whether to allow partial matches or not. (i.e. some
amino acid pairs can replace the other one) 

 There may be the cases of insertions, deletions, or
substitutions from the common ancestral sequence.
This may lead to variable length regions, mutations, or
gaps in the new alignment.

Consider strings S1 & S2, (over the alphabet {A,C,G,T}) of
lengths & respectively. Then dynamic programming
approach solves local alignment problem in time. The
score matrix is created, which is used to generate similarity
index between two strings. The recurrence relation establishes
a recursive relationship between the element and other
elements of the score matrix. The base conditions
are: , and The recurrence relation for
 when both and are strictly positive is given in
Fig. 3, where α, β denote gap penalty. Fig. 4 shows data
dependency.

{

Fig. 3. Recurrence Relation in Score Matrix.

Fig. 4. Data Dependency of SW Algorithm.

V. SCORE MATRIX GENERATION

This section describes parallel approach for alignment
problem, CUDA kernels for generating score matrix, and
algorithm parameters.

A. Many Core Implementation on GPU

CUDA enabled GPU card with compute capability greater
than 3.5 supports the features like dynamic parallelism,
concurrent kernels. Dynamic parallelism is expressed by
invoking nested kernels. Fig. 5 shows the algorithm for
dynamic parallelism. Here, “gpuBC” is parent kernel that
creates and calls child kernel “fillmatrix”. Parent kernel
creates a grid of size (of blocks (where T is number of
threads per block). Total number of blocks in each direction is

 , where “N” is length of query string. The
child kernel “fillmatrix” generates the entries in the score
matrix(C), in the diagonal parallelization manner. There is an
implicit synchronization between a child & parent grid. Main
program on the host allocates and initializes the score matrix
C on the host, copies it on the device and calls the parent
kernel. The parent kernel calls the child kernel on the device.
Concurrent kernel execution can be invoked by using
independent “stream” for every host thread. Fig. 6 shows the
algorithm for this approach. For example, generation of score
matrix can be split into four parts. Due to diagonal
dependency, these four parts can be wrapped into three
independent streams as shown in Fig. 7. These streams can be
executed concurrently in the following order. Stream1
executes kernel1, stream2 executes kernel2 & kernel3, and
stream3 executes kernel 4. The execution sequence is shown
in Fig. 8. CudaStreamCreate(&stream(i)) creates three
streams for kernel 1, kernels 2 & 3, and kernel 4, respectively.
Streams are synchronized using CudaStreamSynchronize().
The grid pattern (number of blocks, number of threads per
block) is specified as an argument to each kernel.

B. Tiling Approach

For the strings of very large sizes (especially string lengths,
that generate the score matrix of size more than the size of
global memory of the card), score matrix on host side is
divided into suitable chunks (or tiles). It is essential to
calculate proper tile size and the effective address calculations
of all subsequent threads, using Block ID and Thread ID
model of CUDA environment. For example, if tile size is ,
element size is „e‟, size of memory is „m‟, then, in order to
accommodate the entire tile in the global memory of GPU
card, equation 1 should be satisfied.

 (1)

Fig. 5. Dynamic Kernels in CUDA.

// Dynamic Kernels

// Parent Kernel

__global__ void gpuBC(int *c_d, int *b_d)

{ // create grid for child kernel, with block size TxT

dim3 thrperblk(T,T);

dim3 numblks ((int)((N+1)/T+1), (int)((N+1)/T+1));

maxsum=N+N;

for (sum = 0; sum <= maxsum; sum++)

{ // calling Child Kernel

fillmatrixC<<<numblks, thrperblk>>>(c_d, sum);

cudaThreadSynchronize(); } }

// Parent Kernel ends here

Main()

{ // allocate score matrix (c), strings s1, s2 on host

// initialize the c, s1 & s2 on host

// copy s1, s2, matrix C on device using CudaMalloc()

// Match= +m, mismatch= -t,gap = -g

// Call to Parent Kernel

gpuBC<<<1,1>>>(c_d);

// copy matrix c back to host CudaMalloc()

// thread synchronization

cudaThreadSynchronize();

// timing calculations & cleanup...

 free(c_h); cudaFree(c_d); cudaFree(b_d);

 return(0);
}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

288 | P a g e
www.ijacsa.thesai.org

Score matrix is split into horizontal strips. Each strip is
then broken into blocks or tiles. Within every strip, each tile is
executed one by one as shown in Fig. 9. The algorithm is
presented in Fig. 10.

