
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

57 | P a g e
www.ijacsa.thesai.org

Proposal of Automatic Methods for the Reuse of

Software Components in a Library

Koffi Kouakou Ive Arsene
1
, Samassi Adama

2
, Kimou Kouadio Prosper

3
, Brou Konan Marcellin

4

Ecole Doctorale Polytechnique, Institut National Polytechnique (INP-HB)

Yamoussoukro, Côte d'Ivoire

Abstract—The increasing complexity of applications is

constraining developers to use reusable components in

component markets and mainly free software components.

However, the selected components may partially satisfy the

requirements of users. In this article, we propose an approach of

optimization the selection of software components based on their

quality. It consists of: (1) Selecting components that satisfy the

customer's non-functional needs; (2) Calculate the quality score

of each of these candidate components to select; (3) Select the

best component meeting the customer's non-functional needs

with linear programming by constraints. Our aim is to maximize

this selection for considering financial cost of component and

adaptation effort. Yet in the literature review, researchers are

unanimous that software components reuse reduces the cost of

development, maintenance time and also increases the quality of

the software. However, the models already developed to evaluate

the quality of the component do not simultaneously take into

account financial cost and adaptation effort factors. So, in our

research, we established a connection between the financial cost

and the adaptation time of the selected component by a linear

programming model with constraints. For our work's validation,

we propose an algorithm to support the developed theory. User

will then be able to choose the relevant software component for

his system from the available components.

Keywords—Method development; reuse; software component;

quality of component; functional size; functional processes;

financial cost; adaptation effort

I. INTRODUCTION

The increasing size of applications and the accretion of
their complexity pose enormous challenges for developers. To
solve these problems, they must have to recourse to reusable
components in their applications. However, selected
components may not totally meet the requirements of users.
Moreover, there may be functionality defects of these software
components or quality services partially rendered by the ones.
then, their selection and reuse require the development of
appropriate models and methods. In addition, several works
relating to the selection of reusable software components have
been conducted. And researchers are unanimous on the fact
that the reuse of these software components reduces the
financial cost, the development time and the effort of
adaptation [5], [6], [7]. In [7], the researchers proposed a
software component selection model based on integer linear
programming. This method makes it possible to measure and
evaluate the quality of the software system according to
various quality attributes defined in ISO 9126 / IEC and the
cost of the components. In [13], the authors worked on the
selection of software components based on the attributes or

quality criteria most important to practitioners. This survey
allowed practitioners to select the most important attributes
from a list of factors. The method showed that cost was the
most important factor when selecting these components. In
[24], based on an exploratory study, researchers have shown
that in addition to the cost considered as the most important
factor in the selection, other factors such as longevity,
compatibility and in charge of the component exist. Their goal
is to study the most important factors in a list when selecting
components for practitioners. Then to hierarchize them. This
study helps companies improve their component selection
process. They concluded that small businesses focus on
properties associated with ease of use, component
development and maintenance, while larger firms and more
mature products are more interested in cost-related properties.
However, we find that the dependence between financial cost
and maintenance time that are the main factors for the
selection process, is not considering in the different models of
evaluation for denoting the quality of software components. In
this research, we will propose automatic methods for:

 Facilitating and accelerating the selection process;

 Evaluate the quality of selected software components
according to the criteria and quality indicators desired
by the user;

 Selecting the best component satisfying the client's
non-functional needs;

 Improving the quality of these softwares to adapt
them to the targeted problem.

This work is organized as follows. The first part deals with
Section 1. It concerns the state of the art relating to the
selection of reusable components, the limits of previous work
and research hypotheses. The second part concerns Section 2.
It is about different models that we have developed. The third
part concerns the validation of the results in Section 3. The
last part concerns the conclusion and the perspectives.

