
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

215 | P a g e

www.ijacsa.thesai.org

Automated Grading Systems for Programming

Assignments: A Literature Review

Hussam Aldriye
1
, Asma Alkhalaf

2
, Muath Alkhalaf

3

Computer Science at the Collage of Computer, King Saud University, Riyadh, Saudi Arabia
1, 3

Computer Science at Alrass Collage of Science and Arts, Qassim University, Qassim, Saudi Arabia
2

Abstract—Automated grading for programming assignments

is becoming more and more important nowadays especially with

the emergence of the Massive Open Online Courses. Many

techniques and systems are being used nowadays for automated

grading in educational institutions. This article provides a

literature review of the many automated grading systems and

techniques that are being used currently. It focuses on

highlighting the differences between these systems and

techniques and addressing issues, advantages and disadvantages.

The review shows that these systems have limitations due to

difficulty in usage by students as noticed by some course

instructors. Some of these problems stem from UI/UX difficulties

while other problems were due to beginner syntax errors and

language barriers. Finally, it shows the need to fill the gap by

building new systems that are friendlier towards beginner

programmers, has better localization and easier user experience.

Keywords—Automated grading

I. INTRODUCTION

Innovation in education has come a long way in improving
the speed and efficiency of grading. For example, the
inventiveness behind the idea of the Scantron has significantly
promoted the grading of tests for instructors and has
consequently provided a better means for professors to check
on students‟ knowledge of particular concepts. Homework and
exams are the best way to determine student comprehension.
However, grading programming assignments is time
consuming and prone to errors especially with large number of
students in the Massive Open Online Courses (MOOS) and
complex programming assignments. This raises the need for a
more consistent and efficient grading technique. This challenge
has lead to the development of automated grading tools. This
paper provides comparison and evaluation of different tools
used for automated grading for programming assignments
focusing on the effectiveness of these tools in learning process.

This article is organized as follows. Section 2 describes the
software defects while Section 3 presents the literature review
of the current automated grading techniques and the tools
applying those techniques. Section 4 provides summary
comparison of the reviewed tools. Finally, Section 5 concludes
the article.

II. SOFTWARE DEFECTS

Before we review the literature on automated assignment
grading techniques and systems, we would like to introduce the
types of errors that are usually targeted by these techniques. In
general, a software defect, failure or error is defined as
producing wrong result or performing an action in an
unintended way. However, Software defects can be classified
as following syntax errors, logical errors, and runtime errors.

1) Syntax error: To This error is raised due to incorrect

grammar/syntax in the programming language such as

incorrect program structure, mistyped words (typos), missing

semicolons. Moreover, this kind of errors can be detected by

the programming language compiler while compiling the

software code. This error is the easiest error to catch and fix

since most of the compilers that used this day such as GCC or

JRE provides a full description of the error (line number and

message show what is missing).

2) Logical errors: In this error, the software compiles and

runs fine, but the output of the software is wrong due to many

reasons such as misunderstanding of the requirement or

specification, logical-mathematical errors (divide by zero,

adding when you should be subtracting) and opening and

using data from the wrong source. These errors, unfortunately,

cannot be detected by the compiler and this issue brings up a

question, can we detect this kind of errors before launching

the software? The short answer is yes, by using testing

methods and other techniques, this will be described in detail

in Section 2.2.

3) Runtime errors: This is an advanced error, and it is rare

to introductory course students to fall in. Runtime error will

only happen when the software is running. In fact, this is one

of the most complicated issues to track down and lead to

software crashes. There are several tools to track this kind of

error such as NASA Java Pathfinder (JPF) to detect Deadlock,

race problem, heap bounds checks, Null Pointer Exceptions

and much more advance problem thus finding these problems

may take hours, days or months it depends on the size and the

complexity of the software.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

216 | P a g e

www.ijacsa.thesai.org

III. EXIXTING TECHNIQUES FOR AUTOMATED GRADING

A. Unit Testing

The main goal of any software testing approach is to check
if the software contains errors, produces the right outputs, and
follows the specification conducted by the Software tester or
the QA team. However, unit testing has reached distinguished
prominence in the area of computer science curriculum over
the past years [1] and it is one of the most common approaches
used nowadays to exam software units or features.