Fig. 6. Concurrent Kernels in CUDA.

Fig. 7. Four Kernels to Fill Score Matrix.

Fig. 8. Concurrent Execution of Kernels.

Fig. 9. Horizontal Strips and Tiles.

Fig. 10. Tiling Algorithm.

//t x t tiles of (NxN)matrix, total t2 tiles to be

processed
Main()

{ // allocate & initialize score matrix (c_h), strings

S1, S2 on host

 // allocate tile (c_h1)of size t*t on host , copy s1, s2

on device (s1_d, s2_d)

 // For each horizontal strip & tile of size txt

 // copy tile from host to device(c_d), execute &

copy back to host

 for (i = 0; i<N; i=i+N/t)

 for (j=0; j<N; j=j+N/t)

 { rowmin = i; colmin =j; rowmax = i+N/t;

colmax= j+N/t;
 create_c_h1(c_h1, c_h, rowmin, rowmax, colmin,

colmax);

cudaMemcpy(c_d,c_h1,(N/t+1)*(N/t+1)*sizeof(int),c

udaMemcpyHostToDevice);

 K-Scoremat<<<1,1>>>(c_d, s1_d, s2_d, rowmin,

colmin, rowmax, colmax);

 cudaThreadSynchronize();

cudaMemcpy(c_h1,c_d,(N/t+1)*(N/t+1)*sizeof(int),c

udaMemcpyDeviceToHost);

 create_c_hback(c_h1, c_h, rowmin, rowmax,

colmin, colmax);
 cudaFree(c_d); cudaThreadSynchronize();

 cudaMalloc((void

**)&c_d,(N/t+1)*(N/t+1)*sizeof(int)); } }

 // kernel execution
__global__ void K-Scoremat(int *c_d, char *s1_d,
char *s2_d, int rmin, int cmin, int rmax, int cmax)

{ int sum,maxsum, rowmin, colmin;

 int T=32; // Block size

 rowmin = rmin; colmin = cmin; rowmax = rmax,

colmax = cmax;

 maxsum = N;

 dim3 thrperblk(T,T);

 dim3 numblks ((int)(((N/t)+1)/T+1),

(int)(((N/t)+1)/T+1));

 for (sum = 0; sum <= maxsum; sum++)

 { // calling Child kernel FiilmatrixC
 fillmatrixC<<<numblks, thrperblk>>>(c_d,

s1_d, s2_d, sum, rowmin, colmin); } }

// kernel ends here

Tile 1

Score

Matrix

//Concurrent Kernel execution using “Streams”

Main()

{ // allocate score matrix (c), strings S1, S2 of size N on host

// initialize the c[N+1][N+1], s1 & s2 on host, sum=N+N

// rowmin, rowmax, colmin, colmax are data boundaries for kernel

execution, copy s1, s2, matrix C on device using CudaMalloc()

// Match= +m, mismatch= -t,gap = -g // create grid with block size

T

 dim3 thrperblk(T,T);

 dim3 numblks ((int)((N+1)/T+1), (int)((N+1)/T+1));

 // create streams

 for (i=0; i<3; i++)

 cudaStreamCreate (&stream(i));

 // Kernel calls using streams, kernel1, then kernel2 & kernel3

concurrently , and then kernel4

 for (sum = (rowmin+colmin); sum <= (rowmax+colmax);

sum1++)

 { kernel1<<<numblks, thrperblk, 0, stream0>>>(c_d, sum1);

 cudaThreadSynchronize();

 cudaStreamSynchronize(stream); }

 for (sum = (rowmin+colmin); sum <= (rowmax+colmax);

sum1++)

 { kernel2<<<numblks, thrperblk, 0, stream1>>>(c_d, sum1);

 cudaThreadSynchronize(); }

 for (sum = (rowmin+colmin); sum <= (rowmax+colmax);

sum1++)

 { kernel3<<<numblks, thrperblk, 0, stream2>>>(c_d, sum1);

 cudaThreadSynchronize(); }

 cudaStreamSynchronize(stream0);

 cudaStreamSynchronize(stream1);

 cudaStreamSynchronize(stream2); //synchronizing previous

streams

 for (sum = (rowmin+colmin); sum <= (rowmax+colmax);

sum1++)

