
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

330 | P a g e

www.ijacsa.thesai.org

A Qualitative Comparison of NoSQL Data Stores

Sarah H. Kamal
1

Information Systems Department

Akhbar Elyom Academy

6
th

 October City, Egypt

Hanan H. Elazhary
2

Computers and Systems Department

Electronics Research Institute

Cairo, Egypt

Ehab E. Hassanein
3

Information Systems Department

Faculty of Computers and

Information, Cairo University

Cairo, Egypt

Abstract—Due to the proliferation of big data with large

volume, velocity, complexity, and distribution among remote

servers, it became obvious that traditional relational databases

are unsuitable for meeting the requirements of such data. This

led to the emergence of a novel technology among organizations

and business enterprises; NoSQL datastores. Today such

datastores have become popular alternatives to traditional

relational databases, since their schema-less data models can

manipulate and handle a huge amount of structured, semi-

structured and unstructured data, with high speed and immense

distribution. Those data stores are of four basic types, and

numerous instances have been developed under each type. This

implies the need to understand the differences among them and

how to select the most suitable one for any given data.

Unfortunately, research efforts in the literature either consider

differences from a theoretical point of view (without real use

cases), or address performance issues such as speed and storage,

which is insufficient to give researchers deep insight into the

mapping of a given data structure to a given NoSQL datastore

type. Hence, this paper provides a qualitative comparison among

three popular datastores of different types (Redis, Neo4j, and

MongoDB) using a real use case of each type, translated to the

others. It thus highlights the inherent differences among them,

and hence what data structures each of them suits most.

Keywords—Document datastores; graph datastores; key-value

datastores; MonoDB; Neo4j; NoSQL datastores; Redis

I. INTRODUCTION

In the past few years, we experienced a tremendous growth
in the amount of data resulting in what is called “big data.” Big
data is generally distinguished by large volume, which may
reach petabytes or much higher; high velocity, possibly from
several locations; large variety, structured, semi-structured,
and/or unstructured; and distribution, in different locales, data
centers, or cloud geo-zones [1] [2]. This entitled the need to
store such complex data, and it was obvious that traditional
relational databases were not suitable to meet those
requirements [3]. This led to the emergence of a new breed of
data management systems, referred to as NoSQL datastores.

NoSQL, which means "Not only SQL" is a generic term of
database management systems (DBMS), which provide a
mechanism for storing and retrieving data different from that of
relational DBMS, and hence, traditional SQL queries over the
data cannot be applied to them. A basic feature of most NoSQL
datastores is the “shared nothing” horizontal scaling, which
allows them to execute a huge number of read/write operations
per second [4]. Non-relational databases are generally known
for their schema-less data models, improved performance and

scalability. We summarize the importance and genuine need of
NoSQL data stores as follows [2]:

 extendibility to handle future growth of data

 efficiency and ability to deal with fast data

 flexibility of data formats

 ability to handle data partitioned across multiple servers
to meet the growing data storage requirements

 remote access

 the continuous availability of such datastores online

There are four basic types of NoSQL data stores in the
broad sense: key-value, document, graph, and column. A huge
number of cloud datastores have been developed under each
category. This implies the need to understand the differences
among such data stores, and which is more suitable to any
given data. Unfortunately, research efforts towards this issue
are either theoretical (without showing real implementations),
or deal with performance issues such as speed, which are
characteristics of the specific studied datastores. The goal of
this paper is to present a qualitative comparison among three
popular datastores of different types (Redis, Neo4j, and
MongoDB) using a real use cases of each type, translated to the
others. It thus highlights the inherent differences among them
with respect to their data definition strategy, and hence what
data structures each of them suits most.

The rest of the paper is organized as follows: Section II
presents a discussion of the different types of NoSQL data
stores and a popular example of each. Section III presents
related work in the literature to highlight our contribution.
Section IV provides a qualitative comparison of three popular
data stores of different types; in addition to a discussion of the
results. Finally, Section V presents the conclusion of the paper
and directions for future research.

II. TYPES OF NOSQL DATASTORES

In this section, we discuss the four basic types of NoSQL
data stores and a popular example of each.