II. STATE OF THE ART

Several research works relating to the selection of reusable
software components have been made. In [1] and [2], the
authors have shown that traditional approaches for developing
software from scratch are not optimal for building complex
software systems. They argue that the use of reusable software
components is more efficient and better suited for building
complex applications. In [3], the authors proposed the so-
called "Storyboard" approach. This method improves and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

58 | P a g e
www.ijacsa.thesai.org

facilitates the choice of customer for appropriate commercial
products as their requirements are better understood. His
interest is to help the user better understand his requirements.
Other selection studies based on surveys and experiments have
been conducted. Thus, in [4] an empirical study led on the
selection of commercial components. Thus, researchers in [4]
led an empirical study on the selection of commercial
components. They conducted structured interviews on 16
software projects. This method allowed to customize the
development process based of COTS software components.
The goal is to know if it is more interesting to build the
software components or buy the Cost components for the
Norwegian industries. In [8], the research has proposed a
method for selecting standard and commercial components. It
raises the problem of inadequacy between the software system
to be built and the components selected during and after
selection. They proposed a decision-support approach aimed
at remedying the imbalances noted on the components by
estimating the anticipated aptitudes and by suggesting
alternative plans for the resolution of the observed disparities.
The authors in [9] offer a comparative study of available
software before any selection. The goal is to evaluate and
select open source software for the management of electronic
and digital medical records. This study is carried out with
different decision-making techniques multi-criteria. These
software systems are selected on the basis of a set of metric
results using the AHP technique integrated with different
multicriteria decision-making techniques.

In [21], the authors use a software selection approach based
on the characteristics of the ISO-9126 standard. The AHP
method is used to weight these characteristics of components.
Then, the researchers choose the appropriate software
component according to the weight evaluation.

In [10], a mechanism allowing the automation of the
selection of a software component among a set of candidates
according to their functional and non-functional properties
was studied. This mechanism permits to facilitate the
extraction and the comparison of components. This is after the
selection of components, to measure their satisfaction index to
find the most relevant. To optimize the quality of selected
components, several models and selection methods have been
developed and are available. Among these models, some are
focused on optimization algorithms. Thus in [11], the
researchers proposed a software component selection
approach based on the genetic algorithm for optimizing the
performance of the software system. Their goal is to maximize
the functional performance of the system. This permits to
maximize cohesion and to minimize the coupling of software
modules for the optimal selection of software components. In
[23], the research focused on optimizing the system to build.
Researchers have conducted work on selecting optimized
software components when user requirements are unclear. it is
a question of optimizing the selection in the generic
applications unknown to the developers.

The authors in [5] have proposed a model for the selection
of components with constraint optimization. The goal is to
model the component selection problem as a constraint
satisfaction optimization problem. In addition to the quality
criteria determining the choice of attributes of quality of the

component, other important factors are identified in the
literature. These factors can also affluence the quality of the
components when selecting. Therefore, authors sustain that
the use of reusable software components reduces the time, cost
of development and cost of maintenance [5], [6], [7], [20],
[22], [25].

In [25], the authors propose in this work, how to select the
best component in a repository meeting all functional
requirements and user requirements. The best components are
recovered in two levels. The first step gives all the
components that correspond to the functional requirements,
and the second step recommends the components the
weighting is the highest to software developer.

In [12], the work focused on the problem of optimizing
non-functional attributes when selecting software components.
The method consists in choosing software components that
provide all the necessary functionalities while optimizing
certain non-functional attributes such as the financial cost. In
[7], the researchers proposed a software component selection
model based on integer linear programming. This so-called
flexibility method makes it possible to measure and then
evaluate the quality of the software system according to
different attributes of quality and the cost of the components.
In [13], the authors conducted work on the selection of
software components based on the attributes or quality criteria
most important to practitioners. This survey allowed
practitioners to select the most important attributes from a list
of factors. The method showed that cost was the most
important factor when selecting these components.

In [14], authors argue that "the quality and cost of a
software strongly depend on the quality and cost of the
components assembled to produce the product". They
proposed a W-shaped model for component selection. This
model is a decision support tool for software developers. It
permits to obtain data on the stages of component selection
and the development process. The article [15] gives different
mathematical models of optimization in linear programming.
One of these models is a compromise between the minimum
monetary cost and the response time in cloud computing. It is
formulated below:

{

)

 (1)

III. RESEARCH PROBLEM

A. Hypotheses

The work that we present treats with the problematic of the
evaluation of the quality of the pre-made components. It
concerns the maximization of their calculated quality values
while optimizing the financial cost and the adaptation time.
Our goal is therefore to determine a score based on linear
programming with constraints that will maximize the quality
of the selected software component. Then we will balance the
financial cost and the adaptation time of this component.
Finally, we establish a model based on a score to evaluate the
quality of the selected software component on the one hand,

(1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

59 | P a g e
www.ijacsa.thesai.org

and moreover, to predict the adaptation effort of this
component.

