
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Framework for Disease Outbreak Notification
Systems with an Optimized Federation Layer

Farag Azzedin1, Mustafa Ghaleb2, Salahadin Adam Mohammed3, Jaweed Yazdani4
Information and Computer Science Department,

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

Abstract—Data that is needed to detect outbreaks of known
and unknown diseases is often gathered from sources that are
scattered in many geographical locations. Often these scattered
data exist in a wide variety of formats, structures, and models.
The collection, pre-processing, and analysis of these data to detect
potential disease outbreaks is very challenging, time-consuming
and error-prone. To fight disease outbreaks, healthcare practition-
ers, epidemiologists and researchers need to access the scattered
data in a secure and timely manner. They also require a uniform
and logical framework or methodology to access the relevant
data. In this paper, authors propose a federated framework
for Disease Outbreak Notification Systems (DONSFed). Using
advanced design and an XML technique patented in the US in
2016 by our team, the framework was tested and validated as
part of this work. The proposed approach enables healthcare
professionals to quickly and uniformly access data that is required
to detect potential disease outbreaks. This research focuses on
implementing a cloud-based prototype as a proof-of-concept to
demonstrate the functionalities and to verify the concept of the
proposed framework.

Keywords—Disease outbreak notification system; database fed-
eration; web services; service oriented architecture; health systems

I. INTRODUCTION

The world population growth is causing disease outbreaks
to occur frequently and the advancement in transportation
technology is making them spread quicker and farther. As a
result, fighting modern disease outbreaks demands minimum
response time from relevant healthcare professionals. One way
to minimize the response time of healthcare professionals is to
build an efficient disease outbreak notification system (DONS).
Building an efficient DONS has many challenges and has
attracted many researchers [1], [2], [3], [4], [5]. Some of the
main challenges are:

• DONS data often reside in data-sources located across
many geographical, jurisdictional and organizational
boundaries. Beside technical obstacles, collecting data
from such diverse data-sources poses other defiances.

• DONS data can be huge [6]. Processing such volume
of data on time can be challenging.

• DONS data often exist in a wide variety of formats,
structures, data models, and data types. Pre-processing
such variety of data can be time-consuming.

• Collecting data from heterogeneous data-sources is a
complex operation. Some of these data-sources are

databases while others can be as simple as web-
pages. These heterogeneous data-sources often require
multiple interfaces, languages, and protocols.

• Arrival of the required data on time from the data-
sources may not be guaranteed.

• Integrating, processing, and presenting the collected
data in a beneficial way to healthcare professionals is
challenging. [7], [8].

To tackle the above-mentioned difficulties, researchers pro-
posed the following two approaches. In the first approach,
researchers proposed programs that enable each data-source to
share and integrate data with other data-sources. This approach
requires each pair of data-source to have a separate integration
program, which makes adding a new data-source very costly.
It can’t simultaneously and seamlessly integrate data from
multiple data-sources [9]. In the second approach, researchers
proposed federated databases. However, this approach has a
number of limitations [7], [8], [10], [11], [2], [1]. First, adding
a new data-source to the federation is costly and modifying
any of the services offered by the federated database is time-
consuming. In addition, this approach is slow in identifying
potential disease outbreaks and requires local to global schema
translation to resolve the data model heterogeneity among var-
ious data-sources. Furthermore, this approach’s data-sources
are limited to relational databases and need to know the local
schema of each data-source. Knowing the local schema of each
data-source may not be provided by some data-sources for
security reasons.

Motivated by the above-mentioned challenges and limi-
tations, this article proposes a framework called Federated
System for Disease Outbreak Notification Systems (DONSFed)
which is based on federated databases and web services
technology. DONSFed is a federation of many data-sources.
It is robust and scalable, and it doesn’t intervene with the
local operation of any of its data-sources. It only asks the data-
source for data specific to potential disease outbreaks. It offers
its data-sources the required security and autonomy. Unlike the
traditional federated databases, its data-sources are not limited
to relational databases. It can include other types of data-
sources such as Triplestore, XML, and NoSQL databases and
others. DONSFed is data-store transparent. When a user enters
a query, DONSFed breaks it into sub-queries and submits each
sub-query to the relevant data-source. It then collects the result
of each sub-query, aggregates them and delivers them to the
user.