 { kernel4<<<numblks, thrperblk, 0, stream1>>>(c_d, sum1);

 cudaThreadSynchronize(); }

 cudaStreamSynchronize(stream1); } // synchronizing ALL

streams
 // copy matrix C back to host, destroy streams

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

289 | P a g e
www.ijacsa.thesai.org

C. Resource Requirement & GPU Occupancy

Occupancy is a function of GPU card parameters and
resource requirement of the algorithm. Hence, potential
limitations for occupancy are the resources like registers,
memory and number of streaming multi-processors (SM)
required by the algorithm. Resources would be fully utilized,
only when

For pair wise sequence alignment problem, maximum
occupancy would be experienced, if

√ (2)

Where, N is length of string, and Cg is total number of
GPU cores on device.

 (3)

Occupancy can be determined by considering device
parameters as well as certain design parameters. These
parameters are shown in Table 2.

 Register usage-The number of registers needed per
thread limits the register usage. Occupancy can be
decided by thread ratio.

Active Threads per Block, ⁄

 ⁄ (4)

 Shared Memory usage-Occupancy can also be decided
by considering the shared memory usage.

 ⁄

 ⁄ (5)

 Thread Block Size-Block size is a design criteria, which
decides how many SMs can be utilized depending upon
the number of active blocks used by each kernel. One
warp consists of 32 threads.

 ⁄

 ⁄ (6)

Every resource parameter contributes to the GPU
occupancy. Occupancy may not be the measure of the
performance, but low occupancy codes reflect underutilization
of the enormous resources offered by the execution platform.

 Resource requirement of the algorithm

Number of GPU Cores-Let the tile size be , length of
diagonal be . For diagonal parallelization method, number of
threads required per block is maximum at diagonal. For 100%
occupancy, all the cores should be utilized. Then for
maximum utilization of GPU cores,

 but, √

√

 √ ⁄ (7)

Memory Size-It is required that, tile should be
accommodated into the memory completely.
 ,

where „s‟ is the size of element

 √ ⁄ (8)

Combining equations (7) (8), we get

√
 √ ⁄ (9)

Table 3 shows the corresponding values for GPU card
K5200 & K6000

D. Date Transfer Issues

Time required to transfer the data from host memory to
device memory depends upon the bandwidth of PCI bus. On
device side, memory may be allocated as pinned memory or
non-pinned (pageable) memory. It is observed that, the peak
bandwidth between various device memories is much higher
than the peak bandwidth between the host and device memory.
Thus, data transfer time between host and device, is the major
contributor towards the overall performance. Higher
bandwidth is possible between the host and the device when
transfer overheads are minimal, and data transfer is
overlapped with kernel execution and other data transfers.

TABLE II. PARAMETERS FOR OCCUPANCY

Device Parameters Design Parameters

Registers per SM Rg
Registers used by the

kernel
Ra

Threads per SM Tg Threads per block Ta

Shared memory per SM Sg
Shared memory required

per thread by kernel
Sa

Warps per SM Wg Active warps per block Wa

Number of GPU cores G
No. of active blocks per

kernel
Ba

No. of Active Threads per

block
Za

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

290 | P a g e
www.ijacsa.thesai.org

TABLE III. TILE SIZE LIMITS FOR GPU CARDS

GPU Card Tile size limits

K5200

K6000

VI. RESULTS AND DISCUSSION

A. Many Core Implementation

Experiments were carried out for parallel implementation
of SW algorithm on many core systems. Parallelization was
done using following approaches:

1) Using only dynamic kernel.

2) Using only concurrent kernel.

3) Using tiling technique, coupled with above two

methods.
For approach „a‟, dynamic parallelism was tested. Parent

kernel on device launches the child kernel. For „b‟, multiple
kernels, wrapped in different streams were launched from the
host. However, for approach „c‟, tiling method was used.
Entire score matrix was split into horizontal strips and then
into tiles of size that could be accommodated into the global
memory of the device. Processing of each tile was carried out
using anti-diagonal method of parallelization. In this method,
both the features (a & b above) were tested. The
implementation was compared against serial CPU based
implementation on the same platform. Speed up was
calculated with respect to time taken to execute the serial
version of the algorithm on CPU.