A. Key-Value Datastores

The use of key-value datastores indicates that the stored
values guide to a specific key, and the only appropriate way to
query about data is through the key. Those datastores use a
data structure similar to those employed in maps and
dictionaries, where data can be manipulated and handled using

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

331 | P a g e

www.ijacsa.thesai.org

a unique key [4]. The flexibility of those datastores makes it
convenient to store data in unstructured format. They also
allow fast and huge random read/write requests, and highly
scalable retrieval of requested data [5]. Such datastores are
used by Facebook to store posts with unique Ids. The value of a
given unique id contains a real message, identity of the user
and time of sharing the corresponding post [6]. Key-value
datastores are appropriate in cases when you want to store a
user's session or a user's shopping cart or to get information
about favorite products. Fig. 1 illustrates a simple example data
structure of a key-value datastore. As shown in the figure, three
users are identified by their Ids, and the only stored values
indexed by those Ids are their first names.

Fig 1. Simple Data Structure of a Key-Value Datastore.

One of the most popular key-value datastores is Redis
developed by Salvatore Sanfilippo [7]. This open-source
datastore has the ability to provide fast and huge random
read/write requests. It can handle more than 100,000 read or
write operation per second. It also supports different types of
data structures such as strings, hashes, lists, sets, sorted sets,
bitmaps, and geospatial indexes. It also has built-in replicas
that can be replicated using the master-slave model, and a
master can have multiple slaves [8].

B. Document Datastores

Document datastores are used to store and organize data in
the form of documents. The documents allow storing and
retrieving data in numerous formats such as XML (Extensible
Markup Language), PDF and JSON (Java Script Object
Notation). Those datastores are very flexible in nature since
they are schema-less. They are also characterized by the ability
to add a large number of different fields to one or more
documents without wasting space by adding the same empty
fields to other documents [9] [10]. Documents are grouped
together into collections. Though a collection is composed of
many documents, each document can have different schemas
and different types of stored data. Each document holds a
unique Id within its corresponding collection. Document
datastores are suitable for web applications, which involve
storage of semi-structured data and the execution of dynamic
queries. Fig. 2 depicts a simple example data structure of a
document datastore.

MongoDB is one of the most popular open-source
document datastores, written in C++ programming language
and developed by Software Company 10gen [11]. It is a high
performance and efficient datastore. It is also a flexible,

schema-less datastore that can include one or more collections
of documents. It can be used to store and customize large files
like images and videos. It also has a complex query language
and supports MapReduce to process distributed data [2]. The
documents in the figure store information regarding products,
their branches and their corresponding orders.

Fig 2. Simple Data Structure of a Document Datastore.

Fig 3. Simple Data Structure of a Graph Datastore.

C. Graph Datastores

Graph datastores are designed around the idea of a graph
structure which contains nodes, properties and connecting
edges. Nodes represent entities, properties describe real
information about the entities and edges represent the
relationships between nodes. Graph datastores use
sophisticated shortest path algorithms to make the process of
querying data more efficient. Most of those datastores are

User3

User1

User2

Jack

John

Julia

 Key Value {

_id:"P1",

Name: "Chai",

Branches: ["B2"]

}

{

_id:"P2",

Name: "Coffee",

Branches: ["B2"]

}

{

_id:"O1",

Products: ["P1","P2"],

Orderdate:"23-10-2015"

}

{

_id:"B2",

Name: "Beverages",

Description: "tea, coffee,

soft drinks"

}

 Products document

 Branches document

 Orders document

Opera

TV show Java

Jack

Julia

John

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

332 | P a g e

www.ijacsa.thesai.org

schema-less and few of them support horizontal scaling
because it is difficult to traverse and manipulate graph when
connected nodes are spread on clusters. Graph databases are
specialized in path finding problems in navigation systems
[12]. They are also designed to be suitable for representing
heavily linked data such as social relations, geographic data,
social networking sites, bioinformatics and cloud management
[13]. Fig. 3 depicts a simple example data structure of a graph
datastore, with its nodes and directed edges. It shows a number
of users, and what they like and who they follow.