The rest of the article is organized as follows. Section II

www.ijacsa.thesai.org 546 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

presents a summary of data integration techniques while Sec-
tion III discusses in details the proposed framework. Section
IV highlights our conclusions and envisions our directions for
future work.

II. DATA INTEGRATION TAXONOMY

Data integration techniques can be classified into five
categories as shown in Figure 1. The first technique is the
link integration [6], [12]. In this technique, the search begins
from the first resource via hyperlinks to get related informa-
tion. However, the drawbacks of this technique are instability
of hyperlinks, ambiguities, and the vulnerability of naming
conflicts [6].

Fig. 1. Data Integration Classification

The second technique is query-based integration [13]. Even
though it allows the user to query and retrieve data from
different sources by a single query, the query is complex and
it lacks the transparency of data location and integration to
users.

In the data warehouse integration technique [14], [15], the
system queries and retrieves data from different sources to a
unified and central repository. The advantages of this technique
are improving the performance and increasing data consis-
tency. On the other hand, the disadvantages of this method
include keeping an up-to-date central repository, supporting
scalability, and maintaining privacy.

The federated database integration provides a uniform and
central access to query and retrieve data [13]. This technique
is more scalable and flexible than previous techniques [16]
since there is no need for a centralized repository. Hence,
data replication is not required, and this leads to enhance data
privacy and scalability support. This technique is utilized by
many bioinformatics systems such as Entrez [17], BioMart [18]
and EuPathDB [16].

Web service integration provides extensibility and flexibil-
ity features for data integration. Nowadays, this technique is
used by many Bioinformatics databases [13], [19], [20]. For
example, the National Center for Biotechnology Information
(NCBI) [21], European Bioinformatics Institute (EBI) [22],
DNA Data Bank of Japan (DDJB) [23], BioMOBY [24],
and PathPort [25] use web services techniques to collect and
integrate data from their data-sources.

In summary, the federated database and web services
techniques are prominent due to their advantages including
minimizing the interference of existing operations, managing
heterogeneity, preserving local autonomy of constituent sys-
tems and supporting scalability. Combining these techniques
could be the key to ensure the advantages of both. This
research combines federated database and web services inte-
gration techniques to build a DONS framework to connect
different data-sources together internally and introduce unified
access to the data offered by these data-sources.

III. DONSFED FRAMEWORK

In this section, a framework for DONS is presented that
consists of a federation of databases supported by web ser-
vices. Our proposed framework, DONSFed, includes federa-
tion services and component web services. Using an advanced
design and an XML node-labeling technique [11] patented
in the US in 2016 by our team, the framework was tested
and validated as part of this work. The framework allows
the use of a portal to query databases in real-time. Such a
query is usually split into pieces and then sent across to the
target component systems through web services. The query
is then processed to retrieve the required data and results
are aggregated and returned to the requesting entity. The
administrators of the federated services system are empowered
to design and implement the required federation services.
The component systems’ administrators ensure their systems
are connected and available. The component systems must
maintain high availability because the federated system mainly
relies on it for responding to user queries. An abstraction layer,
to hide the major differences among the participating systems,
is necessary to make the access consistent across the entire
framework.

Thus, the DONSFed design consists of the following core
elements: the framework layers, the framework workflow, and
the environment setup. We have reviewed various approaches
that ensure web services integration and offer substantial
abstraction among the specific component systems that con-
stitute the federation. Based on the detailed study and analysis
of these approaches, we identified and categorized the web
services and the required operations for each identified service
in our framework. Each web service consists of its description
and specifies the necessary input parameters that are needed to
invoke its operations. A dedicated web service is available with
every component that supports the connection to the portal.
Moreover, many advanced features to support changes to the
web service operations have been implemented in order to
reduce the maintenance required.

A. Framework Architecture

III Fig. 2 presents the DONSFed framework architecture
which consists of five layers namely: DONS Federation, Adap-
tation, Component Systems, Query Processing, and Interface.
In the DONS federation layer, the federated services connect
to different database systems that participate in the federation.
The DONS federation layer consists of several federated ser-
vices with each service responsible for processing predefined
requests upon demand. A query triggers the corresponding
federated service which may initiate selection of the available
web services in the component systems layer.

The adaptation layer maintains an updated directory of web
services available from each component database. It supports
non-canonical databases, which do not provide web services
natively. This is accomplished by generating web services in
a compatible format. In addition, the adaptation layer takes
care of the communication between the federation layer and
the component systems.