 (10)

Speed up of about 120X and 55X was observed using
dynamic kernel and concurrent kernel features respectively.
Initially, the speed up achieved by both the approaches is
comparable. As the string size increases, the size of score
matrix and searching time also increases. The speed up
saturates for higher string sizes, when bandwidth is fully
utilized. Tiling technique outperforms above two approaches,
for larger string sizes. Speed up of about 240X is observed
with the use of combined (tiling + dynamic & concurrent
kernel) technique. Fig. 11 shows the results. Nearly same
speed up is observed when tiling method is used with either
concurrent or dynamic kernel approach. The comparative
speed up with and without using tiling technique with both the
approaches (dynamic & concurrent kernel) was carried out.

 (11)

Fig. 12 shows the speed up when tiling technique is
coupled with concurrent & dynamic kernel features. With this
method, speed up of 4.2X (for tiling + concurrent kernel over
only concurrent kernel) and 2X (for tiling+dynamic kernel
over only dynamic kernel) is achieved.

Fig. 11. Speed up for Tiling and Non-Tiling Approaches.

Fig. 12. Speed up When Tiling is used with Respect to Non-Tiling

Technique.

The main focus was on score matrix generation part of the
algorithm, since, it is the major contributor towards the
execution time. The serial execution of trace-back part of the
algorithm was not considered. Therefore, it would be
inappropriate to compare the results directly, with the results
of any previous outcomes.

B. Resource Utilization and GPU Occupancy

GPU occupancy defines how efficiently the algorithm
utilizes the resources provided by the underlying hardware.
Occupancy will be less, if more registers, more shared
memory per thread are needed by the kernel and the thread
block size is small. For large data sets, occupancy is more than
100%. The tile size limits given in Table 3 has been verified
and the results are shown in Table 4. It is observed that there
is about 50% reduction in execution time, when tile size limits
are followed. For all experiments, thread block size is
minimum 256 and maximum 1024 threads per block. If the
block size is less, number of blocks required for the given data
size would be much more, and occupancy would be less.

0
20
40
60
80

100
120
140
160
180
200
220
240
260

1 2 3 4 5 6 7 8 9 10

S

p

e

e

d

u

p

Length of Strings (KB)

Dynamic Kernel

Concurrent Kernel

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10

S

p

e

e

d

u

p

Length of Strings (KB)

Tiling+concurrent Kernel

Tiling+Dynamic Kernel

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

291 | P a g e
www.ijacsa.thesai.org

TABLE IV. TESTING TILE SIZE LIMITS

GPU Card
String

Length
Tile Size t < tmin Tile Size t > tmin

(KB) t

Execution

time

(sec)

t

Execution

time

(sec)

K5200

tmin= 1629

8 1024 34.433426 2048 15.896714

10 1280 41.521371 2560 27.354436

12 1536 62.6178184 3072 45.267902

K6000

tmin= 2036

8 1024 30.952559 2048 14.506293

10 1280 50.319086 2560 22.117568

12 1536 69.889266 3072 34.735937

C. Issues in Data Transfer

The aspects like, allocating memory on GPU using
cudamalloc() or cudaHostAlloc(), use of pinned or non-pinned
memory allocation, use of constant memory for read only data
were explored. Memory allocation on GPU can be done using
non-pinned (pageable) or pinned allocation method. The
pinned transfers are faster than non-pinned transfers for
smaller data sizes (for string sizes from 16KB upto 44KB), as
shown in Table 5. But too much allocation of pinned memory
degrades the performance. Hence, for large string sizes,
pageable, i.e. non-pinned memory allocation is preferred.
Constant memory of the GPU card can be used to store all
read only data of the algorithm. A request for constant
memory for the entire warp is split into two parts. When all
the threads in a warp access the same memory location, two
requests for each half warp are generated. Reading from
constant memory location is thus as fast as reading from the
registers. There is a serialized access to the addresses by the
threads in a half warp, leading to performance improvement.
Table 6 shows the improvement in execution time while using
constant memory for non-pinned allocation. Use of pinned
memory and constant memory contribute towards the
performance improvement only for limited data sizes. But, due
to limited size of constant memory (64KB), dynamic memory
allocation is required even for storing constant data.

