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Abstract—A theoretical approach of asymptote analyzes the 

algorithms for approximate time complexity. The worst-case 

asymptotic complexity classifies an algorithm to a certain class. 

The asymptotic complexity for algorithms returns the degree 

variable of the algorithmic function while ignores the lower 

terms. In perspective of programming, asymptote only considers 

the number of iterations in a loop ignoring inside and outside 

statements. However, every statement must have some execution 

time. This paper provides an effective approach to analyze the 

algorithms belonging to the same class of asymptotes. The 

theoretical analysis of algorithmic functions shows that the 

difference between theoretical outputs of two algorithmic 

functions depends upon the difference between their coefficient 

of ‘n’ and the constant term.  The said difference marks the point 

for the behavioral change of algorithms. This theoretic analysis 

approach is applied to algorithms with linear asymptotic 

complexity. Two algorithms are considered having a different 

number of statements outside and inside the loop. The results 

positively indicated the effectiveness of the proposed approach as 

the tables and graphs validates the results of the derived formula. 

Keywords—Asymptotic complexity; interval analysis; in-depth 
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I. INTRODUCTION 

An algorithm is a set of instructions to specify a solution to 
the problem in a finite time. The single problem may have 
more than one algorithm. For instance, algorithms to search 
maximum value in one-dimensional array or methods to sort 
elements in an array. Given the number of algorithms for a 
problem, it is obligatory that every algorithm differs in the 
order of complexity. Considering the difference in complexity 
of algorithms, some algorithms perform better than others in 
the provided environment. The level of complexity effects in 
execution time, the memory space acquired and lines of code 
(LOC) for the algorithms. From the given three metrics of 
complexity, LOC has no direct impact on algorithm 
complexity and is not considered a good metric for analysis of 
algorithm [1]. Therefore, execution time and space acquired 
are metrics for analysis of algorithms. The run-time of the 
algorithm is measured either by approximate analysis or 
execution time on the machine. Real execution time requires 
computational resources to run algorithms in actual time. The 
computational resources are affected by the environmental 
factors like temperature, number of resources utilized, 
dimensions of used resources etc. In contrast, the approximate 
method follows a virtual computational model. The virtual 
computational model depends on certain fixed execution times 
for different programming structures. Random Access 

Machine (RAM) is one of an adapted model for forming 
approximate algorithmic functions in terms of input size of the 
algorithm. RAM has three assumptions: 

 Only one processor 

 Infinite Memory 

 Cost of one unit processor time for each binary 
operation and each array access. 

A mathematical set-theoretic approach of asymptotes gives 
the time complexity of an algorithm. Asymptotic notations 
analyze algorithms for different time complexities. Generally, 
there are five asymptotic notations in mathematics. These are 
Big-Oh (O), Big-Omega (Ω), Theta (Θ), Small-Oh (o) and 
Small-Omega (ω).  Big-Oh (O), Big-Omega (Ω) and Theta 
(Θ) are used asymptotes to analyze the algorithms [2]. 

Big-omega appears for asymptotic lower bound in analysis 
of algorithm. In computing, it is termed as best-case analysis. 
Leiserson et al. [1] defines Big-Omega mathematically as: 

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ 

c.f(n) for all n > n0. }             (1) 

Big-Oh represents asymptotic upper bound for the 
analysis, when input size becomes so big that it tends to 
infinity, which is normally termed as worst-case analysis. 
Leiserson et al. [1] defines the equation of Big-Oh as follow: 

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) ≤ 

c.g(n) for all n > n0. }             (2) 

Theta shows tight bound for given function. It gives the 
average case analysis in computing. From mathematical 
definition stated by Leiserson et al. [1] 

θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) = Ω(f(n)) 

for all n > n0. }              (3) 

Given in the above defined equations (1), (2) and (3), n is 
the input size for algorithm. It may be size of array, stack or 
basic data structure to hold memory. f(n) represents 
mathematical function of algorithm and g(n) is the comparable 
function or asymptote. 