In this test, the targeted software should be clean of any
syntax errors, by passing the targeted software to the compiler
then apply the test. The output of this test provides the correct
or wrong answer based on predetermined inputs derived from
the specification document or assignment requirement.
Moreover, unit testing is consisting of test case and test
methods; each test case is consisting of one or more test
methods that tests a unit or a part of the software code.

In an automated grading system, the instructor responsible
for preparing the „test case‟ or multiple test cases as a „test suit‟

that covers all the aspects that students should include in their
assignment. Fig. 1 shows on the right side the multiple JUnit
test cases that test a simple Java assignment on the left side
written by an introductory student in Rwaq MOOC, each test
case assigned to a certain method and has a weight or score.

A comparison between five unit testing tools is represented
in Table I.

B. Sketching Synthesis and Error Statistical Modeling (ESM)

In [2], the authors introduced a new tool based on sketching
synthesis and ESM to provide an instant feedback for
introductory programming assignments. The introduced tool
was applied on “Introduction to Computer Science and Python
Programming Language” that offered by MIT. The key idea
behind this method is to provide the system with a reference
implementation (best answer) for a simple computational
problem such as „compute derivatives‟. Fig. 2 is an example of
a reference that is used as the specification for student
submissions.

Fig. 1. Example of JUnit Test Cases.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

217 | P a g e

www.ijacsa.thesai.org

TABLE I. UNIT TESTING TOOLS

Testing

Tools
License Reporting Configuration/Setup

Error detection

Runtime Syntax Logical

Junit4 Open source Clear and easy to read and parse Include .jar file in test directory N N Y

Parasoft JTest Enterprise HTML reports And charts GUI-based unit testing tool Y N Y

TestNG Open source Not easy to parse and simplify for student XML configurations N N Y

Powermock Open source
Need someone familiar with the tool to

read errors

extends other mock libraries such as

EasyMock
N N Y

JWalk **free Not easy to parse and simplify for student GUI-based unit testing tool N N Y

** Only for research or evaluation purposes

Fig. 2. The Reference Implementation for Compute Derivative [2].

Therefore, the tool now shall process and analyze the
equivalence of the submitted answers with the reference
answer. This approach is using constraint-based synthesis
technology [2], [3] to efficiently search over a huge space of
programs. Precisely, they use the SKETCH synthesizer that
uses the SAT-based algorithm [4] to complete program
sketches, so that the students meet the given specification.
Moreover, Using SKETCH synthesis system allows writing
programs while leaving fragments of it undefined as holes. The
synthesizer fills up the contents of these holes such that the
program conforms to a specification provided regarding a
reference implementation. The synthesizer uses the CEGIS
algorithm [5] to compute the values for generated holes and
uses bounded symbolic verification techniques for producing
equivalence check of student submitted implementation and the
reference implementation. Finally, the synthesizer passes the
solution to the tool feedback generator to parse the error if
found, and translates the output to natural language that
students can understand, see Fig. 3.

The generated feedback takes around 40 seconds for each
submission and successfully provides feedback on over 64% of
wrong answers. The limitations of this tool are as following:

 The tool does not check the structural requirements

 The tool does not accept large constant value.

The tool does not support OOP

C. Peer-To-Peer Feedback

In this approach, the instructor makes the students
randomly grade each other‟s answers. This approach may help
students to identify and get used to errors causes, but many
problems encountered [6] in systems using this approach such
as no instance feedback (students may wait for a long time to
get a feedback) and wrong or incomplete feedback due to
students limited knowledge especially, introductory students.
Finally, students trust and respond to their instructor‟s
comments rather than their peer feedback. In addition, many
students find peer feedback hard and not easy to gauge.

