
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

620 | P a g e
www.ijacsa.thesai.org

Thinging for Computational Thinking

Sabah Al-Fedaghi
1
, Ali Abdullah Alkhaldi

2

Computer Engineering Department

Kuwait University, Kuwait

Abstract—This paper examines conceptual models and their

application to computational thinking. Computational thinking is

a fundamental skill for everybody, not just for computer

scientists. It has been promoted as skills that are as fundamental

for all as numeracy and literacy. According to authorities in the

field, the best way to characterize computational thinking is the

way in which computer scientists think and the manner in which

they reason how computer scientists think for the rest of us. Core

concepts in computational thinking include such notions as

algorithmic thinking, abstraction, decomposition, and

generalization. This raises several issues and challenges that still

need to be addressed, including the fundamental characteristics

of computational thinking and its relationship with modeling

patterns (e.g., object-oriented) that lead to programming/coding.

Thinking pattern refers to recurring templates used by designers

in thinking. In this paper, we propose a representation of

thinking activity by adopting a thinking pattern called thinging

that utilizes a diagrammatic technique called thinging machine

(TM). We claim that thinging is a valuable process as a

fundamental skill for everybody in computational thinking. The

viability of such a proclamation is illustrated through examples

and a case study.

Keywords—Computational thinking; conceptual modeling;

abstract machine; thinging; abstraction

I. INTRODUCTION

The cognitive faculty of thinking [1] involves processes by
which we reason and solve problems. ―Computational thinking
is a fundamental skill for everybody, not just for computer
scientists. To reading, writing, and arithmetic, we should add
computational thinking to every child’s analytic ability‖ [2].
Computational thinking is distanced from digital
literacy/competence, as it focuses on problem-solving
processes and methods and on creating computable solutions
[3]. It has been promoted as skills that are as ―fundamental for
all as numeracy and literacy‖ [3]. It goes beyond introductory
knowledge of computing to treat computer science as an
essential part of education today and presents a distinct form of
thought, separate from these other academic disciplines, where
diagrammatic techniques are used in analysis and strategic
planning [2]. In this perspective of computational thinking,
computer science modeling techniques are essential in many
aspects of modern-day research and in understanding things for
all people who expect to live and work in a world where
information is stored, accessed, and manipulated via computer
software [2].

Wing [4] defined computational thinking as something that
―involves solving problems, designing systems, and
understanding human behavior, by drawing on the concepts
fundamental to computer science‖. It includes [3]:

 A thought process, thus independent of technology.

 A specific type of problem-solving that entails distinct
abilities (e.g., being able to design solutions that can be
executed by a computer, human, or both).

However, Bocconi et al. [3] raised several issues and
challenges that must be addressed for the effective integration
of information technology in compulsory education, including
What are the core characteristics of computational thinking
and its relationship with programming/coding in compulsory
education? Coding (programming) is regarded as a key 21st
century skill: ―Coding is the literacy of today and it helps
practice 21st century skills such as problem-solving, modeling
and analytical thinking‖ [3]. The authors of European e-Skills
Manifesto [5] declared that ―Skills like coding are the new
literacy. Whether you want to be an engineer or a designer, a
teacher, nurse or web entrepreneur, you’ll need digital skills.‖

In this paper, we seek to contribute to the current debate on
computational thinking with particular focus on the following.

A. Conceptualization

In computer science, conceptualization is the first stage of
the model-building process to arrive at a representation capable
of addressing the relevant problem. A conceptual model is
mainly formed upon concepts such as components of thinking.
It can provide a framework for thinking that structures notions
into patterns according to categories to provide a basis to
represent internal thinking in an external form. Here, we use
this modeling in the sense of patterned thinking [6] (e.g.,
object-oriented modeling), where pattern refers to recurring
templates used by persons in the thinking process.

This paper promotes conceptual modeling that is based on
the Heideggerian [7] notion of thinging as a framework for
computational thinking. Heideggerian thinging is generalized
as an abstract thinging machine (TM) [8-13].

B. Core Concepts

As will be described in this paper, we propose five basic
concepts to model computational thinking:

 The notion of thing;

 The notion of TM;

 Five flow operations of things: create, process, release,
transfer, and receive; and

 Triggering.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

621 | P a g e
www.ijacsa.thesai.org

C. Programming/Coding

A diagram can be coded, and the code and diagram
approximate the conceptual form of the programmer behind
both. A TM is expressed as a diagram that can be mapped to
programming/coding in the same way as flowcharts. It is
important to mention this property of the TM, even though it
will not be explored in this paper.

To achieve a self-contained paper, Section II reviews the
TM that was adopted in this paper and was used previously in
several published papers, as mentioned previously. Section III
presents examples of applying TM in computational thinking.
Section IV applies the TM in an actual case study.

II. THINGING MACHINE (TM)

 Drawing on Deleuze and Guattari [14], who declared—
admittedly from a different prospect—―All objects can be
understood as machines,‖ TM-based conceptual modeling
utilizes an abstract thinging machine (hereafter, machine) with
five stages of thinging, as shown diagrammatically in Fig. 1.