The algorithms are compared on their worst-case analysis 
[3]. If the results of the worst-case analysis for two algorithms 
are the same, then the second metric to analyze the algorithms 
is best-case analysis. The problem arises when the worst-case 
and best-case analysis gives the same time complexity. It 
becomes difficult with asymptotes to analyze the better 
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algorithm from the given pool [4]. The problem of analyzing 
the algorithm with the same time-complexity is discussed by 
[2,4,5] in their respective papers. Leiserson et al. [1] and 
Sedgewick et al. [3] in their books quoted a generalized 
statement for the above-discussed problem that “Asymptotic 
big-Oh approximations are for the functions tend towards 
infinite large values”. This means with asymptotes, analysis 
for small input values is not feasible. So this traditional 
approach is not enough to analyze and choose the best 
algorithm from the given set [2–4]. Moreover, the real-world 
problems work with a specific interval of inputs. While 
asymptotes give us peak value analysis. It ignores the in-
between behavior of an algorithmic function. The alternative 
method to differentiate the same asymptotic time complexity 
algorithms is real-time analysis on RAM. The RAM technique 
is a theoretical analysis requires less time and is not affected 
by certain environmental factors. Rahman [4] proposed two 
theoretical approaches (i) graph analysis and (ii) interval 
analysis [4]. Interval analysis works on a mathematical point 
of intersections for two or more functions. Full mathematical 
implementation of point of intersection contains a number of 
calculating steps with an overload of undesirable results in 
many cases like imaginary values, negative integer values, and 
continuous values. To some extent, the point of intersection 
approach throws an idea to check for the positive integer 
where the crossover occurs between the two algorithmic 
functions. This paper suggests a solution, which will analyze 
algorithms with the same asymptotic complexity, but different 
algorithmic functions. The proposed method finds 
approximate number „no‟, where no is the point from which the 
algorithmic functions start changing their behaviors. 

II. LITERATURE REVIEW 

Algorithms are analyzed and validated from the very start 
of programming, for example, Garey et al [6], discussed the 
memory allocation algorithms for complexity effecting 
running time. Similarly, Mackeorth and Freuder [7], discussed 
network consistency algorithms related to artificial 
intelligence and analyzed them for worst-case analysis 
resulting in the linear time for binary constraints. Vitter and 

Flajolet [8] introduced average-case analysis: this 
technique worked well for small algorithms and data 
structures. The study was on statistical measurements and 
formulations. Analysis of algorithms is still a need of the day. 
The statement is supported by the recent studies of [9–15] on 
analysis of algorithms applied in different fields via different 
techniques. Adams and Aschheim (2016) compared 
algorithms for dental coding and ranking problems. The paper 
concluded with setting optimized (OPT) algorithm as best for 
large inputs with simple coding [13]. Schubert and Zimek  
[14] also discussed the analysis of algorithms technique 
separating implementation and evaluation. Most recently a 
study is conducted for the max-min filter on random inputs. 
The study focused on asymptotic analysis for the said problem 
on dynamic algorithms [15]. 

Analysis of algorithm is done considering different aspects 
of real-time evaluation, asymptotic analysis, non-asymptotic 
analysis, and sensitive analysis etc. Among the above 
asymptotic analysis is one of the easiest ways to get 

approximated results theoretically but with accuracy payoff. 
Tarek [2] wrote on the set-theoretic approach of asymptotes 
i.e. asymptotic functions are relative functions than individual 
bare ones. This means asymptotic functions always depend on 
coefficient and exponents of input size n. The extended work 
of  Decelle et al. [16] was an exact analysis of the stochastic 
block model. The author used an asymptotic approximation 
for analysis. A research study [17] on non-asymptotic analysis 
of machine learning algorithms may be in principle costly to 
generate results beyond a certain number of equations. Teng 
[18] discussed linear time algorithms for preconditioning and 
solving dominant linear systems. Xu et al. [19] explore the 
algorithms for Virtual Machine (VM) deployment and load 
balancing. The research included certain new metrics to 
conclude for the best performing algorithm in the deployment 
and load balancing of VM. The proposed and existed all 
metrics are environmental variables dependent on the applied 
platform. Pietri et al. [20] give the survey of VM deployment 
on Physical Machines (PM). The adopted techniques were 
proven correct but research was inconclusive about the best 
technique. Thi and Thi [21] published work on the same 
problem of approximated the complexity of algorithms using 
asymptotes. The work suggested statistical and probability 
formulas resulting in equivalent values that of asymptotes. 
The formula calculates sorting algorithms realistic complexity. 
The method is partially automated and most calculations are 
done manually. In addition, the method depends on the type 
and nature of input [21]. 

