
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

337 | P a g e

www.ijacsa.thesai.org

An Effective Approach to Analyze Algorithms with

Linear O(n) Worst-Case Asymptotic Complexity

Qazi Haseeb Yousaf *
1
, Muhammad Arif Shah*

2
, Rashid Naseem

3
, Karzan Wakil

4
, Ghufran Ullah

5

Department of Computer Science, City University of Science and Information Technology, Peshawar, Pakistan
1,2,3,5

Research Center, Sulaimani Polytechnic University, Sulaimani 46001, Kurdistan Region, Iraq
4

Abstract—A theoretical approach of asymptote analyzes the

algorithms for approximate time complexity. The worst-case

asymptotic complexity classifies an algorithm to a certain class.

The asymptotic complexity for algorithms returns the degree

variable of the algorithmic function while ignores the lower

terms. In perspective of programming, asymptote only considers

the number of iterations in a loop ignoring inside and outside

statements. However, every statement must have some execution

time. This paper provides an effective approach to analyze the

algorithms belonging to the same class of asymptotes. The

theoretical analysis of algorithmic functions shows that the

difference between theoretical outputs of two algorithmic

functions depends upon the difference between their coefficient

of ‘n’ and the constant term. The said difference marks the point

for the behavioral change of algorithms. This theoretic analysis

approach is applied to algorithms with linear asymptotic

complexity. Two algorithms are considered having a different

number of statements outside and inside the loop. The results

positively indicated the effectiveness of the proposed approach as

the tables and graphs validates the results of the derived formula.

Keywords—Asymptotic complexity; interval analysis; in-depth

analysis; Big-Oh; crossover point

I. INTRODUCTION

An algorithm is a set of instructions to specify a solution to
the problem in a finite time. The single problem may have
more than one algorithm. For instance, algorithms to search
maximum value in one-dimensional array or methods to sort
elements in an array. Given the number of algorithms for a
problem, it is obligatory that every algorithm differs in the
order of complexity. Considering the difference in complexity
of algorithms, some algorithms perform better than others in
the provided environment. The level of complexity effects in
execution time, the memory space acquired and lines of code
(LOC) for the algorithms. From the given three metrics of
complexity, LOC has no direct impact on algorithm
complexity and is not considered a good metric for analysis of
algorithm [1]. Therefore, execution time and space acquired
are metrics for analysis of algorithms. The run-time of the
algorithm is measured either by approximate analysis or
execution time on the machine. Real execution time requires
computational resources to run algorithms in actual time. The
computational resources are affected by the environmental
factors like temperature, number of resources utilized,
dimensions of used resources etc. In contrast, the approximate
method follows a virtual computational model. The virtual
computational model depends on certain fixed execution times
for different programming structures. Random Access

Machine (RAM) is one of an adapted model for forming
approximate algorithmic functions in terms of input size of the
algorithm. RAM has three assumptions:

 Only one processor

 Infinite Memory

 Cost of one unit processor time for each binary
operation and each array access.

A mathematical set-theoretic approach of asymptotes gives
the time complexity of an algorithm. Asymptotic notations
analyze algorithms for different time complexities. Generally,
there are five asymptotic notations in mathematics. These are
Big-Oh (O), Big-Omega (Ω), Theta (Θ), Small-Oh (o) and
Small-Omega (ω). Big-Oh (O), Big-Omega (Ω) and Theta
(Θ) are used asymptotes to analyze the algorithms [2].