In philosophy, thinging refers to ―defining a boundary
around some portion of reality, separating it from everything
else, and then labeling that portion of reality with a name‖ [15].
However, according to our understanding, thinging is when a
thing manifests or unfolds itself in our conceptual space. An
architect realizes the thing house, which in turn things (verb)
[7]; that is, it presents its total thingness, which includes living
space, shelter from natural elements, family symbol, etc. This
issue will be explained later in this paper.

Our TM modifies Heidegger’s [7] notion of thinging by
applying it to the life cycle of a thing and not just to its
ontological phase (producing). A thing things; in other words, a
bridge is not a mere object; rather, it establishes itself in a
conceptual realm as unified whole involving riverbanks,
streams, and the landscapes. When representing it, we can view
thinging as akin to an abstraction, but it differs in being
expansive instead of being reductive in detail.

In the TM, we capture thinging as a dynamic machine of
things that are created, processed, received, released, and
transferred—the operations of Fig. 1. Heidegger [7] offered an
example of thinging through the thing jug. When the clay is
shaped into a jug, the jug manifests itself—in Heidegger’s
words—into ―what stands forth.‖ Its thingness conquests and
entraps the void that holds and takes over its task of embracing
and shielding the penetrating wine, thus connecting itself to a
setting of vine, nature, etc. This conceptualization of the thing
jug comes as a reaction to the physical formation of the clay.
According to Heidegger, ―We are apprehending it-so it seems-
as a thing‖ [7] (italics added). The TM expands this thinging
by conceptualizing the jug not only through its existence but
also through its activities as a machine (an assemblage) that
creates (e.g., certain shape of void), releases, transfers (e.g.,
air), receives, and processes other things. It is not only a thing
that things but also a machine that machines (verb).

Heidegger [7] distinguished between objects and things:
―The handmade jug can be a thing, while the industrially made
can of Coke remains an object‖ [16]. The industrially made can
of Coke has minimal thinging and maximal abstracting (see

later discussion). Note that this does not apply to other
industrial devices that are not cut off from their ―roots.‖ The
thermostat, for example, is an industrial product that manifests
itself in its environment, as will be represented later in this
paper. For Heidegger [7], things have unique ―thingy
Qualities‖ [16] that are related to reality and therefore are not
typically found in industrially generated objects. According to
Heidegger [7], a thing is self-sustained, self-supporting, or
independent—something that stands on its own. The condition
of being self-supporting transpires by means of producing the
thing. According to Heidegger [7], to understand the thingness
of a thing, one needs to reflect on how thinging expresses the
way a ―thing things‖ (i.e., ―gathering‖ or tying together its
constituents into a whole). According to Thomas et al. [17],
Heidegger’s view can however be seen as a tentative way of
examining the nature of entities, a way that can make sense. An
artefact that is manufactured instrumentally, without social
objectives or considering material/spatial agency, may have
different qualities than a space or artefact produced under the
opposite circumstances.

The TM handles things and is itself a thing that is handled
by other machines. The stages in the machine can be briefly
described as follows:

Arrive: A thing flows to a new machine (e.g., packets
arrive at a buffer in a router).

Accept: A thing enters a machine; for simplification
purposes, we assume that all arriving things are accepted;
hence, we can combine Arrive and Accept into the Receive
stage.

Release: A thing is marked as ready to be transferred
outside the machine (e.g., in an airport, passengers wait to
board after passport clearance).

Process (change): A thing changes its form but not its
identity (e.g., a number changes from binary to hexadecimal).

Create: A new thing is born in a machine (e.g., a logic
deduction system deduces a conclusion).

Transfer: A thing is inputted or outputted in/out of a
machine.

A TM also utilizes the notion of triggering. Triggering is
the activation of a flow, denoted in TM diagrams by a dashed
arrow. It represents a dependency among flows and parts of
flows. A flow is said to be triggered if it is created or activated
by another flow (e.g., a flow of electricity triggers a flow of
heat) or activated by another point in the flow. Triggering can
also be used to initiate events such as starting up a machine
(e.g., remote signal to turn on). Multiple machines can interact
by triggering events related to other machines in those
machines’ stages.

Fig. 1. Thinging Machine.

Create

Receive

 Transfer

Release

 Process

Output Input

Arrive Accept

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

622 | P a g e
www.ijacsa.thesai.org

III. EXAMPLE

According to Riley and Hunt [2] in their book
Computational Thinking for the Modern Problem Solver, an
abstraction is anything that allows us to concentrate on
important characteristics while deemphasizing less important,
perhaps distracting, details. Abstraction is a core concept in
computational thinking in addition to such notions as
algorithmic thinking, decomposition, and generalization [3].
Riley and Hunt [2] stated that programmers are really a kind of
problem solver and that computer programmers are arguably
the most important of all modern problem solvers. The best
way to characterize computational thinking is through the way
computer scientists think, as well as the manner in which
computer scientists think for the rest of us. As a digital camera
uses a handful of focus points, computer scientists learn to
focus on the most important issues through abstraction [2].