D. Random Inputs Test Cases

This approach is proposed in [7], were instructor prepares a
set of independent inputs that used to check if the student
assignment output is false positive or false negative. However,
using this approach to grade students‟ assignments is very
limited and weak since it does not give any feedback that
shows the students error; if exist. The objective of this test is to
check if the students have determined the correct output or not,
so in this case, students will have only two possible grades 0
or 10.

E. Pattern Matching

In pattern matching [6], the instructor provides a
specification of the output that a correct assignment will be
assumed to generate, and system requests the Unix Lex and
Yacc [7] tools (Yet Another Compiler) to create a program that
verifies that the output from the student submitted solution
meets the provided specification. This technique has many
disadvantages since it only accepts and gives a grade to perfect
matching solutions. Instructors cannot break down the pattern
to distribute the grades on methods.

F. Comparison

The following comparison in Table II shows why Unit
testing better than the other techniques.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

218 | P a g e

www.ijacsa.thesai.org

Fig. 3. The a,b,c Shows Different Student Submission for the Same Problem and the Feedback for Each Submission Generated by the Feedback Generator [2].

TABLE II. COMPARISON OF TOOLS AND TECHNIQUES USED TO GRADE STUDENTS‟ JAVA ASSIGNMENTS

Tools and

techniques

Sketching synthesis and

error statistical modeling

Peer-to-peer

feedback
Random input test cases Pattern Matching Unit testing

Execution

time

Fast (less than 10 sec in

many cases)

40-60 sec in

average

Slow, takes hours in many

cases

Fast (less than 10 sec in

many cases)
Average, it takes 30 sec

Reliability Accurate (depends on the

written test case)

Can detect 64%

of students errors

Not reliable it depends on

student knowledge

In some case, if all possible

inputs are covered

In some case, if all possible

outputs are covered

Dependency

Test
Supported Supported Supported Not Supported Not Supported

Instant

Feedback
Yes Yes NO Yes Yes

Support Oop Yes No Yes No No

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

219 | P a g e

www.ijacsa.thesai.org

IV. EXISTING SYSTEMS FOR AUTOMATED GRADING

The automated grading system of student work has been
reviewed for decades. For example, automatic grading of short
quizzes involves three types of questions, short answer,
multiple-choice and true or false. These questions have been a
typical feature of most e-learning system such as Web-Work
(an online student homework system for sciences and math
courses), Web-CAT (Automatic Grading Student programming
assignment), Web-based Grading, and Class-Marker (Online
test maker). Grading systems have been interesting in large-
scale educational institutions with a substantial number of
students. These systems can be classified into three categories
[8] (a) Automatic grading systems (the grading and the
feedbacks generated by the system) (b) Semi-Automatic
grading system (grades generated by the system and feedback
produced by human) (c) Manual grading system (the grading
and feedbacks produced by human).

A. Automated Grading Systems

In [9], Edwards and Pérez-Quiñones from Virginia Tech
have introduced a Web-CAT an extensible and customizable
open-source and online automated grading system for students
Java and C++ programming assignment. Web-CAT is a state of
the art in automated grading system, and many instructors
around the world including King Saud University (KSU) have
used it with the standard Java-TDD integrated plugin to grade
an introductory programming course assignment. The Java-
TDD is a combination of jar files that help Web-CAT to
manage JUnit test libraries. Web-CAT provides many services
to students and instructors, such as assignment submission,
automated feedback based on predefined test cases, hints that
help to fix errors in the code, and generate grades based on the
test case report produced by JUnit-Reporter.