Big-omega appears for asymptotic lower bound in analysis
of algorithm. In computing, it is termed as best-case analysis.
Leiserson et al. [1] defines Big-Omega mathematically as:

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤

c.f(n) for all n > n0. } (1)

Big-Oh represents asymptotic upper bound for the
analysis, when input size becomes so big that it tends to
infinity, which is normally termed as worst-case analysis.
Leiserson et al. [1] defines the equation of Big-Oh as follow:

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) ≤

c.g(n) for all n > n0. } (2)

Theta shows tight bound for given function. It gives the
average case analysis in computing. From mathematical
definition stated by Leiserson et al. [1]

θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) = Ω(f(n))

for all n > n0. } (3)

Given in the above defined equations (1), (2) and (3), n is
the input size for algorithm. It may be size of array, stack or
basic data structure to hold memory. f(n) represents
mathematical function of algorithm and g(n) is the comparable
function or asymptote.

The algorithms are compared on their worst-case analysis
[3]. If the results of the worst-case analysis for two algorithms
are the same, then the second metric to analyze the algorithms
is best-case analysis. The problem arises when the worst-case
and best-case analysis gives the same time complexity. It
becomes difficult with asymptotes to analyze the better

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

338 | P a g e

www.ijacsa.thesai.org

algorithm from the given pool [4]. The problem of analyzing
the algorithm with the same time-complexity is discussed by
[2,4,5] in their respective papers. Leiserson et al. [1] and
Sedgewick et al. [3] in their books quoted a generalized
statement for the above-discussed problem that “Asymptotic
big-Oh approximations are for the functions tend towards
infinite large values”. This means with asymptotes, analysis
for small input values is not feasible. So this traditional
approach is not enough to analyze and choose the best
algorithm from the given set [2–4]. Moreover, the real-world
problems work with a specific interval of inputs. While
asymptotes give us peak value analysis. It ignores the in-
between behavior of an algorithmic function. The alternative
method to differentiate the same asymptotic time complexity
algorithms is real-time analysis on RAM. The RAM technique
is a theoretical analysis requires less time and is not affected
by certain environmental factors. Rahman [4] proposed two
theoretical approaches (i) graph analysis and (ii) interval
analysis [4]. Interval analysis works on a mathematical point
of intersections for two or more functions. Full mathematical
implementation of point of intersection contains a number of
calculating steps with an overload of undesirable results in
many cases like imaginary values, negative integer values, and
continuous values. To some extent, the point of intersection
approach throws an idea to check for the positive integer
where the crossover occurs between the two algorithmic
functions. This paper suggests a solution, which will analyze
algorithms with the same asymptotic complexity, but different
algorithmic functions. The proposed method finds
approximate number „no‟, where no is the point from which the
algorithmic functions start changing their behaviors.

II. LITERATURE REVIEW

Algorithms are analyzed and validated from the very start
of programming, for example, Garey et al [6], discussed the
memory allocation algorithms for complexity effecting
running time. Similarly, Mackeorth and Freuder [7], discussed
network consistency algorithms related to artificial
intelligence and analyzed them for worst-case analysis
resulting in the linear time for binary constraints. Vitter and

Flajolet [8] introduced average-case analysis: this
technique worked well for small algorithms and data
structures. The study was on statistical measurements and
formulations. Analysis of algorithms is still a need of the day.
The statement is supported by the recent studies of [9–15] on
analysis of algorithms applied in different fields via different
techniques. Adams and Aschheim (2016) compared
algorithms for dental coding and ranking problems. The paper
concluded with setting optimized (OPT) algorithm as best for
large inputs with simple coding [13]. Schubert and Zimek
[14] also discussed the analysis of algorithms technique
separating implementation and evaluation. Most recently a
study is conducted for the max-min filter on random inputs.
The study focused on asymptotic analysis for the said problem
on dynamic algorithms [15].