The component systems layer supports heterogeneous data
sources. These data sources may have native support for web
services. If not, non-canonical data sources will work with

www.ijacsa.thesai.org 547 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 2. DONSFed Framework Architecture

a proxy server to generate the required web services in the
compatible format. Thus, the component systems layer delivers
the required data from the data sources to answer a particular
query or sub-query.

The requested data is retrieved from various data sources in
XML formats and sent to the results aggregator module which
aggregates them into a global result in a suitable format to
be delivered to the requesting application or user. To process
XML data in XML data sources and to efficiently integrate
and process XML data that is generated by the component
databases, we developed XML data labeling scheme called
Dynamic XDAS. Nearly all the existing node labeling schemes
are not updated friendly. We chose to use Dynamic XDAS
because it is fast, dynamic, and requires less storage space.
It is fast because it computes parent-child, ancestor-decedent,
and sibling relationships between XML data using logical
operators. It is dynamic because, unlike nearly all the existing
schemes, relabeling of XML data is not required during
updates. For example, in the popular Dewey node labeling
system, insertion of a new sibling node between its siblings
labeled n and n+1 is impossible. In the worst case, the whole
XML data in the corresponding data source must be relabeled.
In Dynamic XDAS that is not required. Any node can be
inserted without relabeling any other node. For example and
as shown in Fig. 3, The sub-tree labeled 1, 011.01 (colored
red) was inserted between the nodes labeled 1, 011.01.01 and
1, 011.011 without relabeling any existing node.

The federated services are described using the Web Service
Definition Language (WSDL). The user queries are maintained
in a natural language format as questions, with the provision
that allows users to choose those questions. Users identify the
disease or the category of the reported cases that they need
to search and also provide the parameter values related to the
selected question. The query planner module transforms the
question into sub-queries. Web services are maintained in the
Representational State Transfer (RESTful) design. The DONS
federation service is passed the web URL of the required web
service with the necessary parameters to properly route the

Fig. 3. An Example of Insertion Process in Dynamic XDAS

query to the component system.

The invocation of a RESTful web service with the required
parameters determines which component system should be
included. The participating component systems return data in
XML format and the DONS federation service parses the XML
data to combine the results into a single XML document using
Dynamic XDAS result as an array of strings. The result is
returned to the user in any format that he requires. a tabular
format with respective columns for each request to ensure a
semantically meaningful result.

The user interface layer provides an interface for authen-
tication service to login to the portal. The authentication
service is not only used to verify the user but also grant
authorization to all required federation services. The resources
across the network can be accessed based on the identified
role of end-users during authentication which includes roles
such as applications, administrators, advanced-users or end-
users. The portal is designed to allow users or applications to
select from several categories that contain a set of questions.
Users can use the predefined question templates to select their
queries to the system and provide the needed parameters. The
query service will process and decompose the user query into
a set of sub-queries. The results are then delivered to the
component systems through the DONS federation layer using
the appropriate web service.

B. Framework Workflow

In this section, the workflow that is initiated by a user
through the submission of a query into DONSFed is presented.
The term workflow, by our definition here, is a set of steps that
outline the interactions between a user and the system. The
workflow ensures the processing and return of the required
results of the user inquiries.

The proposed framework has been designed to return the
results of a distributed query in real-time. As mentioned in
the previous section, each component system participating on
DONSFed has web services which can be used to execute a
single or multiple questions (numbered Q1 to Qn) and gener-
ated using a question template. The portal interface consists of
a set of federated services that are designed and deployed by
DONSFed administrators. Each federated service is defined as
a set of questions that can be selected as workload by either the
end user, application or administrator. The selected federated
service will list the instructions on how to map the selected
queries (Qi) to various web services to retrieve data through

www.ijacsa.thesai.org 548 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

those web services. The framework is highly flexible and
can adapt to demands of new heterogeneous and distributed
systems. These systems can join DONSFed by configuring the
set of questions and deploying the required web services.

Fig. 4. DONSFed Framework Workflow

Fig. 4 illustrates the workflow approach in practice: 1)
the authorized user identifies and selects a specific federation
service from an available pool of federation services by
accessing the portal; 2) the federation service generates the
consolidated question based on the parameters identified by
the user; 3) the query module decomposes the consolidated
query into sub-queries by mapping each sub-query to one of
the questions in the consolidated user-developed question and
returns a batch of queries to the federation service; 4) the
federated service then invokes a set of different web services
of each component system linked to the sub-query; 5) each web
service will generate the results and deliver it to the aggregator
for a consolidated output; 6) the aggregated results are routed
to the local server; 7) The results are displayed to the user in
a tabular format as an HTML page.