The above studies show that authors are inconclusive to 
decide between algorithms. For the same degree of two 
different algorithmic functions asymptotes failed to analyze 
them for small or large input sizes. Asymptotes treat them 
equally good for all input sizes, which is not exactly the case. 
The inference is to replace asymptotic analysis by realistic 
analysis specifically for same worst-case complexity 
algorithms, but the realistic analysis also bears the load of 
environmental factors and availability of physical resources. 
The problem of analyzing with the same time-complexity is 
discussed by [5] and [4] in their respective papers. Rahman et 
al. [4] suggested the analysis of algorithmic functions by 
graphs through drawing them. The author also gave an interval 
analysis to mark the point where the big value starts with the 
creation of threshold value (k) for n tends to infinity. The 
study considers the insertion sort as an example. Insertion sort 
is quadratic in nature. The worst-case analysis for insertion 
sort is O(n

2
). It was claimed algorithmic functions for two 

different implementations of insertion sort. The proposed 
methodology was to suppose a threshold point and then 
calculate values of „k‟ for all inputs and mark the input point 
breaking a specific threshold. The problem in the study was 
the selection of a threshold point and then to find that input 
where the big value starts. Alternative for interval analysis is 
the graph method. It is very difficult to draw and analyze the 
graphs for infinite input values. Also, the input size is discrete 
in nature [3] while graphs of polynomials are continuous in 
nature [21,22]. Ferreira et al. [5] conducted a survey on 
memory allocation techniques. The article concluded that the 
malloc family has linear time complexity, but it is difficult to 
choose the best algorithm of the family because of the same 
time complexity. However, sensitivity analysis is suggested 
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for overcoming this problem. The sensitive analysis is not an 
efficient metric because the hardware and software vary too 
much from point to point and doing an analysis every time 
before implementation may not be easy. Most recently 
Schubert and Zimek [14] discussed the hurdles in algorithm 
evaluation and implementation on environment-sensitive 
metrics like machine execution time and platform dependent 
testing. The author argues with different techniques used to 
validate the efficiency of algorithms presented in research 
papers. Most of the time the current algorithm proved less 
efficient than presented in the previous research papers. The 
affecting factor is a run-time evaluation of algorithms, the 
most common technique used for analysis of research 
algorithms. Therefore, there must be a standard technique to 
check the algorithm and its implementation separately. The 
data mining algorithms are tested on different platforms with 
different datasets giving the changed result on every platform 
[14]. On the other side of the discussion, there are many 
sorting algorithms available. Merge sort, heap sort, insertion 
sort, bubble sort, selection sort, and many others. These 
algorithms are passing through advancements to reduce the 
overall complexity. Small improvements in algorithms are 
totally negligible due to discrete classes of asymptotes. Some 
of the recent work in advancement and analysis of sorting 
algorithms is the study of quadratic algorithms for sorting 
evolving data [24] and analysis of algorithms on the multi-
threaded and multi-core environment. As the algorithms are 
advancing it is obligatory to make changes in the algorithm 
evaluation techniques. A review is conducted on sorting 
algorithms with respect to the size of the array. The review 
included all the used sorting algorithms of various 
complexities. The results proved some of the quadratic 
algorithms better over merge and quicksort in the provided 
conditions [25]. The time complexity of insertion sort, bubble 
sort, and selection sort is the same O(n

2
). It is difficult to 

analyze best among these three discussed. However, their 
algorithmic functions may be helpful to conclude some 
results. 

III. METHODOLOGY 

Interval analysis is the feasible theoretical technique to 
analyze the algorithms with the same worst-case analysis 
[2,3]. Observation of mathematical graphs and functions 
clarifies that there may be a point of intersection for two same 
degree mathematical curves [21–24]. Asymptote always 
considers a mathematical function of an algorithm termed as 
algorithmic function. It takes the highest power term or degree 
of algorithmic function. The highest terms show the worst-
case scenario for the algorithm. However, in the real run-time, 
every line of code has an effect on time of execution. So, the 
conclusive statement may come as that every term and related 
coefficient of the algorithmic function is important and must 
be considered for theoretical analysis. The impact will be 
theoretical analysis close to real-time analysis of algorithms. 
For the implementation of the proposed method, few linear 
expressions are considered as algorithmic functions 
performing the same task in a different manner. 

3n+7                (4) 

n+29                (5) 

2n+145               (6) 

The n in the above equations represents input size for the 
algorithm. The Big-Oh for the above defined algorithmic 
functions is O(n). According to asymptotic analysis, 
algorithms are under the same curve of O(n) but graph 
analysis shows the changing behavior of a function from 
interval to interval. Table I compares the input size to the 
output time of the algorithms. As the input size increases, the 
algorithm will consume more time. 

From Table I it is seen that for input size n=1 to n=10 in 
(5) gives higher output values while the case reverses after 
input size n=11 and values start diverging. The value for (4) 
gets higher and higher due to the larger coefficient than (5). 
Consider some other examples from Table II and III. 

