
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

151 | P a g e  

www.ijacsa.thesai.org 

Using FDD for Small Project: An Empirical Case 

Study 

Shabib Aftab
1
, Zahid Nawaz

2
, Faiza Anwer

3
, Munir Ahmad

4
, Ahmed Iqbal

5
, Ashfaq Ahmad Jan

6
, Muhammad Salman 

Bashir
7 

Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan 

 

 
Abstract—Empirical analysis evaluates the proposed system 

via practical experience and reveals its pros and cons. Such type 

of evaluation is one of the widely used validation approach in 

software engineering. Conventional software process models 

performed well till mid of 1990s, but then gradually replaced by 

agile methodologies. This happened due to the various features, 

the agile family offered, which the conventional models failed to 

provide. However besides the advantages, agile models lacked at 

some areas as well. To get the extreme benefits from any agile 

model, it is necessary to eliminate the weaknesses of that model 

by customizing its development structure. Feature Driven 

Development (FDD) is one of the widely used agile models in 

software industry particularly for large scale projects. This 

model has been criticized by many researchers due to its 

weaknesses such as explicit dependency on experienced staff, 

little or no guidance for requirement gathering, rigid nature to 

accommodate requirement changes and heavy development 

structure. All these weaknesses make the FDD model suitable 

only for large scale projects where the requirements are less 

likely to change. This paper deals with the empirical evaluation 

of FDD during the development of a small scale web project so 

that the areas and practices of this model can be identified with 

empirical proof, which made this model suitable only for large 

projects.  For effective evaluation, the results of FDD case study 

are compared with a published case study of Extreme 

Programing (XP), which is widely used for the development of 

small scale projects. 

Keywords—Agile models; feature driven development; FDD; 

empirical evaluation; comparative analysis 

I. INTRODUCTION 

Today the agile methodologies have taken over the 
conventional models in software industry [13-15]. It happened 
due to the features agile family offers, which the conventional 
models failed to provide. The conventional models performed 
well till the mid 1999s but in last two decades, software 
industry faced various challenges which were ultimately 
resolved by the agile models [19-22]. The limitations of 
conventional models include long development duration, less 
user interaction, no adaptability, high cost, and no response to 
the frequently change in user requirements [13-16]. Agile 
models valued those factors which were neglected in 
traditional models and ultimately diverted the focus from 
process to people [23-26].  Several agile models are used in 
software industry now-a-days including Scrum, Extreme 
Programming (XP), Dynamic System Development Model 
(DSDM), Crystal Method, Test Driven Development (TDD), 
and Feature Driven Development (FDD) [13-18]. Each agile 

model contains its own development architecture and is 
suitable for particular type of projects (small, medium, large) 
[15-16]. However all the models work under one umbrella and 
follows the practices, values, and principles suggested by 
“Agile Manifesto” [24-26]. This manifesto is considered as a 
parent document of all the agile process models and consists 
of twelve basic rules of software development [14-15]. These 
principles include: frequent team communication, customer 
satisfaction, and managing frequent changing requirements 
[13]. The agile teams are self-organized, in which members 
work in a close collaboration. Moreover agile manifesto also 
focuses on simple design and timely delivery with reliable and 
qualitative product [14]. The agile models follow the iterative 
nature where each iteration brings a working module of the 
upcoming product, also known as partial working software 
[27-28]. Iterative development is very helpful to satisfy the 
customer as well as for the developers as it brings the 
customer feedback earlier which keeps the development team 
on track. FDD is one of the widely used agile development 
models by the software industry [13], [15], [19]. It is 
considered a process oriented and client centric development 
model, which mainly focuses on designing and building 
aspects of software development [15], [19], [31-32]. FDD 
follows the well-known pattern called ETVX and consists of 
five phases, also known as processes [19], [29-30]. The phases 
include: 1) Develop an Overall Model, 2) Build a Feature List, 
3) Plan by Feature, 4) Design by Feature and 5) Build by 
Feature. Each phase further includes various activities and 
tasks. Besides the advantages, the FDD process model has 
always been criticized by many researchers due to its heavy 
structure. It is claimed that its explicit dependency on 
experienced staff and rigid nature to handle changing 
requirements make it only suitable for medium to large scale 
projects [13], [15], [19]. Due to these limitations, many 
researchers have proposed its customizations and integrations 
with other software models. This research deals with an 
empirical experience of using FDD for the development of 
small scale project. The empirical results are compared with a 
published research which used XP for the development of 
small scale project. Comparison is performed so that it can be 
evaluated that how FDD is not suitable for small scale project? 
Such empirical comparison can also guide the researchers 
towards an exact route for the modifications as well as for the 
integration of FDD with other models to achieve the 
maximum benefits. The empirical results presented in this 
research can be used as a baseline for further empirical 
comparisons. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