This leads us to formulate the following hypothesis:

H1: The simultaneous consideration of the financial cost
and the adaptation effort makes it possible to better evaluate
the quality of the software component,

H2: The selection of reusable and user-friendly software
components makes it possible to build quality software.

B. Limit of Methods

Several works relating to the selection of reusable software
components have been conducted. Researchers are unanimous
that the reuse of these software components can reduce the
financial cost, the development time and the effort of
adaptation [5], [6], [7], [23]. However, we find that the
dependence between the financial cost and maintenance time
that are key factors for the selection process, is not taking into
account in the different models of quality evaluation of
software components. Indeed, the selected components can
meet the expectations of the users partially. Faced with
failures and user requirements, improvements can be made to
correct weaknesses and increase the quality of these
components. Indeed, the selected components can partially
meet the expectations of users. Faced with failures of certain
functionalities and user requirements, improvements can be
made to correct weaknesses and increase the quality of these
components. This can generate a maintenance effort and a
financial cost that can be estimated and predicted. Finally, we
can give a model for optimizing parameters.

C. Tool to Predict the Adaptation Time of the Component

To estimate maintenance time and adaptation effort, we will
use methods and tools to measure the size of the software
component. We used the Cosmic v4.0.1 method and its
methods in our work. Below you will find some tools for
estimating the development time and their normalization
histories in Table 1.

From 1970s, the COCOMO method (Constructive Cost
Model) has made it possible to determine the code lines of the
programs and to measure the development effort. At present,
methods and tools exist to estimate the size of a software and
predict the development effort. In [16], the authors gave a
summary of these tools with the different standards (see
Table 1). The COSMIC method is used to calculate the
measurement of the functional size of a software. According
to [17], [18] and [19], functional size measurement is a means
of determining the size of software, regardless of the
technology used to implement it. This size is in units of
Cosmic Function Points, noted as PFC. This method also
gives the estimate of the adaptation effort. In [16], researchers
present measurement aggregation rules. These rules make it
possible to calculate.

TABLE I. TIME ESTIMATION TOOL

Sigles Denominations ISO standards

FISMA Finish Software Measurement Association 29881

NESMA Netherlands Software Metrics Association 24570

Mk II FPA Function Point Analysis Mk II 20968

COSMIC
COmmon Software Measurement

International Consortium
19761

 The functional size of each process i

)

 ∑)

 ∑)

 ∑)

 ∑) (2)

 The size of a software by aggregating the sizes of its
functional processes under certain conditions,

 Development effort or adaptation effort

IV. PROPOSED APPROACH

A. Defining the Software Component Quality Model

We are interested in evaluating the selection and integration
of software components in a software system. Our main
objective is to select the "best software component" according
to the defined characteristics. But given the multiplicity of
quality indicators and quality sub-indicators according to ISO
/ IEC 9126, we studied the following characteristics in our
work. These characteristics include: functional capability,
reliability, ease of use, security and maintainability. This

allows us to define the following model
1
:

This model is based on the ISO 9126 quality model and
quality representations of literature reviews. It allows to
specify the most important characteristics according to the
needs of the user. Using the Analytic Hierarchy Process
(AHP) method, we define the objective of our project and then
construct the hierarchical quality model according to the
characteristics and sub-characteristics of the software
components (see Fig. 1).

Finally, using the multi-criteria analysis method, we
constructed a binary comparison table of characteristics and
sub-characteristics. This makes it possible to determine the
weights of the various defined quality criteria of the software
component. Also, this method makes it possible to evaluate
the coherence of our work.

1Quality model, inspired by the ISO 9126 model and the software quality
defined by Jéremie Grodziski

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

60 | P a g e
www.ijacsa.thesai.org

Fig. 1. Hierarchical Structure Indicating the Quality of the Software

Component.