However, while using Web-CAT at Dickinson College,
department of mathematics and computer science, [10] in
introduction to programming course (COMP131), the
instructors frequently observed undesirable difficulties from
students‟ side. The students cannot understand the feedback
messages generated by the system regarding their submitted
assignments. Most of the errors were general and do not reflect
the reason of the actual error. Moreover, the same problem was
discovered in Introduction to Java programming language at
King Saud University, were 50.6% of the enrolled students
were unhappy using the system because the generated feedback
report was unclear and does not explain the errors type and also
how the system generates their scores. Fig. 4 shows an
example of a Web-CAT generated report. The system UI is not
usable and most of the submitted assignments fail. Students
got zero mark due to having syntax errors such as missing
semicolon or missing brackets (Web-CAT does not compile
the submissions before running the test cases).

On the other hand, instructors noticed that the system
configuration is complex and cannot be accessed remotely
from outside the college building since it has been installed on
a local server. The students must submit their assignments
using the college labs or connect to the system through the
local network.

The system proposed by H. Kitaya and U. Inoue is another
good example of automated grading system [11]. They provide
a java assessment tool that conducts a test by using a regular
expression application programming interface (API) to
compare the student‟s java assignments with a reference
implementation written by the instructors. The system is a
web-based application using many technologies that helps to
generate testing frameworks such as Java Servlet and JSP on
Apache tomcat, see Fig. 5. Writing a regular expression has
major drawbacks in grading systems. It is very restricted to a
certain format and output type, and it is not easy to construct an
expression pattern. Finally, the system generates only a
Japanese feedback messages; this is not applicable in any
international course.

B. Semi-Automatic Grading Systems

ASys [12] is a notable recent semi-automatic Java grading
system, which focuses on checking the student Java assignment
source code by applying three mainly phases: Compilation,
Analysis, and Testing respectively. The compilation phase is to
check if the source code has any syntax errors, and the output
of this phase will be reflected by the programming language
compiler. Secondly, if the assignment file passes the first phase
the system will enter a crucial phase that is the analysis process
that uses a domain specific language (DSL). In this phase, the
system authors build an assessment template that consists of
two libraries, the Java meta- programming library and a DSL
on top of the assessment template. The Java library is
composed of 70 methods in an „Inspectors‟ class that can be
used to examine and handle the source code to check the code
properties. Therefore, instructors can check the students Java
assignments‟ programmatically by invoking the DSL that
allows the system to load and examine the assignment Java file
whether the student has implemented it in a correct way or not.

For example, DSL can detect errors in using inheritance,
abstract classes and interface by examining a set of evaluation
code. If the evaluation code fails, it returns ZERO and
transforms to semi-automatically mode to prompt the
instructors with a source code that raises the problem, this is
illustrated in Fig. 6.

Assessment system (ASSYST) [13] is an example of a
legacy grading system built in 1997 on Linux environment
machine. ASSYST uses pattern matching technique and black
box testing approach to check and conforms that a student
solution meets the specification. Furthermore, the system is not
promising since it has many problem reported by the students
who have used the system to grade their assignments as it
freezes if the system face unknown errors either in student code
or in the system core. Years later, David W. Juedes from Ohio
University designed a new web based grading system (WBGP)
[14] inspired by ASSYST. WBGP is originally written in Perl
and Java in 2005 and in 2010 the system was redesigned in
TCL/TK [15] scripting language and it works only under Linux
and Sun Solaris.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

220 | P a g e

www.ijacsa.thesai.org

Fig. 4. Web-CAT Generated Report.

Fig. 5. [11] System Architecture.

Fig. 6. Asys Data Flow Diagram [12].

The system provides multiple services in addition of
grading students‟ assignments and projects. Services including
(i) reporting students‟ performance and grading progress,
(ii) "Measure Of Software Similarity" [16] tool developed by
Alex Aiken at UC Berkeley to automatically detect all
submitted assignments and projects for evidence of plagiarism.

Fig. 7. WBGP Overall Structure [14].

WBGP uses Basic Comment File (BCMT) which provides
the grading engine with a list of long and short predefined
comments that used to report students through HTML web
page of spelling mistakes, syntax errors (reported by the
compiler) and output mismatching the random test values.
Fig. 7 illustrates the structure of the WBGP system.