Fig. 5 compares the execution of a request that generates
multiple sub-queries with a straightforward single request. As
illustrated, the partitioning, routing and merging of a complex
and parallel fetching query using component systems are
executed with considerable ease.

The design of the DONSFed framework resolves two major
issues that are routinely encountered in a database federa-
tion environment. The autonomy provided to the participating
systems with adequate provisions for the maintenance of this
autonomy is a major challenge for architectures such as ours.
The DONSFed services mitigate this issue by applying a
sufficiently strong abstraction layer for the affected operations.
Furthermore, the DONSFed design ensures that changes are
rare to the services layer which guarantees lower maintenance.
In order to maintain autonomy of the participating systems, the
DONSFed service does not require control over the connected
components.

The second issue is the support for heterogeneous data
sources that participate from the component repositories. The
web services approach allows an abstraction layer that, in turn,
supports structural heterogeneity. Heterogeneity in the data
tier is generally considered to be a difficult issue to resolve.
However, in the DONSFed framework, it is not a major

Fig. 5. DONSFed Query Partitioning

problem since the component systems yield mostly similar
types of data for diseases, cases and outbreaks. DONSFed
addresses the issues of data heterogeneity and data matching
thoroughly, thereby, reducing the need for the component
systems to modify the data sources. Further, DONSFed en-
courages the use of similar naming conventions across the
network. The optimized federation layer using our patented
XML technique [11] and web services makes the DONSFed
a highly scalable and efficient framework. The scalability of
the proposed framework is supported by the building blocks,
a flexible and optimized federation layer with a patented
design, RESTful web services and enforcement of standards
across the network based on best practices. A new component
system joining DONSFed needs to design and deploy the
required web services that adhere to the framework guidelines.
This is followed by necessary actions on part of DONSFed
administrators to add the component system to the federation
layer.

C. Prototype Deployment Architecture

In this section, the prototype architecture is described in
detail with respect to heterogeneous federated databases and
web services that are used to validate the proof-of-concept
implementation.

The prototype is a cloud-based and geographically spread
implementation that spans multiple heterogeneous platforms
across three tiers. The first tier is the presentation tier that
represents the user interface. Typically, this involves the use
of browser-based graphical user interface for smart client
interaction. As shown in Fig. 6, the DONSFed browser-
based interfaces for data entry, data aggregation, and data
integration aid the main stakeholders including primary health
centers, experts and healthcare practitioners in operational and
decision-making roles. The external databases such as World
Health Organization (WHO) databases and others may also

www.ijacsa.thesai.org 549 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 6. DONSFed Prototype System Architecture

be connected through this layer for data transmission and
retrieval.

The second tier is the application and logic tier where
federated services are built to address the functional specifi-
cations in terms of federated queries and services based on
the stakeholder requirements. Finally, the data tier consists
of various heterogeneous database servers. This tier can be
accessed through the business services layer and on occasion
by the user services layer. Here, information is stored and
retrieved and hence this tier keeps data neutral and independent
from application servers or business logic while improving
scalability and performance.

The different tiers communicate amongst themselves
through standard interfaces and protocols. Incoming HTTP
requests from users are first sent to the DNS server, where
the load balancer routes the requests to web servers with the
least load. Web servers directly interact with the appropriate
application server to process the requests and receive a proper
response. In the implementation, the different component sys-
tems were deployed with each one hosted on different virtual
machines in a cloud setup using web services middleware in
service-oriented architecture design.

Fig. 7 illustrates the high-level view that visualizes the
hardware, the middleware and the software used in the pro-
totype implementation as a proof-of-concept deployment. The
deployed model consists of multiple tiers including the appli-
cation and data tier components such as web servers, clients,
data sources, and integration links.

D. Prototype Data Tier

In the data tier of the prototype implementation, three
autonomous, heterogeneous and distributed databases are con-
nected. These databases were selected based on diverse ge-
ographical locations and their database repositories were mi-
grated to our cloud platform. These databases with different
schemas and semantics were evaluated as suitable for testing
the proposed federation framework. The first database which
formed part of the prototype deployment is the KSA DONS
system which is an Oracle cloud-based database [26].