Analysis of algorithm is done considering different aspects
of real-time evaluation, asymptotic analysis, non-asymptotic
analysis, and sensitive analysis etc. Among the above
asymptotic analysis is one of the easiest ways to get

approximated results theoretically but with accuracy payoff.
Tarek [2] wrote on the set-theoretic approach of asymptotes
i.e. asymptotic functions are relative functions than individual
bare ones. This means asymptotic functions always depend on
coefficient and exponents of input size n. The extended work
of Decelle et al. [16] was an exact analysis of the stochastic
block model. The author used an asymptotic approximation
for analysis. A research study [17] on non-asymptotic analysis
of machine learning algorithms may be in principle costly to
generate results beyond a certain number of equations. Teng
[18] discussed linear time algorithms for preconditioning and
solving dominant linear systems. Xu et al. [19] explore the
algorithms for Virtual Machine (VM) deployment and load
balancing. The research included certain new metrics to
conclude for the best performing algorithm in the deployment
and load balancing of VM. The proposed and existed all
metrics are environmental variables dependent on the applied
platform. Pietri et al. [20] give the survey of VM deployment
on Physical Machines (PM). The adopted techniques were
proven correct but research was inconclusive about the best
technique. Thi and Thi [21] published work on the same
problem of approximated the complexity of algorithms using
asymptotes. The work suggested statistical and probability
formulas resulting in equivalent values that of asymptotes.
The formula calculates sorting algorithms realistic complexity.
The method is partially automated and most calculations are
done manually. In addition, the method depends on the type
and nature of input [21].

The above studies show that authors are inconclusive to
decide between algorithms. For the same degree of two
different algorithmic functions asymptotes failed to analyze
them for small or large input sizes. Asymptotes treat them
equally good for all input sizes, which is not exactly the case.
The inference is to replace asymptotic analysis by realistic
analysis specifically for same worst-case complexity
algorithms, but the realistic analysis also bears the load of
environmental factors and availability of physical resources.
The problem of analyzing with the same time-complexity is
discussed by [5] and [4] in their respective papers. Rahman et
al. [4] suggested the analysis of algorithmic functions by
graphs through drawing them. The author also gave an interval
analysis to mark the point where the big value starts with the
creation of threshold value (k) for n tends to infinity. The
study considers the insertion sort as an example. Insertion sort
is quadratic in nature. The worst-case analysis for insertion
sort is O(n

2
). It was claimed algorithmic functions for two

different implementations of insertion sort. The proposed
methodology was to suppose a threshold point and then
calculate values of „k‟ for all inputs and mark the input point
breaking a specific threshold. The problem in the study was
the selection of a threshold point and then to find that input
where the big value starts. Alternative for interval analysis is
the graph method. It is very difficult to draw and analyze the
graphs for infinite input values. Also, the input size is discrete
in nature [3] while graphs of polynomials are continuous in
nature [21,22]. Ferreira et al. [5] conducted a survey on
memory allocation techniques. The article concluded that the
malloc family has linear time complexity, but it is difficult to
choose the best algorithm of the family because of the same
time complexity. However, sensitivity analysis is suggested

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

339 | P a g e

www.ijacsa.thesai.org

for overcoming this problem. The sensitive analysis is not an
efficient metric because the hardware and software vary too
much from point to point and doing an analysis every time
before implementation may not be easy. Most recently
Schubert and Zimek [14] discussed the hurdles in algorithm
evaluation and implementation on environment-sensitive
metrics like machine execution time and platform dependent
testing. The author argues with different techniques used to
validate the efficiency of algorithms presented in research
papers. Most of the time the current algorithm proved less
efficient than presented in the previous research papers. The
affecting factor is a run-time evaluation of algorithms, the
most common technique used for analysis of research
algorithms. Therefore, there must be a standard technique to
check the algorithm and its implementation separately. The
data mining algorithms are tested on different platforms with
different datasets giving the changed result on every platform
[14]. On the other side of the discussion, there are many
sorting algorithms available. Merge sort, heap sort, insertion
sort, bubble sort, selection sort, and many others. These
algorithms are passing through advancements to reduce the
overall complexity. Small improvements in algorithms are
totally negligible due to discrete classes of asymptotes. Some
of the recent work in advancement and analysis of sorting
algorithms is the study of quadratic algorithms for sorting
evolving data [24] and analysis of algorithms on the multi-
threaded and multi-core environment. As the algorithms are
advancing it is obligatory to make changes in the algorithm
evaluation techniques. A review is conducted on sorting
algorithms with respect to the size of the array. The review
included all the used sorting algorithms of various
complexities. The results proved some of the quadratic
algorithms better over merge and quicksort in the provided
conditions [25]. The time complexity of insertion sort, bubble
sort, and selection sort is the same O(n

2
). It is difficult to

analyze best among these three discussed. However, their
algorithmic functions may be helpful to conclude some
results.