While reviewing the system, we discovered many
disadvantages such as manual project configuration as shown
in Fig. 8. The system requires BCMT files for both, design and
implementation, no section/course management, and no
support for other Mac OS/Windows operating systems.

Fig. 8. Project Configuration.

C. Manual Grading Systems

A group of Professors, Teacher Assistants (TAs) and
students from University of Toronto, Canada introduced a
„Markus‟ [17] web-based marking tool to simplify the
assignments submission process. It replaces the usual
submission approaches (sending emails or submit the
assignments in CD/Memory stick, etc.). The main goal of the
system is to provide instructors with a simple tool that helps
them to give a clear and high- quality feedback to introductory
students. The system depends on instructors provided
comments or student peer reviews as students can review each
other‟s assignments then instructors can use manual grade and
correct the provided reviews/feedback. Markus allows
instructors to create a kickoff code (reference implementation)
for each assignment to help students solve a certain
programming problem.

V. COMPARISON OF EXISTING GRADING SYSTEM

This section will present in Table III a comparison of all the
existed grading systems that have been mentioned in this

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

221 | P a g e

www.ijacsa.thesai.org

article and showing the advantages and disadvantages of using these systems.

TABLE III. COMPARISON OF THE EXISTED GRADING SYSTEMS

 Web-CAT [7] WebJavaScroing [8] Markus [16] ASys [11] ASSYST [13] WBGP [14]

Automated Testing?

Automated=1,
Semi=0.5,

Manuel=0

Automated test suit
Automated, output
matching

Manuel, peer review Automated test cases

Automated test

data (Black box

testing)

Automated

test and
pattern

matching

Automated Grading?
Automated=1,

Semi=0.5,

Manuel=0

Grades assigned by

the system

Grades assigned by

the system

Grades assigned by

Instructor or TA

Grades assigned by

Instructor

Manuel grading

by Instructor

Grades

assigned by
the system

System Usability and

Interface

USABLE=1,
NOT USABLE=0

Not Usable, hard to
configure tests and

upload assignments

Not usable, no

English interface

Usable, Web-based
GUI, easy to upload,

login, signup

Usable, GUI
application, no

registration

Not usable,
Command base

system

Not usable,
bad interface

design

Sections/Course

Support
Support=1,

Not Supported=0

Supported
Not
 supported

Supported Not supported
Not
supported

Not supported

Easy to understand
system feedbacks

EASY=1,

MEDIUM=0.5,

HARD=0

Medium, as

reflected by many
students in KSU

survey and [8][10]

Hard for non-
Japanese actor

Easy, since all

approved feedback
are generated by

Instructors and TA

Easy, feedback
generated by Instructor

Hard, feedback

generated by the

system compiler.

Easy, pre-

defined
feedbacks by

BCMT

Provide hints to

correct errors
PROVIDE = 1,

IN SOMECASE=0.5,

NOT PROVIDE=0

Not provided provided
Provide in some
cases (depend on the

instructor or TA)

Provide in some cases
(depend on the

instructor)

Not provided Provide hints

Main Advantages

Over The Other
Systems

Integrated with

Eclipse and
NetBeans IDE

Support multi-

submissions

Support group
assignments,

sections and grade

progress chart

precompiled

assignments,

automatically inform
the instructor incase

when tests fail.

Measures the
code-efficiency

by calculating

execution time

Plagiarism

check

Automated Testing?