152 | P a g e  

www.ijacsa.thesai.org 

II. RELATED WORK 

FDD has been modified by many researchers due to its 
limitations such as heavy structure and rigid nature to handle 
small scale projects. However no significant analysis with 
empirical results is found which could identify those factors 
that why FDD is not suitable for small project? However 
many researches are available which have either customized 
the FDD model or integrated it with other models to reduce its 
limitations and to improve the results. Some of the studies are 
discussed here. Researchers in [1] presented Competitor 
Driven Development (CDD) which is a hybrid process model 
that integrated the practices from Extreme Programming (XP) 
and Feature Driven Requirement Reuse Development 
(FDRD). According to Authors the proposed CDD is a self-
realizing requirement generation model which keeps track of 
market trends as well as competitor’s next product launch to 
extract requirements. This model considers the market 
orientation of product to guess the product’s success rate. In 
[2], authors proposed SCR-FDD by integrating the Scrum and 
FDD. This model has eliminated the weaknesses of both 
models by taking schedule related activities from Scrum and 
quality related activities from FDD. The proposed solution has 
resolved the issues regarding schedule, quality and 
deployment, which were considered as the big obstacles 
during the development and release of software product. In 
[3], the authors presented Feature-Driven Methodology 
Development (FDMD), a modified version of Feature Driven 
Development. The proposed model incorporated the features 
of object oriented approach with Situational Method 
Engineering (SME). In FDMD requirements are represented 
as features which are based on object oriented principles and 
defined by using action, result and object. Researchers in [4] 
proposed a modified version of FDD called Secure Feature 
Driven Development (SFDD). The proposed solution tried to 
cover security related issues of FDD by making some changes 
in classical FDD process model. The model has added an 
activity in each phase called “In-phase Security”. Moreover 
two additional phases are also incorporated called “Build 
security by feature” and “Test security by feature”. To ensure 
secure software development, proposed model also introduced 
a new role called security master. In [5], researchers 
introduced the feature of reusability in FDD and proposed 
Feature Driven Reuse Development (FDRD). This model 
considers re-useable feature sets along with the new 
requirements. In [6], authors introduced an ontology based 
feature driven development model for semantic web 
application. This model used domain ontology concepts which 
are widely known in domain knowledge modeling. Each phase 
of the proposed model has ontology as a basic building block. 
Ontology languages like RDF and OWL helped to overcome 
language ambiguity and inconsistency. In [7], a case study is 