B. The Proposed or Software Component Selection Process

We gave a description of the selection process of the
selected components and then we evaluated them. This
process is modeled in UML by activity diagram as follows
according to Fig. 2:

Step 1: The user expresses its functional requirements and
quality requirements of the component.

Step 2: A first search consists in considering the functional
properties expressing the needs of the user. These needs must
be related to the type of software to build. We obtain a set of
software components selected functional properties meeting
the requirements expressed by the customer. In other words, it
is the different services rendered by the software components.

Step 3: This step consists to make selection based on non-
functional properties. This is to consider the quality of the
software component that is, how the features render the
services. This step consists in evaluating the quality of
characteristics of the component from defined metrics. This
metric will be associated with an ordinal variable of
modalities belonging to the set of values:

 { } (3)

Modalities defined in (3) will be associated to following
numerical values respectively: 1; 2; 3; 4 and 5.

Step 4: At this step, we observe that the selected
components do not fully meet the quality and service
requirements. For each component selected i, some features
make the services perfectly, others do it partially. if we
consider that each component contains p functionalities.
Assuming that the user is satisfied with k functionalities (k
<p), then we must maintain (p-k) functionalities of the
component. To predict the adaptation effort of (p-k)
functionalities, we used the Cosmic method. It first determines
the size of the functional processes of the component. Then
we calculate the functional size of the component with
defective functionalities. In [16], the authors defined the size
of the functional process i as follows according to (2). So, for
any component i of the set of selected components SC having
P functional processes, we deduce:

Fig. 2. Software Component Selection Process.

)

 ∑

)

 (4)

Then we apply the estimate of the adaptation effort
developed according to [19]

 (5)

This phase makes it possible to determine the adaptation
time interval of the component to be predicted. This method
then evaluates a financial cost and an adaptation time. Finally,
with the predicted time, we apply the score that assesses the
quality of the component using our objective function.

Step5: In case the cost and time parameters are optimized,
then the selected component is retained.

Step 6: If the parameters are not, then the search continues
and the process resumes.

C. Our Proposal Model to Maximize the Quality of Software

Component

Our model is based on constrained linear programming. It
considers the time and the financial cost parameters. Our goal
is to define a metric with two parameters: the financial cost
and the time. This score serves to optimize the parameters on
the one hand and on the other hand to balance the financial
cost coupling and the adaptation time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

61 | P a g e
www.ijacsa.thesai.org

We define our function as follows:

)) (6)

 ⟦ ⟧ (7)

 (8)

Where

Sc: set of available components

Ci: Standardized cost of maintenance of the component i

Ci_rel: relative cost generated by component i;

Cmax: maximum cost achieved by one of the selected components;

ti: Standardized adaptation and maintenance time of the component i

ti_rel: Relative time, generated by component i;

Tmaxis the maximum time achieved by one of the selected

components;

a: Coefficient of adaptation

By taking inspiration from the model (1) and the metric
developed in [7], we are able to define a new score to evaluate
the quality of the software component. So, our model for any
software component i selected will be:

 ∑

 [)] (9)

 (10)

 (11)

 s

 (12)

Where

A: set of software quality characteristics;

SC: set of available components (candidate

components);

qhi : the standard level of the quality attribute

h A for component i;

Wh: weight attributed to the quality attribute h∊A;

xi = 1 if component i is selected, 0 otherwise;

Ci : standardized cost of component i;
Ci_rel: relative cost generated by component i;

ti: Standardized component maintenance time;
ti_rel: Relative time, generated by component i;

a: Adaptation coefficient to be specified

Model (9) represents the objective function. This function is
used to calculate and evaluate the quality of the characteristics
of the selected software components. For optimizing the
parameters Time and maintenance cost, we maximize the
objective function.

For any software component i of the library, we obtain the
following system:

{

 ∑ [)]

 (13)

We will then be able to compare and order the different
values designating the quality values of each selected software
component.

V. VALIDATION PHASE

In the field of research, any theory must go through an
experimentation or simulation phase before its validation. To
do so, we propose an algorithm to support and validate the
developed theory. It evaluates the quality of software
component. It is also optimizing the two parameters including
the adaptation time and the financial cost. Indeed, we propose
the algorithm “SelectCompo” to solve the problem.