The notion of abstraction goes all the way back to Plato,
who proposed to distinguish abstract ideas as ideal entities that
capture the essence of things. They are abstraction, that is,
ideas that do not exist in the world. We can note two basic
aspects of abstraction:

 Not being in reality,

 Being reductive in details

Abstraction is an important way of thinking, nevertheless,

We claim that thinging is also a valuable process as a
fundamental skill for everybody in computational thinking.

Thinging takes a holistic view by, in contrast to abstraction,
being expansive in detail, as shown in Fig. 2. Thinging is an
abstraction-like process that deemphasizes reduction and hence
facilitates seeing the ―bigger picture.‖ Note that thinging and
abstraction can be performed at several levels of expansion and
in reduction of details. Fig. 3 illustrates the nature of thinging
as an inverse of realization in reality.

Note the reductive nature of object-oriented modeling (e.g.,
UML) in the following example. As shown in Fig. 4, Riley and
Hunt [2] abstractly described the thermostat, which involves a
class diagram rectangle consisting of three parts diagrammed
in three compartments. The middle compartment lists attributes
of the thermostat. The operations in a class diagram are listed
in the bottom compartment, where operations are abstract
references to the behavior of the object. The following model
presents an alternative conceptualization of the thermostat.

A. Static TM of the Thermostat

The thermostat can be represented as in Fig. 5. In line with
the previous discussion on the thermostat, its thingness
includes Switch (1), Fan (2), and Temperature (3). The switch
includes three signals, COOL (4), OFF (5), and HEAT (6),
which flow to change the State (7) of the cooling/heating
machine (8). Similarly, signals set the temperature (9) and
change the state of the fan (10).

B. Behavior of the Thermostat

Behavior in a TM is represented by events. An event is a
thing that can be created, processed, released, transferred, and
received. It is also a machine that consists of (at least) three

submachines: region, time, and the event itself. As a side note,
we may conceptualize the TMs as fourfold—that is, consisting
of space, time, event, and things.

Fig. 2. Thinging is an Expansive Reverse of Realization in Reality.

Fig. 3. The Thing Jug things through its Total Thingness.

Fig. 4. Description of the Class Temperature (Adapted from [2]).

Fig. 5. The TM Representation of the Thermostat.

Thing

Reality

Abstraction

Thinging

Object

Reality

Abstraction

Thinging

…

Thermostat

HeatSwitchSetting(COOL/OFF/HEAT)

FanSetting (ON/AUTO)

TemperatureSetting: integer

SetMinFunction(f: COOL/OFF/HEAT)

SetFan (b: ON/AUTO)

SetTemperature (t: integer)

Create Create Create

Switch

Thermostat

State

Create

Cooling/heating machine

HEAT OFF COOL

Receive Receive

Process Process

Create

Process

Transfer

Release

Transfer

Release

Transfer

Create

Transfer

Release

Transfer

Temperat

ure

Fan

Receive

Process

Receive

Transfer Transfer Transfer

Receive

State

Create

ON AUTO

Fan

Release

Transfer

Release

Transfer

1 3

6 5
4

7

8

9

10

Create

Transfer

Release

Transfer

Process

Receive

2

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

623 | P a g e
www.ijacsa.thesai.org

Consider the event The switch turns OFF (see Fig. 6). It
includes the event itself (Circle 1 in Fig. 6), the region of
programmers the things currently being dealt with in the event
(2), and the time machine (3). The region is a subgraph of the
static representation diagram of Fig. 5. For simplicity’s sake,
we will represent an event by its region only.

Accordingly, we can identify four basic events in the static
description of Fig. 5, as shown in Fig. 7:

 Event 1 (E1): The switch is COOL.

 Event 2 (E2): The switch is OFF.

 Event 3 (E3): The switch is HEAT.

 Event 4 (E4): The temperature is SET.

 Event 5 (E5): The fan is ON.

 Event 6 (E6): The fan is AUTO.

These events can be written as statements of any
programming language.

C. Control of the Thermostat

A possible events chronology is shown in Fig. 8, which
represents the permitted sequence of events. For example,
switching directly from COOL to HEAT and vice versa
without first turning the cool/heat machine OFF is not
permitted. These sequences are shown in Fig. 9 (a-e) as
follows:

1) The cool/heat machine is OFF,

a) Select {COOL or HEAT}, then fan {ON fan, set the

temperature}.

b) Select HEAT {select the state of the fan, set the

temperature}.

2) The cool/heat machine is on {COOL or HEAT}, and

the fan is {ON or AUTO}, switch fan to {ON or AUTO}.

3) The cool/heat machine is on {COOL or HEAT}, set the

cool/heat machine OFF.

4) The cool/heat machine is on {COOL or HEAT}, set the

temperature.