Fig. 7. DONSFed Deployment Model

The KSA DONS database server sits on our university
private cloud called KLOUD (KFUPM Cloud) virtual machine
with Red Hat Linux 6.4 as its operating system. The Oracle
server and client software were configured on all the servers
and clients in the KSA DONS architecture. This configuration
helped in establishing communication amongst all components
of the KSA DONS system including the database server. As
shown in Fig. 8, the database schema consists of 19 tables
along with stored procedures, triggers, and views.

The second database is a MySQL database from the CASE
system in Sweden. This system was developed at the Swedish
Institute for Communicable Disease Control (SMI). The sys-
tem acquires data from the database that collects notifiable dis-
eases in Sweden (SmiNet). The system is currently active and
performs daily surveillance. This is an open source software
without the personal identification of patients. The available
data includes selected variables from the CASE database [4].
The CASE database schema is illustrated in Fig. 9.

In order to further validate our approach that spans a fed-
erated database, constituent and actively participation systems,
and integration using web services, an additional data source
is added. The third database sourced the data again from the
CASE database. The entire database was successfully migrated

www.ijacsa.thesai.org 550 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 8. KSA DONS Database Schema (Oracle)

with all the associated objects including the database schema,
stored procedures, triggers etc. The migration to Microsoft
SQL server database platform was performed in order to ensure
additional heterogeneity to the proposed deployment model.
The tools used for migration included SQL Server Migration
Assistant (SSMA) utility. The SSMA, which has built-in
migration support, aided in the migration of database objects
and data from our source MySQL database. The process
involved configuring project-level options to convert objects,
accurately map source data types to target data types, migrate
the data, and ensure all configuration options are compatible
with the proposed framework specifications. The migrated
database schema consists of 12 base tables and 8 data views
with the correctly mapped primary keys and indexes. The
stored procedures and triggers were also migrated. The DONS
database schema on the SQL server platform is presented in
Fig. 10.

E. Prototype Presentation Tier

A cloud-based system with geographically spread com-
ponent DONS is developed which consists of heterogeneous
application and data layers communicating with the DONSFed
federation layer. A portal interface is used to allow users to
connect to the DONSFed. Typically, the user connects using a
browser-based graphical user interface. The DONSFed inter-

Fig. 9. CASE Database Schema (MySQL)

Fig. 10. DONS Database Schema (SQL Server)

face layer is the presentation tier for data entry, aggregation and
integration, as shown in Fig. 2, helps the major stakeholders

www.ijacsa.thesai.org 551 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

Fig. 11. DONSFed Oracle Data Service

Fig. 12. DONSFed SQLServer Data Service

Fig. 13. DONSFed MySQL Data Service

Fig. 14. DONSFed Federated Service

such as primary health centers, healthcare consultants and
practitioners to interact with the system. There is provision
to connect external databases such as WHO database directly,
through an interface in this layer, for data transmission and
retrieval. In the application and logic tiers, we maintain the

federated services that are designed according to the functional
requirements and specifications to support federated queries
and services. As mentioned earlier, the data tier consists of
heterogeneous database servers participating in the DONSFed.
The data tier can be accessed, if needed, through the tier di-
rectly using web services. This tier maintains data independent
and neutral from application servers or business logic.

As part of the prototype implementation, authors deployed
several web services using a data services server that con-
nects to heterogeneous databases through a service-oriented
architecture and offers uniform access to autonomous and het-
erogeneous data sources. Using data masking techniques, the
heterogeneity between the data sources, including databases,
spreadsheets, or files, is hidden. The web services supported
include SOAP and RESTful services. A web service that
originates from a DONS federation service and connected to
an Oracle database is shown in Fig. 11. The service supports
several operations using a WSO2 data services server 1. This
service generates a request in XML format through a request
window. After proper parameters are supplied, it will deliver
the results in XML format as shown in Fig. 11.

The DONSFed portal offers quick and easy access to users
by providing links to specific component databases sites and
to the federated services. From the portal page, a user can
query to determine which disease is an outbreak. The detection
can be queried based on time and location and restricted to
registered cases from all component databases. The second
web service that originates from a DONS federation service
and connected to an SQL server database is shown in Fig. 12.
The third web service that originates from a DONS federation
service and connected to MySQL database is shown in Fig.
13.