A. Presentation of our Algorithm

The algorithm SelectCompo aims to select in a set of
available components (Cd), the optimized and selected
component (Cos). See algorithm Fig. 3.

Fig. 3. Pseudo Code of SelectCompo.

SelectCompo Algorithm

 1. Input: Set of available components (Cd)

 2. Output: Optimized component and selected (Cos)

 3. Begin

 4. While (needs and requirements expressed in Cd) do

 5. For i= 1 to Component (Cd) do

 6. Select (the component Ci)

 7. Put in the list of selected components (Cs)

 8. Endfor

 9. EndWhile

10.If ((conditionsCaracterisks Filled) and (cost and relative

 time in intervals required) then

11. For i= 1 to ComponentCs do

12. evaluate (thequality value of the selected

 components)

13. If (SatisfactionQuality)then

14. Optimize (the factors of cost and time of adaptation)

15. Select (the component(Cos))

16. else choose another component in the set Cs

17. end if

18.End

(12)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

62 | P a g e
www.ijacsa.thesai.org

B. Algorithm Operation

The operation of the algorithm Fig. 3 traces the following
steps:

The algorithm takes as input the set of p available
components (Cd) of a library. The user defines his functional
requirements and non-functional quality requirements. These
requirements are the quality attributes related to the type of
software system to be built. The list (Cs) of i components
verifying the conditions is fulfilled (with k <p). The next step
is to evaluate the quality of the components of the list (Cs) by
binary comparison of their characteristics. Then we maximize
their quality value by the linear programming by constraints
model that we developed. This step produces two (2) results.
An ordered list of components is obtained. We retain the best
(Cos). The best component is the better optimized. it will be
selected. In the opposite case we take back the selection in the
list (Cs).

VI. CONCLUSION AND PERSPECTIVES

This article presents an automatic method for selecting
relevant software components from a library. The methods
used are based on an optimization algorithm and a linear
programming by constraints. They made it possible to
calculate and evaluate the quality of the software components.
By maximizing our model, the selected components are
ranked. This makes it possible to choose the most relevant
component according to the quality criteria of the attributes
defined by the customer. This approach is sustained by the
SelectCompo algorithm that we defined. In future works, we
will do experimentations with the Cplex Studio IDE 12.8.0
optimization tool for selecting the best component in a set of
candidate components. Several aspects remain to be
developed. This is taking into account the selection of
software components in various libraries for any platform.
This will solve the problem of interoperability of these
components on different platforms.

REFERENCES

[1] Dellarocas, C., (1997), The SYNTHESIS Environment for Component-
Based Software Development‖, Proc. 8th Int. Workshop on Software
Technology and Engineering Practice (STEP‟97), London, UK, (July
14-18, 1997), IEEE Computer Society, ISBN 0-8186-7840-2,
Washington, DC, USA, Page 434.

[2] Gaurav Kumar, “Optimized Component Development Life Cycle for
Optimal Component-Based Software Development », Research Scholar,
Punjab Technical University, Kapurthala, India, 2015

[3] Gregor, S., Hutson, J. and Oresky, C “Storyboard process to assist in
requirements verification and adaptation to capabilities inherent in cots”.
In Proceedings of 1st International Conference on COTS-Based Software
Systems, Springer-Verlag Lecture Notes in Computer Science, 132

[4] Li, J. et al. An Empirical Study of Variations in COTS-based Software
Development Processes in Norwegian IT Industry. Proc. of the 10th
IEEE Intl. Metrics Symposium 72-83, 2004

[5] A. Vescan, H. F. Pop, The Component Selection Problem as a
Constraint Optimization Problem, Proceedings of the Work In Progress
Session of the 3rd IFIP TC2 Central and East European Conference on
Software Engineering Techniques (Software Engineering Techniques in
Progress), Wroclaw University of Technology, Wroclaw, Poland, 2008,
pp. 203-211.