5) The cool/heat machine is OFF, switch fan to {ON or

AUTO}.

Fig. 6. He Event: the Switch Turns OFF.

Fig. 7. The Events of the Thermostat.

Fig. 8. Chronology of Events.

Fig. 9. Permitted Sequence of Control Operations.

D. Mapping to Class Notations

Selecting the events is a design decision. TM representation
shows that Riley and Hunt [2] declared only three events
(Fig. 10):

 Event 1 (E1): The switch is COOL/OFF/HEAT.

 Event 2 (E2): The fan is OFF/AUTO.

 Event 3 (E3): The temperature is set.

Fig. 10. The Events of the Thermostat.

Create

Switch

Thermostat

State Create

Machine

OFF

Receive

Process

Transfer

Release

Transfer

Region

(Subdiagram)

Create

Process:

takes

course

Transfer

Receive

Process:
Consume

Release

Transfer

Time

Event

itself

 E1
E2

E3 E4
E5 E6

Create Create Create

Switch

Thermostat

State

Create

Cooling/heating machine

HEAT OFF COOL

Receive Receive

Process Process

Create

Process

Transfer

Release

Transfer

Release

Transfer

Create

Transfer

Release

Transfer

Temperat

ure

Fan

Receive

Process

Receive

Transfer Transfer Transfer

Receive

State

Create

ON AUTO

Fan

Release

Transfer

Release

Transfer

Create

Transfer

Release

Transfer

Process

Receive

E1

E2

E3

E4

E5

E6

E1

E2

E3

E5

E6

(a)

E1

E3

E5

E6

(b)

E1

E3

E4

(c)

 E1

E2

E3

(d)

E5

E6

E2

(e)

Create

Switch

Thermostat

State

Create

Machine

HEAT OFF COOL

Receive

Process

Create

Transfer

Release

Transfer

Create

Transfer

Release

Transfer

Temperature Fan

Receive

Process

Receive

Transfer

State
Create

ON AUTO

Fan

Release

Transfer

E1
E2 E3

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

624 | P a g e
www.ijacsa.thesai.org

Fig. 11. The Switch Representation in the 3-Events (Left) and 6-Events

(Right) Designs of the Thermostat.

Fig. 11 contrasts the switch representation in the 3 and 6
designs.

The class notation given by Riley and Hunt [2] can be
viewed as mere names for data items and methods (processes)
that can be mapped to the TM, as shown in Fig. 12. Thus, we
can produce the class description from the TM representation.

The important point is that the object-oriented thinking
style, the class description, is produced before describing the
methods, whereas in the TM, the TM machines are developed
right from the beginning of the analysis. Designing the
thermostat in terms of three events is the result of this object
orientation, which captures the three events because it does not
see all the possibilities of design.

Fig. 12. TM and Class Entries.

Consider the 3-events and 6-events designs. The 3-events
uses one wire between the thermostat and the cool/heat
machine, whereas the 6-events design uses three. Each
implementation has its merits. The 3-events design is cheaper,
and the 6-events is more reliable. For example, in the 6-events
design, if heating does not work, the cooling feature will still
work when the link to the cool/heat machine is cut. The point
here is that the object-orientation, as discussed by Riley and
Hunt [2], does not seem to be aware of available alternative
designs. This is an important observation in the context of
thinking. According to Do and Gross [18], in design, ―Drawing
is intimately bound with thinking.‖

IV. CASE STUDY

The thermostat’s TM modeling is a small artificial example
of problem-solving by describing it conceptually. Our case
study involves a large real problem: how to model a help desk
in a government ministry. In its actual environment (the
workplace of the second author), the maintenance process
starts when a user contacts the IT department for help. The
department calls such a process the help desk process. It is a
problematic system that involves implicit contacts and
interactions in the alignment between IT and business [19].

In this case study, the IT department solved the help desk
problems using an ad-hoc technique that involves thinking of it
as a semi-automated system that is built piece by piece over
several years. There is no current documentation, even though
the manager of the help desk drew flowcharts that show the full
description of the processes behind how the help desk works
for different tasks, as shown in Fig. 13. In projecting this
system on Heidegger’s jug, in such an approach, this can be
viewed as failure to give thought to ―what the jug holds and
how it holds‖.

Help desk operations are causing many types of
managerial, supervision, technical, and legal problems. A
possible solution is a holistic approach that involves all related
elements in the help desk system. It is a system that exists in
reality and needs a better understanding of its thinging. It is
misthinged or, in Heideggerian language, a broken tool that
marks the annihilation of the ―equipmental thing‖ (IT help
desk), in that helping cannot be gathered around it.

Fig. 13. Sample Current Documentation.