All the results are collected as datasets and formatted into a
tabular representation. Fig. 14 shows a federation service that
collects the registered cases on all component databases based
on a specified date range which is defined as a parameter to
that service. The aggregator service module receives and parses
the XML output and generates tabular results as shown in the
figure. In this particular result, the output presents the number
of cases found in each of the participating data sources with
the cumulative total.

The HTML output further provides a drill down feature
where the user can click on the active hyperlinks to explore
the data from each data source. Fig. 14 presents the results of
a query as follows: MySQL database produced 31 cases, the
SQL server database listed 28 cases, and the Oracle database
came up with 37 cases. Several federation services that authors
have tested were implemented similar fashion.

IV. CONCLUSION AND FUTURE WORK

The proposed approach in the design of a framework has
proved successful. The advanced design and patented XML
technique ensured that the proposed framework for disease
outbreak notification systems is unique. The use of web
services for implementing database federation has ensured that
the components of the federated system can be added and
removed without any impact on the overall federation system

1http://wso2.com/products/data-services-server/

www.ijacsa.thesai.org 552 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

while guaranteeing the access, sharing, and retrieval of data
from each participating system. The structure of the constituent
databases is abstracted using XML. The flexibility introduced
through the creation of a federation of databases enables
maintaining and supporting autonomous and heterogeneous
component systems. The need for local to global schema trans-
lation is eliminated through this design. Compliant and non-
compliant databases are supported through direct web services
or through a proxy setup. The proxy server generates web
services in supported formats. Finally, we ensure that the local
autonomy of constituent databases is maintained. The proof-of-
concept prototype implementation of the proposed framework
was successfully deployed. Three different autonomous and
distributed databases were used, the KSA DONS system which
is an Oracle cloud-based database, the second is a CASE
system MySQL database, while the third database is based
on Microsoft SQL server. These databases are located at
different venues with different schemas and semantics proved
suitable for testing our implementation. As part of our future
work, authors intend to make the DONSFed framework further
compatible for component systems by developing annotations.
The federated and constituent systems must concur on the
developed ontology to decrease any ambiguity in semantics.
These annotations can be used to describe, in a compatible
manner, the functionality of each operation, inputs, and outputs
of a web service.

ACKNOWLEDGMENT

The authors would like to acknowledge the support pro-
vided by the Deanship of Scientific Research at King Fahd
University of Petroleum & Minerals (KFUPM). This project
is funded by King Abdulaziz City for Science and Technol-
ogy (KACST) under the National Science, Technology, and
Innovation Plan (project number 11-INF1657-04). This work
is part of the MSc. Thesis of Ghaleb Mustafa, presented at the
Information & Computer Science Department, KFUPM [10].

REFERENCES

[1] T. Millard, S. Dodson, K. McDonald, K. M. Klassen, R. H. Osborne,
M. W. Battersby, C. K. Fairley, and J. H. Elliott, “The systematic
development of a complex intervention: HealthMap, an online self-
management support program for people with HIV,” BMC infectious
diseases, vol. 18, no. 1, p. 615, 2018.

[2] T. Mayo, M. Coletta, S. Crossen, and K. Oliver, “Enhancing Surveil-
lance on the BioSense Platform through Improved Onboarding Pro-
cesses,” Online Journal of Public Health Informatics, vol. 10, no. 1,
2018.

[3] J. S. Brownstein, C. C. Freifeld, B. Y. Reis, and K. D. Mandl,
“Surveillance Sans Frontieres: Internet-based emerging infectious dis-
ease intelligence and the HealthMap project,” PLoS Med, vol. 5, no. 7,
p. 151, 2008.

[4] B. Cakici, K. Hebing, M. Grünewald, P. Saretok, and A. Hulth, “CASE:
a framework for computer supported outbreak detection,” BMC medical
informatics and decision making, vol. 10, no. 1, p. 14, 2010.

[5] C. Swaan, A. van den Broek, M. Kretzschmar, and J. H. Richardus,
“Timeliness of notification systems for infectious diseases: A systematic
literature review,” PloS one, vol. 13, no. 6, p. e0198845, 2018.

[6] T. Lengauer, Bioinformatics-From Genomes to Therapies. Wiley
Online Library, 2007.

[7] P. Kumar, “An overviewof architectures and techniques for integrated
data systems (IDS) implementation,” 2012.

[8] S. Hellmann, J. Lehmann, S. Auer, and M. Brümmer, “Integrating NLP
using linked data,” in The Semantic Web–ISWC 2013. Springer, 2013,
pp. 98–113.