III. METHODOLOGY

Interval analysis is the feasible theoretical technique to
analyze the algorithms with the same worst-case analysis
[2,3]. Observation of mathematical graphs and functions
clarifies that there may be a point of intersection for two same
degree mathematical curves [21–24]. Asymptote always
considers a mathematical function of an algorithm termed as
algorithmic function. It takes the highest power term or degree
of algorithmic function. The highest terms show the worst-
case scenario for the algorithm. However, in the real run-time,
every line of code has an effect on time of execution. So, the
conclusive statement may come as that every term and related
coefficient of the algorithmic function is important and must
be considered for theoretical analysis. The impact will be
theoretical analysis close to real-time analysis of algorithms.
For the implementation of the proposed method, few linear
expressions are considered as algorithmic functions
performing the same task in a different manner.

3n+7 (4)

n+29 (5)

2n+145 (6)

The n in the above equations represents input size for the
algorithm. The Big-Oh for the above defined algorithmic
functions is O(n). According to asymptotic analysis,
algorithms are under the same curve of O(n) but graph
analysis shows the changing behavior of a function from
interval to interval. Table I compares the input size to the
output time of the algorithms. As the input size increases, the
algorithm will consume more time.

From Table I it is seen that for input size n=1 to n=10 in
(5) gives higher output values while the case reverses after
input size n=11 and values start diverging. The value for (4)
gets higher and higher due to the larger coefficient than (5).
Consider some other examples from Table II and III.

Table II shows the comparison between (5) and (6). The
output values show that the difference is constantly increasing
due to the fact of the higher coefficient and the constant term
of (6) in comparison with (5).

Table III compares the mathematical equation of (6) with
(4) for input size n. It shows that the coefficient of n in (4) is
greater than the coefficient of n in (6), while constant in (6) is
greater than constant in (4). As a result, for input size n=1 to
137 the difference starts converging and after input size 138 it
again starts diverging due to the higher coefficient of n for (4).
The above results lead to the conclusion that output also
depends on the coefficient of n and constant as it depends on n
specifically, for small inputs. Further analysis shows that there
must be a crossover point if coefficient for first and constant
for second is larger and vice versa. This crossover is
dependent on the difference or gap between the respective
coefficient and constants. The formula to find the crossover
point is proposed on the basis of these findings. The formula
gives the crossover point where algorithmic functions change
their behaviors. The functions in Tables I, II and III are all
linear. Therefore, generalized forms of two linear algorithmic
functions are assumed as shown in (7) and (8):

f(n)=a1 n+b1 (7)

g(n)=a2 n+b2 (8)

Where no is the crossover point, a1 coefficient of n in f(n),
b1 constant term in f(n), a2 coefficient of n in g(n), b2 constant
term in g(n)

The following are the possible cases for relating the
coefficients and constants of (7) and (8):

Case 1: If the coefficient of n and the constant term of the
first function (f(n)) is greater than the coefficient of n and the
constant term of the second function (g(n)) then second
function (g(n)) will take less execution time throughout from 1
to infinity. Mathematically it can be represented as,

if a1>a2 and b1>b2 g(n) is better than f(n) for interval [1,∞)

 (9)

Case 2: If coefficient of n of first function (f(n)) is greater
than coefficient of n of second function (g(n)) while constant
term of first function (f(n)) is smaller than constant term of the
second function (g (n)) then crossover point no will decide the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