TABLE V. PINNED AND NON-PINNED MEMORY

String Size

(KB)

Execution time

Non-pinned memory

(sec)

Execution time

Pinned memory

(sec)

16 159.347031 155.331391

20 309.529562 302.237375

24 538.443125 515.289562

28 845.583813 815.48725

32 1204.949 1209.99325

36 1725.6545 1721.26288

40 2449.70975 2357.2095

44 3284.45625 3005.6027

TABLE VI. CONSTANT MEMORY

String Size

(KB)

Execution time for using

Constant memory

(sec)

Execution time for No use

of Constant memory

(sec)

1 0.051225 0.060482

4 2.608883 2.682937

8 19.793088 19.999418

12 64.76441 65.431309

16 151.555297 159.347031

20 298.78875 309.529562

24 513.011656 538.443125

28 812.932937 845.583813

32 Not Working Not Working

VII. CONCLUSION

The main focus of our study was to explore the features of
the graphics cards and map the resource requirement of the
algorithm under consideration with the available resources.
Experiments with compute intensive part of pair-wise SW
algorithm, i.e. score matrix generation were performed. Hence,
our results are not directly comparable to the previous results.
Heavy data dependent applications can be parallelized on
GPU platform by coupling traditional tiling technique with the
features like concurrent and dynamic kernel execution.
Speedup up to 120X and 55X was observed, while using
dynamic and concurrent kernel features respectively. Further
performance improvement of about 240X was possible by
using tiling method. Tile size was decided by considering the
relationship between various device and algorithm parameters.
This led to achieving a speed up of about 2X relative to using
only dynamic kernel and about 4.2X relative to using only
concurrent kernel approach. The utilization of GPU resources
was tested with respect to register usage, shared memory
usage and thread block size. It is observed that, for higher
occupancy, it is necessary to do more work per thread, use
more registers per thread in order to access slower shared
memory. The relationship between the tile size and available
resources on the device for better resource utilization and
performance improvement is presented. We plan to extend our
work on incorporating memory and compiler optimization
issues on parallelizing the dynamic programming based
algorithms on GPU. The proposed strategy can also be
extended for global sequence alignment, multiple sequence
alignment problems as well.

REFERENCES

[1] S. Needleman, C. Wunch, “A General Method Applicable to the Search
for Similarities in the Amino Acid Sequence of Two Proteins,” Journal

of Molecular Biology, 48, (3), pp. 443-453, 1970.

[2] T. Smith, T., M. Waterman, “Identification of Common Molecular
Subsequences,” Journal of Molecular Biology, 147, (1), pp. 195-197,

1981.

[3] W. Wilber, D. Lipman, “Rapid Similarity Searches of Nucleic Acid and
Protein Data Banks,” Proc. Natl. Academy Sci. USA, 80, pp. 726-730,

1983.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

292 | P a g e
www.ijacsa.thesai.org

[4] W.R. Pearson, D. Lipman, “Improved Tools for Biological Sequence

Comparison,” Proc. Natl. Academy Sci. USA, 85, pp. 2444-2448, 1988.

[5] C. Shuai, L. Jie, J. Sheaffer, K. Skadron, J. Lach, “Accelerating
Compute-Intensive Applications with GPUs and FPGAs,” proceedings

of Symposium on Application Specific Processors, SASP‟08, California,
USA, pp. 101-107, June 2008.

[6] S. Lloyd, Q. Snell, “Hardware Accelerated Sequence Alignment with

Traceback,”, International Journal of Reconfigurable Computing, Article
ID 762362, 10 pages , 2009.

[7] Y.Chen, S. Yu, M. Leng, “Parallel Sequence Alignment Algorithm for

Clustering System,” International Federation for Information Processing
(IFIP),207, pp. 311-321, 2006.

[8] O. Gotoh, “An Improved Algorithm for Matching Biological Sequences,”

Journal of Molecular Biology, 162, pp. 705-708, 1982

[9] A. Khajeh-Saeed, S. Poole, J. Perot, “Acceleration of the Smith-

Waterman algorithm using single & multiple graphics processors,” Int.
Journal of Computational Physics, 229, (11), pp. 4247-4258, 2010.

[10] L. Ligowski, W. Rudnicki, “An Efficient Implementation of Smith

Waterman Algorithm on GPU using CUDA, for Massively Parallel
Scanning of Sequence Databases,” IEEE International Symposium on

Parallel & Distributed Processing (ISPDP), Rome, Italy, pp. 1-8, May
23-29, 2009.