[9] B. Zhou, “Data integration as a service for Applications Deployment on
the SaaS Platform,” in Biomedical Engineering and Informatics (BMEI),
2013 6th International Conference on. IEEE, 2013, pp. 672–676.

[10] M. Ghaleb, “Federated Database Framework for Disease Outbreak
Information and Notification Systems: A Web Service Approach,”
Master’s thesis, King Fahd University of Petroleum and Minerals (Saudi
Arabia), 2014.

[11] T. A. Ghaleb and S. A. Mohammed, “XML node labeling and querying
using logical operators,” Patent, 2016.

[12] A. Ayton, “Computing for History Undergraduates: A Strategy for
Database Integration,” Historical Social Research/Historische Sozial-
forschung, vol. 14, no. 4 (52, pp. 46–51, 1989.

[13] J. Wang, Z. Miao, Y. Zhang, and B. Zhou, “Querying heterogeneous
relational database using SPARQL,” in Computer and Information
Science, 2009. ICIS 2009. Eighth IEEE/ACIS International Conference
on. IEEE, 2009, pp. 475–480.

[14] S. Philippi, “Light-weight integration of molecular biological
databases,” Bioinformatics, vol. 20, no. 1, pp. 51–57, 2004.

[15] C. Schönbach, P. Kowalski-Saunders, and V. Brusic, “Data warehousing
in molecular biology,” Briefings in Bioinformatics, vol. 1, no. 2, pp.
190–198, 2000.

[16] C. Aurrecoechea, A. Barreto, E. Y. Basenko, J. Brestelli, B. P. Brunk,
S. Cade, K. Crouch, R. Doherty, D. Falke, S. Fischer, and Others,
“EuPathDB: the eukaryotic pathogen genomics database resource,”
Nucleic acids research, vol. 45, no. 1, pp. 581–591, 2016.

[17] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova, “Entrez Gene: gene-
centered information at NCBI,” Nucleic acids research, vol. 39, no. 1,
pp. 52–57, 2010.

[18] D. Smedley, S. Haider, S. Durinck, L. Pandini, P. Provero, J. Allen,
O. Arnaiz, M. H. Awedh, R. Baldock, G. Barbiera, and Others,
“The BioMart community portal: an innovative alternative to large,
centralized data repositories,” Nucleic acids research, vol. 43, no. 1,
pp. 589–598, 2015.

[19] “Web Services Based Integration Tool for Heterogeneous Databases,”
International Journal of Research in Engineering and Science, vol. 1,
no. 3, pp. 16–26, 2013.

[20] D. Benslimane, M. Barhamgi, F. Cuppens, F. Morvan, B. Defude,
and E. Nageba, “PAIRSE: a privacy-preserving service-oriented data
integration system,” ACM SIGMOD Record, vol. 42, no. 3, pp. 42–47,
2013.

[21] N. R. Coordinators, “Database resources of the national center for
biotechnology information,” Nucleic acids research, vol. 45, no.
Database issue, p. 12, 2017.

[22] C. E. Cook, M. T. Bergman, G. Cochrane, R. Apweiler, and E. Birney,
“The European Bioinformatics Institute in 2017: data coordination and
integration,” Nucleic acids research, vol. 46, no. 1, pp. 21–29, 2017.

[23] S. Miyazawa, “DNA Data Bank of Japan: Present Status and Future
Plans,” in Computers and DNA. Routledge, 2018, pp. 47–61.

[24] B. Consortium and Others, “Interoperability with Moby 1.0—it’s better
than sharing your toothbrush!.” Briefings in bioinformatics, vol. 9, no. 3,
pp. 220–231, 2008.

[25] B. Yang, T. Xue, J. Zhao, C. Kommidi, J. Soneja, J. Li, R. Will,
B. Sharp, R. Kenyon, O. Crasta, and Others, “Bioinformatics Web
Services.” in BIOCOMP. Citeseer, 2006, pp. 258–264.

[26] F. Azzedin, J. Yazdani, and M. Ghaleb, “A Generic MODEL FOR
DISEASE OUTBREAK NOTIFICATION SYSTEMS,” International
Journal of Computer Science & Information Technology, vol. 6, no. 4,
pp. 137–154, 2014.

www.ijacsa.thesai.org 553 | P a g e