Table II shows the comparison between (5) and (6). The 
output values show that the difference is constantly increasing 
due to the fact of the higher coefficient and the constant term 
of (6) in comparison with (5). 

Table III compares the mathematical equation of (6) with 
(4) for input size n. It shows that the coefficient of n in (4) is 
greater than the coefficient of n in (6), while constant in (6) is 
greater than constant in (4). As a result, for input size n=1 to 
137 the difference starts converging and after input size 138 it 
again starts diverging due to the higher coefficient of n for (4). 
The above results lead to the conclusion that output also 
depends on the coefficient of n and constant as it depends on n 
specifically, for small inputs. Further analysis shows that there 
must be a crossover point if coefficient for first and constant 
for second is larger and vice versa. This crossover is 
dependent on the difference or gap between the respective 
coefficient and constants. The formula to find the crossover 
point is proposed on the basis of these findings. The formula 
gives the crossover point where algorithmic functions change 
their behaviors. The functions in Tables I, II and III are all 
linear. Therefore, generalized forms of two linear algorithmic 
functions are assumed as shown in (7) and (8): 

f(n)=a1 n+b1              (7) 

g(n)=a2 n+b2              (8) 

Where no is the crossover point, a1 coefficient of n in f(n), 
b1 constant term in f(n), a2 coefficient of n in g(n), b2 constant 
term in g(n) 

The following are the possible cases for relating the 
coefficients and constants of (7) and (8): 

Case 1: If the coefficient of n and the constant term of the 
first function (f(n)) is greater than the coefficient of n and the 
constant term of the second function (g(n)) then second 
function (g(n)) will take less execution time throughout from 1 
to infinity. Mathematically it can be represented as, 

if a1>a2 and b1>b2 g(n) is better than f(n) for interval [1,∞)

                (9) 

Case 2: If coefficient of n of first function (f(n)) is greater 
than coefficient of n of second function (g(n)) while constant 
term of first function (f(n)) is smaller than constant term of the 
second function (g (n)) then crossover point no will decide the 
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intervals. The first function (f(n)) will take less execution time 
before no and second function (g(n)) will take less execution 
time after no. Mathematically it can be represented as: 

if a1> a2  and b1<b2 then 

no=| b2–b1 |/|a2  –a1 |           (10) 

So f(n) is better than g(n) for interval [1,no) and for interval 
(no,  ) g(n) is better than f(n) 

Case 3: If the coefficient of n and the constant term of the 
first function (f (n)) is smaller than the coefficient of n and the 
constant term of the second function (g(n)) then first function 
(f(n)) will take less execution time throughout from 1 to 
infinity. Mathematically it can be represented as: 

if a1<a2  and b1<b2  f(n) is better than f(n) for interval [1,∞)

              (11) 

Case 4: If coefficient of n of first function (f(n)) is smaller 
than coefficient of n of second function (g(n)) while constant 
term of first function (f(n)) is greater than constant term of the 
second function (g (n)) then crossover point no will decide the 
intervals. The second function (g(n)) will take less execution 
time before no and first function (f(n)) will take less execution 
time after no. Mathematically it can be represented as: 

if a1< a2  and b1>b2  then 

no=| b2–b1 |/|a2  –a1 |           (12) 

So g(n) is better than f(n) for interval [1,no) and for interval 
(no,  ) f(n) is better than g(n). 

For two algorithmic functions with same worst-case 
analysis Big-Oh, the better will be “whose coefficient „a‟ and 
constant „b‟ is lesser” 

If one of the two („a‟ or „b‟) for an algorithmic function is 
lesser while the second is higher than finding the crossover 
point by the given formula: 

no=  (higher b – smaller b)/(higher a – smaller a)        (13) 

The algorithmic function with a greater coefficient of n 
will take less time before no and algorithmic function with a 
smaller coefficient of n will take less time after no. 

The same technique can be helpful for higher order 
polynomial algorithmic functions, for example, quadratic and 
cubical. 

IV. RESULTS 

The proposed formula is validated on graphs and tables. 
The first step is to calculate intervals for (4), (5) and (6) by 
applying the proposed formula. The graphs for (4), (5) and (6) 
are drawn for small random intervals. The intersection point in 
the graph is compared with values in Tables I, II and III. 
Lastly, values of the intersection point of formula are 
validated through graph and table. 

(4)→3n+7 

(5)→n+29 

(6)→2n+145 

TABLE I. CROSSOVER POINT AT INPUT SIZE 11 

Input Size (n) Output Time Eq 4 (3n+7) Output Time Eq 5 (n+29) 

1 10 30 

2 13 31 

10 37 39 

. . .. 