Create

―COOL‖

Process

If COOL If OFF If HEAT

Release

Transfer

Transfer

Receive

Create Create Create

Process Process Process

Release

Transfer

Transfer

Release

Transfer

Transfer

Release

Transfer

Transfer

Receive Receive Receive

COOL OFF HEAT

COOL OFF HEAT

Create

―OFF‖

Create

―HEAT‖

Create

Thermostat

State

Create

Machine

HEAT OFF COOL

Receive

Process

Create

Transfer

Release

Transfer

Create

Transfer

Release

Transfer

Receive

Process

Receive

Transfer

State
Create

ON AUTO

Fan

Release

Transfer

E2 E3

Tempreture

Setting: integer

SetMinFunction(f: COOLOFF/HEAT)

SetTempreture (t: integer)

SetFan (b: ON/AUTO)

FanSetting

(ON/AUTO)

HeatSwitchSetting(COOL/OFF/HEA

T)

E1

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

625 | P a g e
www.ijacsa.thesai.org

Accordingly, we consider the question: ―How does the IT
help desk operate?‖ We conceptualize it as a TM that creates,
processes, releases, transfers, and receives things. The helping
system includes things that are machines and machines that are
things unfolding an integrated wholeness that is itself part of
the ministry’s machinery. We focus next on thinging the IT
help desk.

A. Static Model

Accordingly, we model the help desk system, as shown in
Fig. 14. In the figure, the user sends a request to the secretary
of the workshop (Circle 1). The request is checked to decide
whether it is for repair (A) or for spare parts (B).

B. Request for Repair

The repair request flows to the workshop administrator (2),
where it is processed to do the following:

1) Selecting a specific technician for this request: To

accomplish that, the list of technicians is processed (4) to

generate the name of a technician (5).

2) Creating a task (ticket): Additionally, the administrator

creates a new task form (6) that includes the request

description (7) and the technician’s name (8).

The task then flows (9) to the technician, who later
examines the task to decide on the following:

1) Given that it is possible to call the user and solve the

problem by phone (10), the technician places a phone call (11)

to the user and guide the user step by step to solve the problem

through the phone (12).

2) The technician is required to go to the user’s workplace

(13) to solve the problem by him-/herself (14). The technician

moves from the workshop to the user’s location (15). The user

brings the computer to the technician to work on it and repair

it (16).

After processing the computer (17), the technician has one
of the two following outcomes:

1) The computer is not repaired (18), and the technician

takes it back to the workshop. There, it is fixed (19), and the

workshop admin (20) transfers the fixed computer back to the

user (21).

2) The computer is repaired (22) and transferred back to

the user (23 and 24).

Both previous outcomes lead to (25), where the user gets
the computer and processes it to see whether it is repaired:

1) The computer works fine (26); as a result, the user

creates a report (27) to close the request and sends this report

to the workshop admin (28).

2) The computer repair is not satisfactory (29), and the

user creates a follow-up request (30) for repair and sends it to

the secretary (A).

Request for spare parts

The spare parts request flows to the inventory department
(31), where it is processed (32) to extract the quantity of

current spare parts in the inventory (33) and to transfer it to a
program that checks this quantity of spare parts (34):

1) If the number is zero, the number of the pending

requests would be incremented by one (35). Moreover, the

request would be released (36) and added to a queue of

pending requests (37).

2) If the number is greater than zero, the request is

processed again (38 and 39) to extract the requested quantity

of spare parts (40).

Note that we renovated an existing system and did not
design the best model for this application. For example, it is
possible to define the minimum value of inventory instead of
permitting it to reach zero. Thus, our thinging of the system is
tailored to the existing requirements.

Both the numbers of the requested items (41) and current
quantity (42) are transferred to a program that calculates the
available quantity (43) that can be delivered to the requester. A
simple formula calculates what is called remaining quantity as
follows:

Remaining Quantity = Current Quantity – Requested Quantity (44)

Accordingly, two possibilities arise:

1) The remaining quantity is greater than or is equal to

zero (45); in other words, the full requested quantity can be

provided to the user. In that case, the request is released (46)

and transferred to the storage, where it is received and

processed (47) and the stored spare parts are sent to the

requester (48).

2) The remaining quantity is less than zero (49); as a

result, a new quantity called pending is created and calculated

as the following:

Pending = Requested Quantity – Current Quantity

Accordingly, a new request that specifies the quantity that
is currently in the possession of the inventory department is
created (50) and forwarded to the storage, and then steps (46-
48) are repeated. Also, a new request that specifies the number
of pending quantities is created and considered as a new
request (51).

In parallel, according to a certain schedule (52), the list of
pending requests is processed, and each request (the loop is
specified in the dynamic TM model) is taken out and processed
to create a pending request (53) that, in turn, is processed, thus
leading to the creation of an ordered quantity (54). The ordered
quantity is added to the total number of ordered items (55).
Later, the total number of ordered items (56), along with the
current quantity (57), flows to a committee for examination,
and the evaluation of the need for new spare parts is processed
(58). Hence, a decision is created (59) and processed for
making orders (60), which flow to the workshop admin (61).