340 | P a g e

www.ijacsa.thesai.org

intervals. The first function (f(n)) will take less execution time
before no and second function (g(n)) will take less execution
time after no. Mathematically it can be represented as:

if a1> a2 and b1<b2 then

no=| b2–b1 |/|a2 –a1 | (10)

So f(n) is better than g(n) for interval [1,no) and for interval
(no,) g(n) is better than f(n)

Case 3: If the coefficient of n and the constant term of the
first function (f (n)) is smaller than the coefficient of n and the
constant term of the second function (g(n)) then first function
(f(n)) will take less execution time throughout from 1 to
infinity. Mathematically it can be represented as:

if a1<a2 and b1<b2 f(n) is better than f(n) for interval [1,∞)

 (11)

Case 4: If coefficient of n of first function (f(n)) is smaller
than coefficient of n of second function (g(n)) while constant
term of first function (f(n)) is greater than constant term of the
second function (g (n)) then crossover point no will decide the
intervals. The second function (g(n)) will take less execution
time before no and first function (f(n)) will take less execution
time after no. Mathematically it can be represented as:

if a1< a2 and b1>b2 then

no=| b2–b1 |/|a2 –a1 | (12)

So g(n) is better than f(n) for interval [1,no) and for interval
(no,) f(n) is better than g(n).

For two algorithmic functions with same worst-case
analysis Big-Oh, the better will be “whose coefficient „a‟ and
constant „b‟ is lesser”

If one of the two („a‟ or „b‟) for an algorithmic function is
lesser while the second is higher than finding the crossover
point by the given formula:

no= (higher b – smaller b)/(higher a – smaller a) (13)

The algorithmic function with a greater coefficient of n
will take less time before no and algorithmic function with a
smaller coefficient of n will take less time after no.

The same technique can be helpful for higher order
polynomial algorithmic functions, for example, quadratic and
cubical.

IV. RESULTS

The proposed formula is validated on graphs and tables.
The first step is to calculate intervals for (4), (5) and (6) by
applying the proposed formula. The graphs for (4), (5) and (6)
are drawn for small random intervals. The intersection point in
the graph is compared with values in Tables I, II and III.
Lastly, values of the intersection point of formula are
validated through graph and table.

(4)→3n+7

(5)→n+29

(6)→2n+145

TABLE I. CROSSOVER POINT AT INPUT SIZE 11

Input Size (n) Output Time Eq 4 (3n+7) Output Time Eq 5 (n+29)

1 10 30

2 13 31

10 37 39

. . ..

11 40 40

12 43 41

. . .

71 220 100

72 223 101

TABLE II. NO CROSSOVER POINT

Input Size (n) Output Time Eq 5 (n+29) Output Time Eq 6 (2n+145)

1 30 147

2 31 149

. . .

98 127 341

99 128 343

. . .

174 203 493

175 204 495

TABLE III. CROSSOVER POINT AT INPUT SIZE 138

Input Size

(n)

Output Time Eq 4

(3n+7)

Output Time Eq 6

(2n+145)

1 10 147

2 13 149

. . .

106 325 357

. . .

137 418 419

138 421 421

139 424 423

. . .

177 538 499

178 541 501

As from (4) and (5), the coefficient of n in (4) is higher
than (5) but on contrary constant of (5) is greater. So, applying
the proposed formula:

no= (higher b – smaller b)/(higher a – smaller a)

no=(29-7)/(3-1)

no=11

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

341 | P a g e

www.ijacsa.thesai.org

The crossover point no is similar to that given in Table I.
This shows that (4) is better before input size 11 and (5)
performs better after input size 11. The graph shows the same
results in Fig. 1.