Neo4j is one of the most popular and powerful graph
datastores, written in Java [14]. It is a high performance graph
databases which can provide a flexible network structure. It is
highly available and scalable since it has the ability to store and
organize massive numbers of nodes and relations between
them effectively. It has a cypher query language, which is used
for fast querying and efficient traversal. It also offers a
representational state transfer (REST) interface and Java
application program interfaces (APIs) [10].

D. Column Datastores

Column datastores are designed to store huge numbers of
columns. Data is stored based on column values. Though those
datastores are the most similar to their traditional relational
counterparts, they are able to overcome the drawbacks of the
latter databases, as they remove null values from columns,
when values are unknown. They support high scalability since
column data can be distributed on several clusters easily. They
are also most suitable for data mining and analytics
applications [15]. Most of those datastores employ MapReduce
framework to speed up processing of large amounts of data
distributed on numerous clusters [10]. Fig. 4 illustrates a
simple example data structure of a column datastore. It stores
information similar to that of the document datastore in Fig. 2,
but in a different column-oriented format.

Product_id

1

2

3

4

Branch

Beverages

Seafood

Product

Soft drinks

coffee

tea

shrimp

Order_date

23-10-2015

25-10-2015

27-10-2015

Fig 4. Simple Data Structure of a Column Datastore.

One of the popular column data stores is Cassandra, which
was developed by Apache Software Foundation, and
implemented in Java. It is based on both Amazon's DynamoDB
key-value datastore and Google's Bigtable column datastore, so
it includes concepts of both datastore types. It supports high
availability, partitioning tolerance, persistence and high
scalability. It also has a dynamic schema. It can be used for a
variety of applications like social networking websites,
banking and finance, and real time data analytics [16].

III. RELATED WORK

This section discusses research studies dedicated to
comparisons involving NoSQL datastores. Some authors were
mainly concerned with the differences between relational
databases and non-relational alternatives especially NoSQL
datastores. For example, Makris et al. [4] reviewed the
concepts of relational and NoSQL datastores and the
differences between them based on schemas, transaction
methodologies, complexity, fault tolerance, consistency and
dealing with storage of big data. Nayak et al. [16] also
provided a comparison between both parties, and concluded
that a lot of effort is needed to introduce a standard query
language for NoSQL datastores. Sahatqija et al. [17] also
reviewed the pros and cons of NoSQL datastores over
relational databases. Corbellini et al. [18] provided a similar
comparison, using a set of examples. Kumar et al. [19]
provided a discussion of the problem of relational databases
and how NoSQL datastores are the best solution for handling
them by discussing and comparing two popular document
datastores MongoDB and CouchDB.

Other researchers were mainly concerned with comparing
the different types of NoSQL datastores, but as previously
noted, without showing implementations of real use cases. For
example, Srivastava et al. [6] discussed the pros and cons of six
popular NoSQL datastores. Padhy et al. [11] provided a
thorough discussion of NoSQL storage technology, types of
NoSQL datastores, and the differences among them. Han et al.
[20] provided a comparison from a totally different point of
view, which is the dependency on the CAP theorem. They
described the basic characteristics and data models of NoSQL
datastores, and classified them according to this theorem.

Another research direction is concerned with studying the
performance of NoSQL and SQL databases. For example,
Parker et al. [21], experimented with MongoDB as an example
document NoSQL datastore, and SQL Server as a traditional
relational database. They compared the performance of both
parties. The results proved that MongoDB is faster in terms of
insert, update and simple queries; whereas SQL Server
performs better in terms of update, queries with non-key
attributes, and aggregate queries. Li and Manoharan [22],
examined the performance of some NoSQL datastores and
SQL databases. They compared the read, write and delete
operations, and observed that not all NoSQL datastores
perform better than the SQL databases. Specifically, RavenDB
and CouchDB do not perform well in terms of read, write and
delete operations. Cassandra is slow on read operations, but
good for write and delete operations. Additionally, Couchbase
and MongoDB are the fastest in general for read, write and
delete operations. Okman et al. [23] provided a comparison

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

333 | P a g e

www.ijacsa.thesai.org

from a different point of view, which is data security. The
authors focused only on MongoDB and Cassandra as two of
the most popular NoSQL datastores. They found that both of
them lack encryption support for data files, have weak
authentication, and very simple authorization.