In the workshop admin, the orders are processed to (62)
create orders to the suppliers (63) and transfer these orders to
the purchase department (64). There, each order is processed
(65) and put on hold while waiting to assign a budget (66). A
request for a budget is created (67) by the purchase department
and is transferred to the budget department (68). The budget

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

626 | P a g e
www.ijacsa.thesai.org

department processes the budget request, (69) approves it, and
then sends the approval to the purchase department (70). In the

purchase department (71), the approval is processed, thus
leading to placing an order to the supplier (72).

Fig. 14. The TM Representation of the IT Department Help Desk System.

Workshop Admin

5

Receive

Transfer

Process
3

 Report to close request

Computer

Receive

Process:

Transfer

Transfer

Receive Release

Release

Transfer

If Not
Repaired

If repaired

Technician
with computer

If
acceptable

Else

User

Process:

Technician
(in user place)

STORAGE

Budget Department

Order

Budget Approval

Workshop

Inventory
Department

 Orders

Requester

 Process:
Remaining Quantity = Current quantity –

Requested Quantity

If Remaining < 0

Pending = Requested Quantity – Current
Available = Current

If Remaining >= 0

 Process:
 If current quantity is 0

 If current quantity is greater than 0

Checking Current Quantity

Requested Quantity

Current Quantity

List of Pending Requests

No. of requests in pending Add 1

Checking Available Quantity

Release Create

Stored Spare Parts
-

Release

R
eceiv

e

Create

Release

Transfer

T
ran

sfe
r

R
eceiv

e

T
ran

sfer Requested Quantity or
Available Quantity

Release

Transfer

Create
Total ordered

Items

Transfer

Transfer

Pending Request
Create Process

Create Process

Ordered Quantity

 Process

Request Budget

Purchase Department

Create Transfer Release
Receive

Receive Transfe
r

Committee

T
ra

n
sf

er

R
ec

ei
v

e

Transfer

Current
quantity

Receive

Transfer

Process

Create Process

Decision

Supplier

Release

P
ro

ce
ss

Transfer

Process

Workshop
Admin

Receive

Transfer

Process

Release

Transfer

Transfer

Receive

Release Create Transfer

Receive Transfer Process
Release Transfer Create

Transfe
r

Receive Process Release Transfe
r

Transfer

Process

 Technician

Transfer Receive

Transfer

Phone Call

Process

Him/Herself

Task

Technician name

Release

Transfer

Receive

Transfer

Transfer Computer

Transfer Receive

Transfer

Transfer

Receive

Transfer Release Create

Create

Process:
If requires going

to user

Else

Technicians
List Release

Release

Secretary

Transfer

Receive

P
ro

cess

Release

Transfer

4

22

23

33

24

2
5

34

35

38

41

19

Process

R
ec

ei
v

e

T
ra

n
sf

e
r

Transfer Release Create

Create

T
ran

sfe
r

Transfer

1

15

20 26

27

30

28

31

Request

Release

Create

Create

2

6

R
el

ea
se

R
elease Process

16

17
18

Create

29

32

36

37

39
40 43

42

44

4
5

46

47

48

4
9

50

51

52

53

A

B

Release

Transfer

T
ran

sfe
r

9

10
11

T
ran

sfe
r

R
eceiv

e

7

Process Receive Transfer
12

13

14

Process

54 55

56

57
58 59

60

61

62

63
64

65
66

67

68

69

70

71

72

73

74

75

76

77

21
8

Transfer

Receive

Receive

Supplier

Request for
parts

Request for
repair

R
elease

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

627 | P a g e
www.ijacsa.thesai.org

Fig. 15. Events of the TM Representation of the IT Department Help Desk System (Partial).

C. Behavior Model

As mentioned previously in the thermostat example,
behavior in a TM is represented by events. Accordingly, we
can identify the following events in the static description of
Fig. 14, as shown in Fig. 15. To save space, we identify only
the upper part of Fig. 14 (requesting parts):

 Event 1 (E1): The secretary receives a request for
purchasing spare parts.

 Event 2 (E2): The inventory department receives and
processes the request.

 Event 3 (E3): The current quantity is retrieved and
processed.

 Event 4 (E4): If the current quantity is 0, add the request
to the pending requests list and update the number of
pending requests.

 Event 5 (E5): If the current quantity is greater than 0,
extract the requested quantity.

 Event 6 (E6): Find Remaining (Quantity = Current
quantity – Requested Quantity) and process it.

 Event 7 (E7): Given that Remaining > = 0, retrieve the
requested items from the Storage.

 Event 8 (E8): Send the requested items to the requester.

 Event 9 (E9): If Remaining < 0, calculate Pending =
Requested (Quantity–Current), create a request for
pending items, and add the request to the list of pending
requests.

 Event 10 (E10): If Remaining < 0, calculate Available =
Current and retrieve the requested items from the
storage.