Similarly, the graphical representation of (4) and (6) are
given in Fig. 2. The graph changes behavior between 135 and
140 as shown in Fig. 2 (Graph with input size (n) 100-500).
The value in Table III for the given equations is input size
138. To validate it with proposed formula, consider (4) and
(6), the coefficient of n for (6) is smaller to (4) while vice

versa is the case if constants of both equations are observed.
By applying the formula:

no= (higher b – smaller b)/(higher a – smaller a)

no= (145-7)/(3-2)

no=138

It is concluded from the results that (4) has less execution
time on RAM on the interval [1,138) as compare to (6). On the
other hand, (6) performs better in the interval (138, .

Fig. 1. Graphs Representing Eqs. (4) and (5) for Various Ranges of Input (n).

Fig. 2. Graphs Representing Eqs. (4) and (6) for Various Ranges of Input (n).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

342 | P a g e

www.ijacsa.thesai.org

V. DISCUSSION

As suggested from the literature set-theoretic approach of
asymptote is commonly used for analysis of algorithms. The
approach gives an easier way to analyze algorithms in less
time and effort as compared to run-time analysis. However,
the technique of asymptotic complexity does not separate the
algorithms with the same worst-case analysis. In reality,
asymptotes assign a generic class of Big-Oh to each
algorithmic function by focusing degree term thus ignoring
lower terms. However, according to RAM assumptions each
statement has some execution time. It is also to be noted that
more and more statements inside and outside repetition
structure increase the value of coefficient and constants
respectively. Hence the impact falls as increased execution
time. It is observed from the study that algorithmic functions
of different algorithms with the same worst-case analysis
relate to each other in terms of the corresponding coefficient
and constant terms. Lesser the coefficient and constant term
lower will be the execution time and vice versa. To calculate
the relation between coefficient and constants of two
algorithms a formula is proposed and validated in this study.
As the results demonstrated that difference of coefficients of n
and difference of constant terms of two algorithmic functions
is nearer so a simpler formula generates the approximate
crossover point for algorithmic functions. The crossover point
forms the intervals for each given algorithm. Hence the
method narrows the gap between theoretical and exact
analysis for the algorithms.

VI. CONCLUSION

Analysis of algorithms is important to categorize
algorithms on the basis of time and space. Algorithms are
analyzed approximately by calculating their asymptotic
complexity. The mathematical functions are discussed to
relate two algorithms in order of statements inside and outside
the repetition structures. The relation between terms of
algorithmic functions leads to the formula for intersecting
point. The intersecting point eventually forms intervals for
performance behavior of algorithms. The analysis of linear
algorithmic functions follows quadratic algorithmic functions
as part of future work. The same formula works efficiently
well for quadratic algorithmic function if constant terms c1
and c2 have a very small difference i.e. |c1 – c2| is
approximately equal to zero. For the large difference between
constant terms of quadratic algorithmic functions, the formula
requires slightest of changes. Besides this for future work, it is
in the pipeline to generalize the formula for all the polynomial
algorithmic functions. It is also set as a milestone to design a
computational algorithm for the defined formula.

REFERENCES

[1] C. C. E. Leiserson, R. R. L. Rivest, C. Stein, and T. H. Cormen,
Introduction to Algorithms, Third Edition, vol. 7. 2009.

[2] A. Tarek, “A generalized set-theoretic approach for time and space
complexity analysis of algorithms and functions,” 2006, vol. 2, pp. 316–
324.

[3] R. Sedgewick and P. Flajolet, An introduction to the analysis of
algorithms. 2013.

[4] L. Rahman, M. S. A. Khan, A. Kabir, and M. S. Miah, “A model for set-
theoretic analysis of algorithm with asymptotic perspectives,” in 2013
International Conference on Informatics, Electronics and Vision
(ICIEV), 2013, no. 3, pp. 1–6.

[5] T. B. Ferreira, M. A. Fernandes, and R. Matias Jr., “A comprehensive
complexity analysis of user-level memory allocator algorithms,” in 2012
Brazilian Symposium on Computing System Engineering, 2012, pp. 99–
104.