Adding two
documents to
branches, showing
their names and
specializations

Adding two
documents to
suppliers, showing
their names and
locations

Adding three
documents to
products showing
their names; and
referencing their
suppliers and
branches

Adding two
documents to orders
referencing the
included products
and showing their
dates

Fig 5. MongoDB Example.

IV. COMPARATIVE STUDY

According to the above discussion, the main contribution of
this paper is to conduct a qualitative comparison based on
intensive experimentation with three popular NoSQL
datastores using real use cases for each type, translated to the
others. Specifically, we selected Redis as an example key-
value datastore, MongoDB as an example document datastore,
and Neo4j as an example graph datastore.

A. MongoDB Example

A document datastore example was implemented using
MongoDB. The example involves relating documents of a set
of collections like products, branches, suppliers and orders.
Fig. 5 shows the implementation of this example. As shown in
the figure, MongoDB uses a set of db.<collection>.insert ()
instructions to add document(s) to collections. Each document
has a number of fields (attributes). The _id field is
automatically generated for a new document if the field is not
defined. In this example, we employ document references to
relate documents in different collections.

Forming
sets and
adding
values
for
branches
and
supplier
s

Forming
sets and
adding
values
for
products
and
orders

Fig 6. Translation Example of MongoDB to Redis.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

334 | P a g e

www.ijacsa.thesai.org

1) Document to key-value datastore: In Redis, the sadd

instruction is used to add one or more member keys to a set,

while the hmset instruction is used to add values to fields in

the hash stored at a given key. Fig. 6 shows the translation of

the MongoDB example to Redis using those instructions. To

illustrate, as shown in the figure, we use sadd to add the keys

of two branches to a single set. We then use hmset to add two

fields and their respective values to the hash stored at each of

them. For example, in case of Branch:1, the name is “seafood”

and the description is “fish.” In order to implement

relationships between entities, we need to use the sadd

instruction to implement each relationship and its inverse, as

shown in Fig. 7. It is obvious that representing relationships is

an overwhelming task in Redis.

Relating products to suppliers,
orders, and branches; suppliers to
products; branches to products;
and orders to products

Fig 7. Translation Example of MongoDB to Redis (cont.).

It is worth noting that we considered representing such
relationships as attributes as in the case of MongoDB, but in
Redis, keys added as values of relationship attributes will not
reference their corresponding entities.

2) Document to graph datastore: Finally, Fig. 8 shows the

translation of MongoDB example to Neo4j. As shown in the

figure, each entity regardless of its type is represented as a

node in a graph (with hidden attributes), and the relationships

are represented using directed arrows. It is clear that Neo4j

does not normally consider collections or sets of entities. We

can, for example, add a node representing each collection and

let it point to its members as shown in Fig. 9. Though this

would do the job, the graph will become too cumbersome.

Alternatively, we can add the name of each collection as an

attribute to each of its members. Nevertheless, to find the

members of a given collection, we will have to inspect each

and every entity in the graph.

Fig 8. Translation Example of MongoDB to Neo4j.

Fig 9. Example of Implementing Collections as Relationships in Neo4j.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

335 | P a g e

www.ijacsa.thesai.org

B. Redis Example

Next, we discuss a key-value datastore example using
Redis. Since Redis does not support relationships efficiently,
we selected an example that does not involve any relationships.
As shown in Fig. 10, we form sets of categories and users.
Each category has a name and a specific set of attributes (that
may differ from the others); while each user has a name, age
and country. In this specific example, we need to store
information about merely the users and categories of items in a
given organization, without relating them.

1) Key- value to document datastore: To translate the

above example from Redis to MongoDB, we represent the

users and categories as collections including documents as

shown in Fig. 11. It is clear that MongoDB was able to

smoothly represent all the information of Redis, though the

instructions of Redis are simpler. To assess the difference

between them further, as future work, quantitative analysis

will be conducted to compare storage space, for example.

2) Key-value to graph datastore: Finally, we translate this

specific example to Neo4j. As shown in Fig. 12, we represent

the users and categories as nodes. We also add nodes

representing their sets, each pointing to its respective

members. As in the case of MongoDB, Redis instructions are

simpler, and a qualitative comparison will be conducted for

further comparison between Redis and Neo4j.