E4

Request A
Secretary

 E1

B

STORAGE

 Requested Quantity

Receive

 Process

Transfer Release

Request for
parts

Transfer

Pending Request
Create Process Process

No. of requests in pending List of Pending Requests

Transfer

E2

Inventory
Department

Orders

 Release Create

Transfer

Budget Department

Budget Approval

Workshop

Request Budget

Purchase Department

T
ra

n
sf

er

R
ec

ei
v

e T
ra

n
sf

e
r

P
ro

ce
ss

Process

Release Transfer Create

Transfe
r

Receive Process Release Transfe
r

Create

 Transfer

Workshop
Admin

Transfer

Release

P
ro

ce
ss

Transfer

Receive

E15

Transfer

Release
Create Release Order

Transfer Receive Process

Current
quantity

Transfer

Release

Current Quantity

Release

Transfer

R
eceiv

e

T
ran

sfe
r

 Process:
 If current quantity is 0

 If current quantity is greater than 0

E3
 P

ro
cess

 Process:
Remaining Quantity = Current quantity –

Requested Quantity

If Remaining < 0

Pending = Requested Quantity – Current
Available = Current

If Remaining >= 0

Checking Available Quantity

 Create R
eceiv

e

T
ran

sfer

Release

Transfer

Create

E5

E6

Release

Create

Transfer E7

E9
 E10

E12

E11

Process

Create Process

Decision

Receive

Committee
Transfe

r E12

E13

Total ordered
Items

Checking Current Quantity

Add 1

Ordered Quantity

 Create Process

E14

Create

E8

Requester

Stored Spare Parts
-

Requested Quantity or
Available Quantity

Receive

Transfer

Release Process

E16

E17

E18
 E19

E20

E21

R
ec

ei
v

e

Receive

Receive

Transfer

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

628 | P a g e
www.ijacsa.thesai.org

 Event 11 (E11): Retrieve the pending requests and
extract the requested quantities.

 Event 12 (E12): Both requested pending quantities and
current quantities are sent to the ordering committee.

 Event 13 (E13): The committee creates orders and sends
them to the workshop.

 Event 14 (E14): Orders are received by the workshop
and orders to the supplier are created.

 Event 15 (E15): The purchase department receives
orders for the supplier.

 Event 16 (E16): A request for budget is created.

 Event 17 (E17): The request for budget flows to the
budget department.

 Event 18 (E18): The budget is approved.

 Event 19 (E19): Orders for the supplier are sent.

 Event 20 (E20): Ordered items are received from the
supplier.

 Event 21 (E21): Items as sent to the storage.

Fig. 16 shows the chronology of these events.

D. Control

Control can be superimposed onto the events of the TM
system. In the case study, suppose that we want to declare the

following warning messages related to the management of the
system:

1) If the time to order from the supplier in the workshop

exceeds t1, then create a warning message.

2) If the time to deliver items received from the supplier

to the requester exceeds t1, then create a warning message.

Fig. 17 shows the declaration of these rules over the
chronology of events. In Fig. 18, when the workshop receives
an order, the time of the order arrival is created. This time is
processed repeatedly. If the time exceeds t1—the time period
since the receiving of the order—then a warning is created. A
similar process is followed for the second rule.

Fig. 16. The Chronology of Events of the Case Study.

Fig. 17. Examples of Control in the Case Study.

E1 E2 E3

E4

E5 E6

E7

E8

E9

E10

E17 E11 E12 E13 E14 E15 E16 E18

E19

E20

E21

E13

Budget Department

Budget

Approval

Workshop

Request Budget

Purchase Department

Receive

T
ra

n
sf

er

R
ec

ei
v

e

Transfer

Process

Process

Release

Transfer
Release Transfer Create

Transfe

r

Receiv

e
Process Release Transfe

r

Create

Create Transfer Release

Workshop

Admin

Receive Transfer Process

Transfer

Release

P
ro

ce
ss

Supplier

Order

Supplier

Transfer

Receive

E13
 Storage

E14

E15

E16

E17

E18

E19

E20

Transfer

Receive

Release

Transfer

Requester

Transfer

Receive

E21

E8

E14 E15 E16 E17 E18 E19 E20 E21 E8

Create

Process

Create

Process

If time is greater than

t1

Send warning

Cancel

Time

Cancel

If time is greater than

t2

Time

Send warning

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 2, 2019

629 | P a g e
www.ijacsa.thesai.org

Fig. 18. Simplification of the TM Representation of the IT Department Help Desk System by Removing the Stages Transfer, Release, and Receive.

V. CONCLUSION

We proposed using a new modeling technique, TM, as a
foundation in computational thinking. According to the TM
approach, a person’s ―thought machine‖ forms a train of
thought that excludes other modes such as procedural and
object-oriented modes of thinking. The paper emphasizes this
thinking style as a unifying method that could have diverse
applications. The TM is an underlying tool for expressing the
unified totality of a system’s things and machines analogous to
carpeting techniques where a ground fabric beneath the design
binds pieces and sews the patterns of fabric.