[11] H. Khaled, R. Gohary, N. Badr, H.M. Fahneem, “Accelerating Pairwise

DNA Sequence Alignment using the CUDA Compatible GPU,”
International Journal of Computer Applications (IJCA), 14, (1), 2013.

[12] J. Li, S. Ranka, S. Sahni, “Pairwise Sequence Alignment for Very Long

Sequence on GPUs,” 2
nd

 International IEEE Conference on
Computational Advances in Bio and Medical Sciences (ICCABS),

LasVegas, NV, USA, pp. 1-6, 2012.

[13] Y. Liu, A. Wirawan, B. Schmidt, “CUDASW++3.0: Accelerating
Smith-Waterman Protein Database Search by Coupling CPU and GPU

SIMD Instructions,” Journal of BMC Bioinformatics, 14, (117), 2013.

[14] Y. Liu, B. Schmidt, “GSWABE: Faster GPU-Accelerated Sequence
Alignment with Optimal Alignment Retrieval for Short DNA

Sequences,” Int. Journal of Concurrency And Computation: Practice
And Experience, 27, (4), pp. 958-972, 2015.

[15] Y. Liu, T. Tran, F. Lauenroth, B. Schmidt, “SWAPHI-LS: Smith-
Waterman Algorithm on Xeon Phi Coprocessors for Long DNA

Sequences‟” IEEE International Conference on Cluster Computing
(CLUSTER), Madrid, Spain, pp. 257-265, Sept, 2014.

[16] K. Nakano, “Efficient Implementation of the Approximate String

Matching on the Memory Machine Models,” 3
rd

 IEEE International
Conference on Networking & Computing (ICNC), Okinawa, Japan, pp.

223-229, 2012.

[17] S. Jhaver, L. Khan, B. Thuraisingham, “Calculating Edit Distance for
Large Sets of String Pairs using MapReduce,” ASE International

Conference on BigData / SocialComuting / CyberSecurity, Stanford
University, USA, 2014

[18] R. Farivar, H. Kharbanda, S. Venkataraman, R.H. Campbell, “An

Algorithm for Fast Edit Distance Computation on GPUs,” IEEE
Conference on Innovative Parallel Computing (InPar), SanJose, CA,

USA, pp. 1-9, 2012.

[19] J. Daugelaite, A. Driscoll, R. Sleator, “An Overview of Multiple
Sequence Alignments and Cloud Computing in Bioinformatics,”

Hindawi Publishing Corporation, International Scholarly Research
Notices (ISRN) Biomathematics, Article ID 615630, 14 pages, 2013.

[20] M. Orobitg, F. Guirado, F. Cores, F. Cores, J. Llados, C. Notredame,

“High Performance Computing Improvements on Bioinformatics
Consistency-based Multiple Sequence Alignment Tools,” International

Journal of Parallel Computing, 42, pp. 18-34, 2015.

[21] J. Li, S. Ranka, S. Sahni, “Optimal Alignment of Three Sequences on A

GPU,” proceedings of 6
th
 International Conference on Bioinformatics

and Computational Biology (BICoB‟14), Las Vegas, Nevada, USA, pp.

177-182, 2014.

[22] J. Li, S. Ranka, S. Sahni, “Parallel Syntenic Alignment on GPUs,”
proceedings of ACM Conference on Bioinformatics, Computational

Biology, Biomedicine (ACM-BCB), Orlando, Florida, USA, pp. 266-
273, 2012.

[23] S. Fazeli, S. Rahimi, “Investigation and Parallel Implementation of

Multiple Sequence Alignment using Graphics Processing Units (GPU),”
Int. Journal of Advanced Biotechnology and Research (IJBR), pp. 1201-

1208, 2016.

[24] M. Nobile, P. Cazzaniga, A. Tangherloni, D. Besozzi, “Graphics
Processing Units in Bioinformatics, Computational Biology and Systems

Biology,” Briefings in Bioinformatics, 18(5), pp. 870-885, 2017.

[25] T. Siriwardena, D. RanaSinghe, “Global Sequence Alignment using
CUDA compatible multi-core GPU,” 5

th
 IEEE International Conference

on Information and Automation for Sustainability (ICIAFS), Colombo,
Srilanka, pp. 201-206, 2010.