Forming
sets and
adding
values for
categories
and users;
without
relating
them

Fig 10. Redis Example.

C. Neo4j Example

Finally, we discuss the Neo4j example. As shown in
Fig. 13, this example represents a social network of users and
films/shows, with hidden attributes. The relationships relate
users to what they watched, on what they commented, and
what they like. They also relate uses to the friends they follow.

Fig 11. Translation Example of Redis to MongoDB.

Adding three
documents for
users showing their
attributes

Adding three
documents for
categories showing
their attributes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

336 | P a g e

www.ijacsa.thesai.org

Fig 12. Translation Example of Redis to Neo4j.

Fig 13. Neo4j Example.

Adding four
documents for users
showing their
attributes

Adding one document
for TV shows showing
their attributes

Adding two
documents for films
showing their
attributes

Fig 14. Translation Example of Neo4j to MongoDB.

Collections for

relating the various
entities

Fig 15. Translation Example of Neo4j to MongoDB (cont.).

1) Graph to document datastore: Fig. 14 and 15 show the

translation of this example to MongoDB. As shown in the

figures, nodes are converted to documents. Nevertheless, we

have to explicitly group some nodes into collections even if

this is not intended. Additionally, since MongoDB supports

only abstract relationships, we had to create separate

collections for each relationship type.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

337 | P a g e

www.ijacsa.thesai.org

2) Graph to key-value datastore: Finally, we translated

Neo4j example to Redis. As shown in Fig. 16, each node is

represented using a key (in a corresponding set), and hash data

structures are used to store attributes and values as discussed

earlier. Similar to the case of MongoDB, we need to group

nodes into sets even if not intended. In addition to the fact that

representing relationships is overly cumbersome, a major

problem is that we can only represent abstract relationships. In

other words, we are unable to represent the named

relationships. We can add them as attributes, but as discussed

earlier, in Redis, keys added as values of relationship

attributes will not reference their corresponding entities.

Forming
sets and
adding
values for
users

Forming
sets and
adding
values for
films

Forming
sets and
adding
values for
TV shows

Fig 16. Translation Example of Neo4j to Redis.

D. Discussion

According to the above qualitative comparison, and the
illustrated translation from one datastore to another, we can
conclude the following findings:

 Graph datastores are designed to be suitable for
representing heavily linked data and intensive
relationships such as social networks, geographical
data, and bioinformatics. We could not effectively
represent named relationships in MongoDB and Redis.

 Document datastores are suitable for managing
collections with abstract relationships. Representing
such relationships is cumbersome in case of Redis. In
case of Neo4j, representing collections is not a normal
practice and we had to rely on creating new
relationships for this issue.

 Key-value datastores are suitable when relationships are
not our issue, such as retrieving information about
favorite product names of customers, shopping carts,
and a user's session. In this case its instructions are
much simpler than those of MongoDB and Neo4j.

 We may consider combining more than one datastore
type to meet more than one of the above objectives.

V. CONCLUSION

This paper presented a qualitative comparison of three
popular NoSQL datastores of different types (Redis, Neo4j,
and MongoDB) using a real use case of each type, translated to
the others. The goal was to assess the inherent differences
between them in defining data rather than merely comparing
their data structures (without showing real use cases) or their
performance, as in other research studies in the literature. It
was shown that graph data stores are the best choice in case of
intensive relationships. Document datastores are better when it
comes to collections and abstract relationships. Finally, key-
value datastores are the best when relationships are not our
issue. As future work, we intend to complement this study with
a study of data retrieval queries in each datastore, in addition to
their performance. The aim is to assist organizations to find
suitable NoSQL datastores that suit their needs.

REFERENCES

[1] H. Elazhary, “Cloud computing for big data,” MAGNT Research
Report, vol. 2, no. 4, pp. 135-144, 2014.

[2] A. Angadi, A. Angadi, and K. Gull, "Growth of new databases &
analysis of NoSQL datastores," International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 3, pp.
1307-1319, 2013.

[3] W. Naheman, and J. Wei, “Review of NoSQL databases and
performance testing on HBase,” in Proc. 2013 International Conference
on Mechatronic Sciences, Electric Engineering and Computer,
Shenyang, China, 2013, pp. 2304-2309.