conducted to check the suitability of FDD process model for 
secure web site development. According to authors, 
integration of more iterative activities along with security 
practices in FDD can make it a suitable candidate for secure 
software development. Authors in [8] presented a framework 
to handle changing requirements efficiently which is based on 
Adaptive Software Development and Cognizant Feature 
Driven Development (CFDD). The proposed model is simple 
and easy to implement however it remained silent on other 
issues of FDD. In [9], researchers have presented software 
architecture evaluation method (SAEM) by integrating Quality 
Attribute Workshop (QAW), Architecture Trade off Analysis 
Method (ATAM) and Active Review for Intermediate Designs 
(ARID) with FDD. This model only deals with architecture 
evaluation issues and remained silent on other issues of FDD. 
In [10], researchers presented a supporting tool to implement 
FDD. This tool allows the implementation in a multi-user web 
based environment in the form of sub processes. The proposed 
tool has ability to track the changes in requirements and map 
these modifications in design classes. In [11], the authors have 
performed a comparative analysis between Feature Driven 
Development and Adaptive Software Development. The 
comparison mainly focused on two aspects; software 
requirements and software construction. The primarily 
purpose of this comparison was to evaluate the degree of 
agility in these two agile models. According to this study, no 
specific practices are used for requirement elicitation and 
software construction in ASD however in FDD some 
predefined practices are available for that purpose. In [12] the 
authors introduced the security relevant features in Feature 
Driven Development by following the four step security 
strategy in FDD. According to authors, after successful 
integration of these security steps, FDD can be used for the 
development of security critical software. 

III. FDD PROCESS MODEL 

FDD (Fig. 1) is one of the widely used agile models, 
particularly for the development of large and complex projects 
[13], [15]. This model develops the software according to 
client valued features. It follows eight best practices including: 
domain object modeling, development by feature, individual 
class ownership, feature teams, inspection, configuration 
management, regular builds and progress reporting. FDD 
consists of following phases [19]. 

“Develop an Overall Model” is the first phase in which 
context and scope of the project is finalized, for this purpose a 
high level walk through meeting is conducted [15]. After this 
activity, multiple object models are developed for the project 
by different domain experts, then one model is selected after 
detailed and critical review, in some cases more than one 
model are selected but then merged into a single one. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

153 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. Feature Driven Development (FDD) Process Model. 

The selected model is called domain model which can be 
further refined in later stages of development life cycle. “Build 
a Features List” is the second phase which deals with the 
development of feature list. As it name shows, FDD focuses 
on features, a feature is a valuable function which has some 
business value in software [19]. After the selection of domain 
object model in first phase, it is easier for the team to define a 
comprehensive list of features to be developed. These features 
are then grouped into a feature set, which is a collection of 
related features [19, 27]. Two weeks is the maximum time for 
the implementation of any feature, if it feels difficult to 
implement any particular feature within two weeks then it 
would be broken into two or more sub features. Finally all the 
documented features are approved by the customer. Plan by 
Feature is the third phase which deals with the planning to 
implement the features. The key activity of this phase is to 
assign priorities to features, so that the higher priority feature 
would be considered in early iterations. After priority 
assigning, each feature is checked against its business need 
which verifies that the features are according to the project’s 
requirements. In this phase followings things are also 
identified in features: dependencies, risk involved, complexity 
and team workload. Moreover features are assigned to 
developers which are known as Class Owners. Design by 
Feature is Fourth phase of the model and first phase of the 
iteration. An iteration can consists of one day to two weeks 
[15], [19]. This phase focuses on different activities such as: 
designing the sequence diagrams, writing the classes and 
refining the overall model Moreover different design packages 
are also produced against each class in this phase. Build by 
Feature is the second phase of iteration and last phase of FDD 
development life cycle. This phase deals with the actual 
implementation of features. After coding, code inspection and 
unit testing is performed. Classes are built in the sequence 
which was defined in plan by feature phase. When an iteration 
is completed successfully, the developed features are 
integrated with previously developed modules. FDD defines 
six key roles, five supporting roles and three additional roles. 
Key roles include: project manager, chief architect, 
development manager, chief programmer, class owner and 
domain experts. Supporting roles are: release manager, 
language guru, build engineer, tool smith and system 

administrator [15], [19]. Additional roles include: tester, 
deployer and technical writer. Document and artifacts 
produced during FDD life cycle are Features list, Design 
packages, Track by feature chart and Burn up chart. 