AUTOMATED=1,

SEMI=0.5,
MANUEL=0

Automated test suit
Automated, output

matching
Manuel, peer review Automated test cases

Automated test

data (Black box

testing)

Automated

test and

pattern
matching

Automated Grading?
AUTOMATED=1,

SEMI=0.5,

MANUEL=0

Grades assigned by

the system

Grades assigned by

the system

Grades assigned by

Instructor or TA

Grades assigned by

Instructor

Manuel grading

by Instructor

Grades

assigned by
the system

System Usability and

Interface
USABLE=1,

NOT USABLE=0

Not Usable, hard to

configure tests and

upload assignments

Not usable, no
English interface

Usable, Web-based

GUI, easy to upload,

login, signup

Usable, GUI

application, no

registration

Not usable,

Command base

system

Not usable,

bad interface

design

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

222 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

In this article, we have reviewed many automated grading
systems and techniques. A particular attention was paid to the
problem of how feedback is generated, to what limit the
process is automated, and how much instructor interference
needed. Some of the systems were semi-automated, supporting
only automated grading or testing. Others are limited to a
specific operating system or not appropriate for international
courses where there is no proper localization. These limitations
are showing a strong need for developing a new technique that
fills the gap. As future work, we intend to build a system that
provides a fully automated process with the ability to provide
consistent grading, precise feedback, and better localization
while reducing the time needed by instructor to configure the
system.

REFERENCES

[1] M. Wick, D. Stevenson, and P. Wagner, “Using Testing and JUnit
Across the Curriculum,” SIGCSE Bull, vol. 37, no. 1, pp. 236–240, Feb.
2005.

[2] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated Feedback
Generation for Introductory Programming Assignments,” SIGPLAN
Not, vol. 48, no. 6, pp. 15–26, Jun. 2013.

[3] M. Ricken and R. Cartwright, “ConcJUnit: Unit Testing for Concurrent
Programs,” in Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, New York, NY, USA,
2009, pp. 129–132.

[4] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. Saraswat, and S.
Seshia, “Sketching stencils,” 2007, p. 167.

[5] A. Solar-Lezama, R. Rabbah, R. od k, and K. Ebcio lu, “Programming
by sketching for bit-streaming programs,” ACM SIGPLAN Not., vol.
40, no. 6, p. 281, Jun. 2005.

[6] C. Kulkarni, “Learning design wisdom by augmenting physical studio
critique with online self-assessment,” Stanford University HCI Group.

[7] D. Juedes, “W GP (Web-based Grading Project),” School of EECS,
Ohiou.

[8] A. Pears, S. Seidman, C. Eney, P. Kinnunen, and L. Malmi,
“Constructing a core literature for computing education research,” ACM
SIGCSE Bull., vol. 37, no. 4, p. 152, Dec. 2005.

[9] S. H. Edwards and M. A. Perez-Quinones, “Web-CAT: Automatically
Grading Programming Assignments,” SIGCSE ull, vol. 40, no. 3, pp.
328–328, Jun. 2008.

[10] G. Braught and J. Midkiff, “Tool Design and Student Testing ehavior
in an Introductory Java Course,” in Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, New York,
NY, USA, 2016, pp. 449–454.

[11] Y. Akahane, H. Kitaya, and U. Inoue, “Design and Evaluation of
Automated Scoring:: Java Programming Assignments,” Int. J. Softw.
Innov., vol. 3, no. 4, pp. 18–32, Oct. 2015.

[12] D. Insa and J. Silva, “Semi-Automatic Assessment of Unrestrained Java
Code: A Library, a DSL, and a Workbench to Assess Exams and
Exercises,” 2015, pp. 39–44.

[13] D. Jackson and M. Usher, “Grading student programs using ASSYST,”
ACM SIGCSE Bull., vol. 29, no. 1, pp. 335–339, Mar. 1997.

[14] D. W. Juedes, “Web-based grading: Further experiences and student
attitudes,” in FRONTIERS IN EDUCATION CONFERENCE, 2005,
vol. 35, p. F4E.

[15] B. B. Welch, Practical programming in Tcl & Tk, 3rd ed. Upper Saddle
River, NJ: Prentice Hall, 2000.

[16] K. W. owyer and L. O. Hall, “Experience using „MOSS‟ to detect
cheating on programming assignments,” 1999, vol. 3, p. 13B3/18-
13B3/22.

[17] MarkUs: Online marking. University of Toronto, Canada, 2009.