11 40 40 

12 43 41 

. . . 

71 220 100 

72 223 101 

TABLE II. NO CROSSOVER POINT 

Input Size (n) Output Time Eq 5 (n+29) Output Time Eq 6 (2n+145) 

1 30 147 

2 31 149 

. . . 

98 127 341 

99 128 343 

. . . 

174 203 493 

175 204 495 

TABLE III. CROSSOVER POINT AT INPUT SIZE 138 

Input Size 

(n) 

Output Time   Eq 4 

(3n+7) 

Output Time Eq 6 

(2n+145) 

1 10 147 

2 13 149 

. . . 

106 325 357 

. . . 

137 418 419 

138 421 421 

139 424 423 

. . . 

177 538 499 

178 541 501 

As from (4) and (5), the coefficient of n in (4) is higher 
than (5) but on contrary constant of (5) is greater. So, applying 
the proposed formula: 

no=  (higher b – smaller b)/(higher a – smaller a) 

no=(29-7)/(3-1) 

no=11 
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The crossover point no is similar to that given in Table I. 
This shows that (4) is better before input size 11 and (5) 
performs better after input size 11. The graph shows the same 
results in Fig. 1. 

Similarly, the graphical representation of (4) and (6) are 
given in Fig. 2. The graph changes behavior between 135 and 
140 as shown in Fig. 2 (Graph with input size (n) 100-500).  
The value in Table III for the given equations is input size 
138. To validate it with proposed formula, consider (4) and 
(6), the coefficient of n for (6) is smaller to (4) while vice 

versa is the case if constants of both equations are observed. 
By applying the formula: 

no=  (higher b – smaller b)/(higher a – smaller a) 

no= (145-7)/(3-2) 

no=138 

It is concluded from the results that (4) has less execution 
time on RAM on the interval [1,138) as compare to (6). On the 
other hand, (6) performs better in the interval (138,   . 

 

Fig. 1. Graphs Representing Eqs. (4) and (5) for Various Ranges of Input (n). 

 

Fig. 2. Graphs Representing Eqs. (4) and (6) for Various Ranges of Input (n). 
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V. DISCUSSION 

As suggested from the literature set-theoretic approach of 
asymptote is commonly used for analysis of algorithms. The 
approach gives an easier way to analyze algorithms in less 
time and effort as compared to run-time analysis. However, 
the technique of asymptotic complexity does not separate the 
algorithms with the same worst-case analysis. In reality, 
asymptotes assign a generic class of Big-Oh to each 
algorithmic function by focusing degree term thus ignoring 
lower terms. However, according to RAM assumptions each 
statement has some execution time. It is also to be noted that 
more and more statements inside and outside repetition 
structure increase the value of coefficient and constants 
respectively. Hence the impact falls as increased execution 
time. It is observed from the study that algorithmic functions 
of different algorithms with the same worst-case analysis 
relate to each other in terms of the corresponding coefficient 
and constant terms. Lesser the coefficient and constant term 
lower will be the execution time and vice versa. To calculate 
the relation between coefficient and constants of two 
algorithms a formula is proposed and validated in this study. 
As the results demonstrated that difference of coefficients of n 
and difference of constant terms of two algorithmic functions 
is nearer so a simpler formula generates the approximate 
crossover point for algorithmic functions. The crossover point 
forms the intervals for each given algorithm. Hence the 
method narrows the gap between theoretical and exact 
analysis for the algorithms. 

VI. CONCLUSION 

Analysis of algorithms is important to categorize 
algorithms on the basis of time and space. Algorithms are 
analyzed approximately by calculating their asymptotic 
complexity. The mathematical functions are discussed to 
relate two algorithms in order of statements inside and outside 
the repetition structures. The relation between terms of 
algorithmic functions leads to the formula for intersecting 
point. The intersecting point eventually forms intervals for 
performance behavior of algorithms. The analysis of linear 
algorithmic functions follows quadratic algorithmic functions 
as part of future work. The same formula works efficiently 
well for quadratic algorithmic function if constant terms c1 
and c2 have a very small difference i.e. |c1 – c2| is 
approximately equal to zero. For the large difference between 
constant terms of quadratic algorithmic functions, the formula 
requires slightest of changes. Besides this for future work, it is 
in the pipeline to generalize the formula for all the polynomial 
algorithmic functions. It is also set as a milestone to design a 
computational algorithm for the defined formula. 
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