IV. EMPIRICAL EVALUATION 

The purpose of this research is to evaluate the FDD 
process model with an empirical analysis during the 
development of small scale project. In order to effectively 
highlight the weaknesses of FDD, the empirical results are 
compared with the results of another published case study in 
which XP is used to develop small web based project. XP is 
one of the widely used agile models particularly for the 
development of small scale projects. This comparison would 
help us to pin point the issues which are limiting the use of 
FDD only for large projects. Characteristics of both the 
selected case studies are given in Table I. 

TABLE I. CASE STUDIES DETAIL 

Characteristics FDD XP 

Product Type 
Human Resource 

Management  

Real Estate 

Management 

Size Small Small 

Iterations 4 3 

Programming Approach Object Oriented - 

Language C#, ASP.NET PHP 

Documentation MS Office MS Office 

Testing Browser Stack - 

Web Server IIS Apache Wamp Server 

Project Type Average Average 

Team Size 5 Member 3 Member 

Feedback Weekly  - 

Development 
Environment 

Visual Studio 2012 
Macromedia Dream 
Viewer and Net Beans 

Other Tools MS Visio MS Visio 

Reports Crystal Report - 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

154 | P a g e  

www.ijacsa.thesai.org 

The FDD case study which is discussed in this research 
was the part of an academic research project, in which agile 
models were implemented to develop the client oriented 
projects for empirical analysis. That project was implemented 
in a software development company situated in Islamabad 
city, capital of Pakistan. The software company had 
experienced staff with higher degrees of computer science 
disciplines as well as with the dominating knowledge of 
software development. The development teams in that 
software company were using agile models for most of the 
projects. XP case study is taken from [26], in which one 
project is developed with three different models. FDD case 
study is implemented by the team which had significant 
experience of agile development as required by the model. On 
the other hand, XP case study was implemented by the 
computer science students of BS and MS programs, where the 
team had less or no experience of agile development however 
training session of 10 days was organized. The empirical 
results of both the case studies are presented in Table II. 

Aggregated and Partial results of the developed project 
with FDD are already discussed in [15]. However this study 
reflects the complete experiment including detailed empirical 
results of all iterations by keeping in view the guidelines 
extracted from [13], [16], [33-35]. The reason of choosing the 
XP for comparison is it’s widely acceptance by the software 
industry particularly for small projects. In this way it would be 
easy to identify the practices of FDD which need the 
customization or modification to effectively deal with small 
projects. In Table II, first column shows the numbers in series 
and second column represents the metrics/attributes which are 
observed and measured for both the models in each release. 
These metrics are used to analyze the developed product from 
various aspects including development time, cost, working, 
productivity, quality, effectiveness and efficiency [13], [16], 
[36-39]. The last column shows average/cumulative values of 
the attributes from all releases. The remaining columns 
(release 1 to release 4) reflect the values of attributes from 
column 2 in each release for both the models. 

TABLE II. EMPIRICAL RESULTS 

Sr. No Software Metric 

Release 1 Release 2 Release 3 Release 4 Total 

FDD XP FDD XP FDD XP FDD FDD XP 

1 Completion Time  (weeks) 1 2 1 1 1 1 1 4 4 

2 Number of Modules 2 2 1 1 2 1 1 6 4 

3 No of User Stories 21 17 12 13 15 11 9 57 41 

4 Budgeted Work Effort (h) 200 240 200 120 200 120 200 800 480 

5 Actual Work Effort (h) 175 210 175 90 175 90 175 700 390 

6 Number of User Interfaces 5 2 3 1 2 1 2 12 4 

7 No of Classes 5 46 5 34 4 30 4 18 110 

8 Lines of Code 4200 4500 3300 3200 2760 3300 2550 12810 11000 

9 KLOC 4.2 4.5 3.3 3.2 2.7 3.3 2.5 12.8 11 

11 No of Code Integrations 12 20 12 12 10 12 8 42 44 

12 Post Release Defects 4 2 3 2 3 4 2 12 8 

13 
Post Release defects / 

KLOC 
0.952 0.44 0.909 0.625 1.111 1.212 0.8 0.937 0.727 

14 

Productivity 
(= line of code/ actual time 

spent in hours) 