[6] M. Garey and R. Graham, “Worst-case analysis of memory allocation
algorithms,” STOC ‟72 Proc. fourth Annu. ACM Symp. Theory
Comput., pp. 143–150, 1972.

[7] A. K. Mackworth and E. C. Freuder, “The complexity of come
polynomial network consistency algorithms for constraint satisfaction
Problems,” vol. 25, no. 1985, pp. 65–74.

[8] J. S. Vitter and P. Flajolet, “Average-Case analysis of algorithms and
data structures L‟analyse en Moyenne des algorithms et des structures de
donn ees,” no. page i, 1990.

[9] R. Goyal and D. K. Srivastava, “A study on cluster analysis technique -
Hierarchical Algorithms,” no. 9, pp. 1274–1279, 2016.

[10] M. Wolfram, A. Marten, and D. Westermann, “A comparative study of
evolutionary algorithms for phase shifting transformer setting
optimization,” in 2016 IEEE International Energy Conference
(ENERGYCON), 2016, pp. 1–6.

[11] K. S. Prado, N. T. R. B, V. F. Silva, L. B. Jr, L. A. Digiampietri, and E.
M. Ortega, Human-Computer Interaction. Interaction Platforms and
Techniques, vol. 4551. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007.

[12] C. Meshram, S. Gajbhiye, and D. Gupta, “Statistical analysis of an
algorithm‟s complexity for Linear Equation 2 . statistical analysis on
experimental results,” vol. 8, no. 2, pp. 191–198, 2015.

[13] B. J. Adams and K. W. Aschheim, “Computerized dental comparison : A
critical review of dental coding and ranking algorithms used in victim
identification,” vol. 61, no. 1, pp. 76–86, 2016.

[14] H. K. E. Schubert and A. Zimek, “The (black) art of runtime
evaluation : Are we comparing algorithms or implementations ?,”
Knowl. Inf. Syst., 2016.

[15] M. Li, H. Liang, S. Liu, C. K. Poon, and H. Yuan, “Asymptotically
optimal algorithms for running Max and Min Filters on random inputs,”
IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3421–3435, 2018.

[16] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborov??, “Asymptotic
analysis of the stochastic block model for modular networks and its
algorithmic applications,” Phys. Rev. E - Stat. Nonlinear, Soft Matter
Phys., vol. 84, no. 6, p. 066106, Dec. 2011.

[17] F. R. Bach and E. Moulines, “Non-asymptotic analysis of stochastic
approximation algorithms for machine learning,” Neural Inf. Process.
Syst., no. 2, pp. 1–9, 2011.

[18] S. Teng, “Nearly linear time algorithms for preconditioning and solving
symmetric, diagonally dominant linear,” vol. 35, no. 3, pp. 835–885,
2014.

[19] M. Xu, W. Tian, and R. Buyya, “A survey on load balancing algorithms
for virtual machines placement in cloud computing,” pp. 1–20, 2016.

[20] I. Pietri and R. Sakellariou, “Mapping virtual machines onto physical
machines in cloud computing : A Survey,” vol. 49, no. 3, 2016.

[21] J. Clément, T. H. Nguyen Thi, and B. Vallée, “Towards a realistic
analysis of some popular sorting algorithms,” Comb. Probab. Comput.,
vol. 24, no. 01, pp. 104–144, Jan. 2015.

[22] I. These, “Introduction to graph theory,” Discrete Math., vol. 37, no. 1,
p. 133, 1981.

[23] J. L. Gross, J. Yellen, and P. Zhang, Handbook of graph theory. Second
Edition. 2013.

[24] J. J. Besa, W. E. Devanny, D. Eppstein, M. Goodrich, and T. Johnson,
“Quadratic time algorithms appear to be optimal for sorting evolving
data,” pp. 87–96, 2018.

[25] J. Totla, “Review on execution time of sorting algorithms- A
Comparative Study,” vol. 5, no. 11, pp. 158–166, 2016.