To substantiate our claim, we contrast the TM side by side
with diagrams of other approaches (e.g., the thermostat).
Although we provided comprehensive evidence of our claim,
its inaccuracy or its partial value needs efforts beyond a single
researcher. However, the thermostat example and the case
study seem to point to some merits that deserve more
development.

Fig. 14 of the case study may raise the issue of the TM
diagram’s complexity. The TM model can be specified at
various levels of granularity. For example, Fig. 18 is a
simplified version of the lower part of Fig. 14. The stages
transfer, release, and receive are deleted under the assumption
that the direction of the flow arrow is sufficient to represent
them.

REFERENCES

[1] R. Langacker, Foundations of Cognitive Grammar: Theoretical

Prerequisites, vol. 1. Palo Alto, CA: Stanford University Press, 1987.

[2] D. Riley and K. Hunt, Computational Thinking for the Modern Problem
Solver, Second Edition. Boca Raton, FL: Taylor & Francis Group, LLC,

2014.

[3] S. Bocconi, A. Chioccariello, G. Dettori, A. Ferrari, and K. Engelhardt,
Developing Computational Thinking in Compulsory Education,

Luxembourg: Publications Office of the European Union.
doi:10.2791/792158, 2016.

[4] J. M. Wing, ―Computational thinking and thinking about computing,

Phil. Trans. R. Soc. A, Mathematical, Physical And Engineering
Sciences, vol. 366, pp. 3717–3725, 2008.

[5] A. McCormack, The e-Skills Manifesto. European Schoolnet,

DIGITALEUROPE , Brussels, 2014.

[6] R. C. Anderson, ―The notion of schemata and educational enterprise:
General discussion of the conference,‖ in Schooling and the Acquisition

of Knowledge, R. C. Anderson, R. J. Spiro, and W. E. Montague, Eds.
Hillsdale: Erlbaum, pp. 415-431 , 1977.

[7] M. Heidegger, ―The thing,‖ in Poetry, Language, Thought, A.

Hofstadter, Trans. New York: Harper & Row, 1975, pp. 161–184.

[8] S. Al-Fedaghi, ―Thinging for software engineers,‖ International Journal
of Computer Science and Information Security, vol. 16, No. 7, pp. 21-

29, 2018.

[9] S. Al-Fedaghi, ―Thinging vs objectifying in software engineering,‖
International Journal of Computer Science and Information Security,

vol. 16, No. 10, pp. 87-94, 2018.

[10] S. Al-Fedaghi and H. Aljenfawi, ―A small company as a thinging
machine,‖ 10th Int. Conf. on Info. Mgmt. and Eng. (ICIME), University

of Salford, Manchester, England, September 22–24, 2018.

[11] S. Al-Fedaghi and N. Al-Huwais, ―Enterprise asset management as a

flow machine,‖ International Journal of Modeling and Optimization, vol.
8, pp. 290–300, 2018.

[12] S. Al-Fedaghi, ―Software Engineering Interpretation of Information

Processing Regulations,‖ IEEE 32nd Annual International Computer
Software and Applications Conference (IEEE COMPSAC 2008), Turku,

Finland, pp. 271-274, July 28 - August 1, 2008.

[13] S. Al-Fedaghi, "Flow-based Enterprise Process modeling," International
Journal of Database Theory and Application, Vol. 6, No. 3, pp. 59-70,

2013.

[14] G. Deleuze and F. Guattari, Anti-Oedipus: Capitalism and
Schizophrenia. Minneapolis, MN: University of Minnesota Press, 1983.

[15] J. Carreira, Philosophy Is Not a Luxury.

https://philosophyisnotaluxury.com/2011/03/02/to-thing-a-new-verb/,
last accessed 12/12/2018.

[16] B. Latour, ―Why has critique run out of steam? From Matters of Fact to

Matters of Concern‖ in Critical Inquiry, Vol. 30, No. 2, pp.151-174,
Winter 2004.

[17] L. Thomas, M. Ratcliffe, and B. J. Thomasson, ―Can object (instance)
diagrams help first year students understand program behaviour?‖

Diagrams, International Conference on Theory and Application of
Diagrams, pp. 368–371, 2004.

[18] E. Y.-L. Do and M. D. Gross, ―Thinking with diagrams in architectural

design,‖ Artif. Intell. Rev., vol. 15, pp. 135–149, 2001.

[19] O. Ivarsson, ―Quality management for IT support services - A case study
of an IT helpdesk service,‖ Master Thesis, Department of Technology

Management and Economics, Chalmers University of Technology,
Gothenburg, Sweden, 2013.

 Report to close request

Computer

Process:

If Not
Repaired

 If repaired

Technician
with computer

If acceptable
Else

User

Process:

Technician
(in user place)

Workshop Admin

 Technician

Phone Call

Process

Him/Herself

 Task

Technician name

Computer

Create

Create

Process:
If requires going

to user

Else

Secretary

Create

Create

Process
Request

Process

Create

A

Process

Process

Request for repair

Technicians
List