24 21.4 18.9 35.6 15.8 36.7 14.6 18.3 28.2   

16 
No of Pre-release Change 

Requests 
4 3 2 2 3 2 1 10 7 

17 
Total Change 
requests/KLOC 

0.952 0.66 0.606 0.62 1.11 0.60 0.4 0.781 0.636   

18 
Time to Implement 

Changes (h) 
5 4 4 3 3 1 2 14 8 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

155 | P a g e  

www.ijacsa.thesai.org 

V. CRITICAL ANALYSIS 

The detailed empirical results are shown in Table II, which 
reflect the significant differences in some of the important 
software metrics. The size, nature and complexity level of 
both the projects were same however FDD model showed 
poor performance as compared to XP. KLOC of the 
application which is developed using FDD are 12.8 with the 
actual effort of 700 hours. However with XP model, 11 KLOC 
are produced in 390 hours (Fig. 2, 3). Actual effort in each 
release of both the models is also shown in Fig. 4. 

There were five members in FDD project as compared to 
three in XP. Moreover the team members in FDD were 
experienced with agile development as that case study was 
implemented in a software house, however on the other hand 
members in XP project were hardly familiar with agile and got 
the training of ten days just before the development. This 
reflects the poor performance of FDD process model in small 
project. The KLOC produced in FDD project were higher than 
XP project with the difference of 1.8 but this does not justify 
the difference of 310 hours in actual effort which FDD team 
consumed even after having two more members than the XP 
team. These factors point out the heavy structure of FDD 
process model due to which it consumes more resources in 
small project. 

 

Fig. 2. KLOC. 

 

Fig. 3. Actual Work Effort. 

 

Fig. 4. Release wise Actual Work Effort. 

The no of user stories (requirements) implemented in FDD 
project are 57 and with XP this no is 41 (Fig. 5). Moreover the 
no of code integrations in FDD are 42 whereas in XP this no is 
44. There are more requirements in FDD project but less code 
integrations as compared to XP case study. 

 

Fig. 5. No of user Stories. 

The no of design classes shows the development approach 
adopted by the team particularly when viewed along with 
KLOC, implemented user stories, no of code integrations and 
designed interfaces. FDD team implemented 18 classes 
whereas XP team completed the development with 110 no of 
classes (Fig. 6). The no of user interfaces designed in FDD are 
12 and in XP this no is 4. In comparison with XP, FDD 
completed the development with 16 more requirements, 8 
more interfaces but with 92 no of less designed classes. This 
shows that the FDD team did not performed well in design by 
feature phase where classes are written as no of code 
integrations are almost same in both the projects. 

The defects which appear at the client side after the release 
is also considered an important quality parameter which 
contributes to the ultimate satisfaction of the customer. The 
application developed with FDD showed 12 defects whereas 
with XP the no of defects are 8 (Fig. 7). This metric also raises 
the question on the quality aspect of FDD as it took much 

0

50

100

150

200

250

Release 1 Release 2 Release 3 Release 4

FDD

XP



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

156 | P a g e  

www.ijacsa.thesai.org 

more time for development with experienced and large team 
as compared to XP. 

Software productivity is an important metric which shows 
the whole team effort during the development period. It 
reflects that how much work the team has done in a particular 
time interval (actual effort) to achieve the desired goal. 
However to judge the efficiency and effectiveness of the 
model this single parameter is not enough. All the parameters 
included in Table II collectively contribute to reflect the 
quality of the model. FDD team showed the productivity of 
18.3 and XP showed 28.2 (Fig. 8). The release wise 
productivity of both the models is shown in Fig. 9. FDD 
showed poor productivity because it has taken more time for 
development (Actual effort) as compared to XP. 