[4] A. Makris, K. Tserpes, D. Anagnostopoulos, and V. Andronikou, “A
classification of NoSQL data stores based on key design characteristics,”
in Proc. 2nd International Conference on Cloud Forward: From
Distributed to Complete Computing, Madrid, Spain, 2016, pp. 94-103.

[5] J. Bhogal, and I. Choksi, “Handling big data using NoSQL,” in Proc.
IEEE Conference on Advanced Information Networking and
Applications Workshop, Gwangju, Korea, 2015, pp. 393-398.

[6] P. Srivastava, S. Goyal, and A. Kumar, “Analysis of various nosql
database,” in Proc. 2015 IEEE International Conference on Green

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

338 | P a g e

www.ijacsa.thesai.org

Computing and Internet of Things (ICGCIoT), Nodia, India, 2015, pp.
539-544.

[7] Redis Labs, “Redis FAQ” Internet: http://redis.io/topics/faq, [Online,
Available: 31/1/2019].

[8] Redis, http://redis.io/http://www.neo4j.org/, [Online, Available:
31/1/2019].

[9] G. Deka, “Fine A Survey of Cloud Database Systems,” in IT
Professional, vol. 16, no.2, pp. 50-57, 03 January 2013.

[10] K. Kaur, and R. Rani, "Modeling and querying data in nosql databases,"
in Proc. 2013 International Conference on IEEE on Big Data, Silicon
Valley, CA, USA , Oct. 2013, pp. 1-7.

[11] R. Padhy, M. Patra, and S. Satapathy, "RDBMS to NoSQL: Reviewing
some next-generation nonrelational database’s," International Journal of
Advanced Engineering Sciences and Technologies, Vol. 11, PP.15-30,
2011.

[12] J. Miller, "Editor Graph database applications and concepts with Neo4j,"
in Proc. 23rd-24th Southern Association for Information Systems
Conference, Atlanta, GA, USA, 2013, pp.141-147.

[13] R. Angles, and C. Gutierrez, “Survey of graph database models” ACM
Computing Survy, no.1, pp.1-39, Feb. 2008.

[14] http://www.neo4j.org/ [Online, Available: 31/1/2019].

[15] G. Bathla, R. Rani, and H. Aggarwal, “Comparative Study of NoSQL
Databases for Big Data Storage,” International Journal of Engineering &
Technology, vol. 7, p. 83, 2018.

[16] A. Nayak, A. Poriya, D. Poojary, “Type of NOSQL Databases and its
Comparison with Relational Databases,” International Journal of
Applied Information Systems, vol. 5, pp. 16-19, 2013.

[17] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi, and F. Ismaili, "Comparison
between relational and NOSQL databases," in proc. 2018 41st
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, 2018, pp. 0216-0221.

[18] A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. Schiaffino,
“Persisting Big Data: The NoSQL landscape,” Information Systems,
Elsevier Science, Vol. 63, pp. 1-23, 2017.

[19] K. Kumar, S. Sundhara, and S. Mohanavalli, "A performance
comparison of document oriented NoSQL databases," in proc. 2017
International Conference on Computer, Communication and Signal
Processing (ICCCSP), Chennai, India, 2017, pp.15-19.

[20] H. Jing, E. Haihong, G. Le, and J. Du, "Survey on NoSQL database," in
proc. 2011 IEEE 6th international conference on Pervasive computing
and applications (ICPCA), Port Elizabeth, South Africa , 2011, pp. 363-
366.

[21] Z. Parker, S. Poe, and S. Vrbsky, “Comparing NoSQL MongoDB to an
SQL DB, ” in Proc. 2013 51st ACM Southeast Conference (ACMSE),
ACM, New York, NY, USA, , Apr. 2013, pp.4-5.

[22] Y. Li, and S. Manoharan, "A performance comparison of sql and nosql
databases," in proc. 2013 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM),
Victoria, BC, Canada, Aug. 2013, pp. 15-19.

[23] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes and J. Abramov,“Security
Issues in NoSQL Databases,” in proc. 2011 IEEE 10th International
Conference on Trust, Security and Privacy in Computing and
Communications, China, Nov. 2011, pp. 541-547.