[6] Tom Wanyama, Agnes F. N. Lumala, « Decision Support for the
Selection of COTS »,In Proceedings of the Canadian Conference on
Electrical and Computer Engineering, 2005

[7] Pande, CJ Garcia, D Pant, “Optimal Component Selection for
Component Based Software Development using Pliability Metric”,
ACM SIGSOFT Software Engineering Notes, January 2013

[8] Mohamed, A., Ruhe, G. and Eberlein, A. 2007. Decision support for
handling mismatches between cots products and system requirements. In
Proceedings of the Sixth International IEEE Conference on Commercial-
off-the-Shelf (COTS)-Based Software Systems (Washington DC,
USA,2007

[9] A.A. Zaidan, B.B. Zaidan, Ahmed Al-Haiqi, M.L.M. Kiah, Muzammil
Hussain, Mohamed Abdulnabi “Evaluation and selection of open-source
EMR software packages based on integrated AHP and TOPSIS ,
University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia
,2015

[10] Bart George, R. Fleurquin, S. Sadou, H. Sahraoui « Un mécanisme de
sélection de composants logiciels », juillet 2010

[11] Kwong, C.K., Mu, L.F., Tang, J.F. and Luo, X.G.2010. Optimization of
software components selection for component-based software system
development. Comput. Ind. Eng., 58,4. (May 2010). 618 – 624

[12] Khan, Ali M. and Mahmood, S., (2010),―Optimal Component
Selection for Component-Based System, Innovation in Computer
Science and Software Engineering‖, Innovations in Computing Sciences
and Software Engineering, DOI 10.1007/978-90-481-9112- 3_79,
Sobh, Tarek, Elleithy, Khaled(eds.), Springer

[13] Panagiota Chatzipetrou, Emil Alégroth, Efi Papatheocharous, Markus
Borg, Tony Gorschek,Krzysztof Wnuk, « Component selection in
Software Engineering - Which attributes are the most important in the
decision process?”, 2018

[14] Vinay, Manoj Kumar and Prashant Johri,” W-Shaped Framework for
Component Selection and Product”, Development Process SCSE,
Galgotias University, Noida, India, 2014

[15] Romain Perriot*, Jérémy Pfeifer*, Laurent d’Orazio*, Bruno Bachelet*,
Sandro Bimonte**, Jérôme Darmont***, « Modèles de Coût pour la
Sélection de Vues Matérialisées dans le Nuage, Application aux
Services Amazon EC2 et S3 », *Clermont Université, CNRS,
Université Blaise Pascal, LIMOS UMR 6158, , p.15, archives ouvertes,
2014

[16] Alain Abran, “The COSMIC Functional Size Measurement Method
Version 4.0, Measurement Manual”, (The COSMIC Implementation
Guide for ISO/IEC 19761: 2011), 2014

[17] C. Gencel, “How to Use COSMIC Functional Size in Effort Estimation
Models?”, in Software Process and Product Measurement, Springer
Berlin Heidelberg, 2008.

[18] Sylvie Trudel, mesure de la taille fonctionnelle avec la méthode cosmic
(iso 19761): recherches récentes et applications industrielles » ,
conférence du latece 2012

[19] Cosmic : mesure de la taille fonctionnelle avec la méthode,
https://info.uqam.ca/midi-confs/2017-02-22-cosmic.pdf

[20] NSadana, S Dhaiya, MS Ahuja, “A Metric for Assessing Reusability of
Software Components”, International Journal of Computer Application,
Issue 4, Volume 1, February 2014;

[21] Sofiane Batata « Moteur de recherche pour la sélection de composants
logiciels » Ecole Nationale Supérieure d’Informatique (Ex. INI), 2011

[22] siham younoussi, ounsa roudies, « all about software reusability: a
systematic literature review », Mohammed-V Agdal University, Journal
of Theoretical and Applied Information Technology, . Vol.76. No.11,
2015

[23] G. Kumar, « Optimized Component Development Life Cycle for
Optimal Component-Based Software Development”, International
Journal of Engineering Research in Computer Science and Engineering
(IJERCSE) ,Vol 2, Issue 12, December 2015

[24] P. Chatzipetrou, E. Alégroth, E Papatheocharous, M. Borg, Tony
Gorschek, Krzysztof Wnuk,” Component selection in Software
Engineering - Which attributes are the most important in the decision
process?”, 2018

[25] Sumit Sharma Upinder Kaurb, Pawanpreet Kaurc, , a.b,c Chandigarh
University,Mohali, India, “Component Recommender System Based on
Collaborative Approach in Incremental Development”, 2017.