The overall results show the poor performance of FDD as 
compared to XP. The projects implemented in both case 
studies have same complexity level, nature (web based) and 
size however environment, team size, coding language and 
development tool are different. 

 

Fig. 6. No of Design Classes. 

 

Fig. 7. No of Post Release Defects. 

 

Fig. 8. Productivity. 

 

Fig. 9. Release wise Productivity. 

There may be various causes of the poor performance of 
FDD process model. One is definitely the heavy structure due 
to which it could not perform well even with the more team 
members and with more time for development as compared to 
XP. The Complexity level of both the projects were same 
according to best of our knowledge however there may be a 
chance that FDD project was more difficult as it had more 
user interfaces but if its complexity level was higher than XP 
project even then the debatable thing is that the FDD team 
consisted of 5 experienced members with agile as compared to 
3 non experienced members of XP. Moreover FDD project 
was developed in a software house with professional 
environment whereas XP project was implemented by 
graduate and undergraduate students in a lab. And finally after 
all the extra resources the FDD model consumed, the released 
product showed more defects as compared to XP. The 
communication issue or miss management can also be the 
reasons for poor performance in FDD as it has been seen that 
FDD team has designed very less classes as compared to XP 
and definitely the change management procedure, defect 
removal process and component based development as well as 
testing could be easy with appropriate no of classes. 

0

5

10

15

20

25

30

35

40

Release 1 Release 2 Release 3 Release 4

Fdd

XP



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

157 | P a g e  

www.ijacsa.thesai.org 

VI. CONCLUSION AND FUTURE WORK 

FDD is one of the widely used agile models in software 
industry particularly for large scale projects. This model is 
criticized by many researchers due to its weakness such as:  
dependency on experienced staff due to its complex structure, 
rigid nature to accept requirement changes at later stages, little 
or no guidance for requirement extraction, and heavy 
development structure. All these limitations make this model 
only suitable for large scale projects where requirements are 
less likely to change. This paper evaluated the FDD process 
model on a small scale project through an empirical case study. 
The purpose of this study is to identify those areas and 
practices through empirical analysis which are limiting the use 
of FDD model to the large projects. In this study, the results of 
FDD case study is compared with a published case study of 
Extreme Programing (XP), which is a well-known agile model 
for the development of small projects, so that the performance 
of FDD can be evaluated effectively. According to the 
empirical analysis the performance of FDD is poor in almost 
every important quality metric as compared to XP. There 
could be many reasons of poor performance of FDD including 
heavy development structure, complex project, 
mismanagement of practices and communication issues 
among team members. However in our point of view the root 
cause of poor performance directly or indirectly is the heavy 
and rigid structure as well as the complex practices of FDD. 
This research can be used as a baseline for further empirical 
comparisons of FDD. 

REFERENCES 

[1] V. P. Doshi and V. Patil, “Competitor driven development: Hybrid of 
extreme programming and feature driven reuse development,” 1st Int. 
Conf. Emerg. Trends Eng. Technol. Sci. ICETETS 2016 - Proc., pp. 1–
6, 2016. 

[2] S. S. Tirumala, S. Ali, and A. Babu, “A Hybrid Agile model using 
SCRUM and Feature Driven Development,” Int. J. Comput. Appl., vol. 
156, no. 5, pp. 975–8887, 2016. 

[3] R. Mahdavi-Hezave and R. Ramsin, “FDMD: Feature-Driven 
Methodology Development,” Proc. 10th Int. Conf. Eval. Nov. 
Approaches to Softw. Eng., pp. 229–237, 2015. 

[4] A. Firdaus, I. Ghani, and S. R. Jeong, “Secure Feature Driven 
Development (SFDD) Model for Secure Software Development,” 
Procedia - Soc. Behav. Sci., vol. 129, pp. 546–553, 2014. 

[5] S. Thakur and H. Singh, “FDRD: Feature driven reuse development 
process model,” Proc. 2014 IEEE Int. Conf. Adv. Commun. Control 
Comput. Technol. ICACCCT 2014, no. 978, pp. 1593–1598, 2015. 

[6] F. Siddiqui and M. Afshar Alam, “Ontology based application model for 
feature driven development,” Proc. 5th Indian Int. Conf. Artif. Intell. 
IICAI 2011, pp. 1125–1137, 2011. 

[7] A. Firdaus, I. Ghani, and N. I. M. Yasin, “Developing Secure Websites 
Using Feature Driven Development (FDD): A Case Study,” J. Clean 
Energy Technol., vol. 1, no. 4, pp. 322–326, 2013. 

[8] K. Kumar, P. K. Gupta, and D. Upadhyay, “Change-oriented adaptive 
software engineering by using agile methodology: CFDD,” ICECT 2011 
- 2011 3rd Int. Conf. Electron. Comput. Technol., vol. 5, pp. 11–14, 
2011. 

[9] F. Kanwal, K. Junaid, and M. A. Fahiem, “A {Hybrid} {Software} 
{Architecture} {Evaluation} {Method} for {FDD} - {An} {Agile} 
{Process} {Model},” 2010 {International} {Conference} 
{Computational} {Intelligence} {Software} {Engineering}, pp. 1–5, 
2010. 

[10] M. Rychlý and P. Tichá, “A tool for supporting feature-driven 
development,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes 

Artif. Intell. Lect. Notes Bioinformatics), vol. 5082 LNCS, pp. 196–207, 
2008. 

[11] A. F. Chowdhury and M. N. Huda, “Comparison between adaptive 
software development and feature driven development,” Proc. 2011 Int. 
Conf. Comput. Sci. Netw. Technol. ICCSNT 2011, vol. 1, pp. 363–367, 
2011. 

[12] M. Siponen, R. Baskerville, and T. Kuivalainen, “Integrating Security 
into Agile Development Methods,” Proc. 38th Annu. Hawaii Int. Conf. 
Syst. Sci., vol. 00, no. C, p. 185a–185a, 2005. 

[13] S. Aftab, Z. Nawaz, F. Anwer, M. Salman, M. Ahmad, and M. Anwar, 
“Empirical Evaluation of Modified Agile Models,” Int. J. Adv. Comput. 
Sci. Appl., vol. 9, no. 6, pp. 284–290, 2018. 

[14] F. Anwer, S. Aftab, M. S. Bashir, Z. Nawaz, M. Anwar, and M. Ahmad, 
“Empirical Comparison of XP & SXP,” IJCSNS Int. J. Comput. Sci. 
Netw. Secur., vol. 18, no. 3, pp. 161–167, 2018. 

[15] S. Aftab, Z. Nawaz, M. Anwar, F. Anwer, M. S. Bashir, and M. Ahmad, 
“Comparative Analysis of FDD and SFDD,” Int. J. Comput. Sci. Netw. 
Secur. (IJCSNS ), vol. 18, no. 1, pp. 63–70, 2018. 

[16] S. Ashraf and S. Aftab, “Pragmatic Evaluation of IScrum & Scrum,” I.J. 
Mod. Educ. Comput. Sci. Mod. Educ. Comput. Sci., vol. 1, no. 1, pp. 
24–35, 2018. 

[17] F. Anwer and S. Aftab, “Latest Customizations of XP: A Systematic 
Literature Review,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 12, pp. 
26–37, 2017. 

[18] S. Ashraf, “Scrum with the Spices of Agile Family: A Systematic 
Mapping,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 11, pp. 58–72, 
2017. 

[19] Z. Nawaz, S. Aftab, and F. Anwer, “Simplified FDD Process Model,” 
Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 9, pp. 53–59, 2017. 

[20] S. Ashraf, “IScrum: An Improved Scrum Process Model,” Int. J. Mod. 
Educ. Comput. Sci., vol. 9, no. 8, pp. 16–24, 2017. 

[21] F. Anwer, S. Aftab, and I. Ali, “Proposal of Tailored Extreme 
Programming Model for Small Projects,” Int. J. Comput. Appl., vol. 
171, no. 7, pp. 23–27, 2017. 

[22] S. Ashraf and S. Aftab, “Latest Transformations in Scrum: A State of 
the Art Review,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 7, pp. 12–
22, 2017. 

[23] F. Anwer and S. Aftab, “SXP: Simplified Extreme Programing Process 
Model,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 6, pp. 25–31, 2017. 

[24] F. Anwer, S. Aftab, S. Shah Muhammad, S. Shah Muhammad Shah, and 
U. Waheed, “Comparative Analysis of Two Popular Agile Process 
Models: Extreme Programming and Scrum” Int. J. Comput. Sci. 
Telecommun., vol. 8, no. 2, 2017. 

[25] F. Anwer, S. Aftab, U. Waheed, and S. S. Muhammad, “Agile Software 
Development Models TDD , FDD , DSDM , and Crystal Methods : A 
Survey,” Int. J. Multidiscip. Sci. Eng., vol. 8, no. April, 2017. 

[26] G. Rasool, S. Aftab, S. Hussain, and D. Streitferdt, “eXRUP: A Hybrid 
Software Development Model for Small to Medium Scale Projects,” J. 
Softw. Eng. Appl., vol. 06, no. 09, pp. 446–457, 2013. 

[27] S. R. Palmer  and M. Felsing, “A practical guide to feature-driven 
development,” Pearson Education, 2001. 

[28] P. Coad, E. Lefebvre, and J. De Luca Java, “Modeling In  Color  With 
UML,” Enterprise  Components  and Process. Prentice Hall 
International, (ISBN 013011510X), 1999 

[29] S. R. Palmer  and  M. Felsing, A Practical Guide to Feature Driven 
Development. 2002. 

[30] B. Boehm, “A Survey of Agile  Development Methodologies,” Laurie 
Williams, pp. 209–227, 2007. 

[31] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile Software 
Development Methods: Review and Analysis,” 2017. 

[32] D. Ph, “Major Seminar on Feature Driven Development Agile 
Techniques for Project Management Software Engineering By Sadhna 
Goyal Guide : Jennifer Schiller Chair of Applied Software Engineering,” 
p. 4, 2007. 

[33] M. R. J. Qureshi, “Estimation  of the New  Agile XP Process  Model for 
Medium-Scale  Projects  Using  Industrial  Case  Studies,” Int. J. Mach. 
Learn. Comput., vol. 3, no. 5, pp. 393–395, 2013. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

158 | P a g e  

www.ijacsa.thesai.org 

[34] S. U. Nisa and M. R. J. Qureshi, “Empirical Estimation of Hybrid 
Model: A Controlled Case Study,” Int. J. Inf. Technol. Comput. Sci., 
vol. 1, no. July, p. 8, 2012. 

[35] M. Qureshi, “Empirical Evaluation of the Proposed eXSCRUM Model: 
Results of  a Case Study,” Int. J. Comput. Sci. Issues., vol. 8, no. 3, pp. 
150–157, 2012. 

[36] N. E. Fenton, and S. L. Pfleeger, "Software Metrics: A Rigorous and 
Practical Approach: Brooks," 1998. 

[37] S. H. Kan, Metrics and models in software quality engineering. 
Addison-Wesley Longman Publishing Co., Inc. 2002. 

[38] C. Jones, "Applied Software Measurement", McGraw Hill, 1991. 

[39] N. Fenton and J. Bieman, “Software Metrics: Roadmap,” It Prof., vol. 2, 
pp. 38–42, 2014. 

 


