
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

358 | P a g e

www.ijacsa.thesai.org

Enhanced Random Early Detection using Responsive

Congestion Indicators

Ahmad Adel Abu-Shareha
1

Information Technology and Computing Department

Arab Open University (AOU)

Riyadh, Saudi Arabia

Abstract—Random Early Detection (RED) is an Active Queue

Management (AQM) method proposed in the early 1990s to

reduce the effects of network congestion on the router buffer.

Although various AQM methods have extended RED to enhance

network performance, RED is still the most commonly utilized

method; this is because RED provides stable performance under

various network statuses. Indeed, RED maintains a manageable

buffer queue length and avoids congestion resulting from an

increase in traffic load; this is accomplished using an indicator

that reflects the status of the buffer and a stochastic technique

for packet dropping. Although RED predicts congestion, reduces

packet loss and avoids unnecessary packet dropping, it reacts

slowly to an increase in buffer queue length, making it

inadequate to detect and react to sudden heavy congestion. Due

to the aforementioned limitation, RED is found to be significantly

influenced by the way in which the congestion indicator is

calculated and used. In this paper, RED is modified to enhance

its performance with various network statuses. RED technique is

modified to overcome several disadvantages in the original

method and enhance network performance. The results indicate

that the proposed Enhanced Random Early Detection (EnRED)

and Time-window Augmented RED (Windowed-RED)

methods—compared to the original RED, ERED and BLUE

methods—enhances network performance in terms of loss,

dropping and packet delay.

Keywords—Congestion; random early detection; active queue

management

I. INTRODUCTION

The evolution of the computer network and its broad
usability for communication, remote controlling, organizational
monitoring and information governing has resulted in the
widespread utilization of its resources. Congestion is a
phenomenon that occurs on a computer network when the
traffic load exceeds the capabilities of these resources. The
memory allocated by the network router is the most critical
resource in the network that is susceptible to congestion, which
can cause delays, packet loss and low network performance
[1]. Congestion degrades the quality of services provided to the
users and the applications. To predict congestion before it
occurs, or before it starts to severely affect performance,
various Active Queue Management (AQM) methods have been
proposed. Although AQM methods were proposed to
overcome the limitations of the first approach, i.e. Random
Early Detection (RED)[2], RED is still the most commonly
utilized method; this is because RED provides stable
performance under various network statuses [3-6].

The AQM methods monitor the status of the router buffers,
calculate the dropping probability (Dp) for each packet arrival,
and implement packet dropping stochastically based on the
calculated value. Accordingly, AQM methods take one of the
two opposite decisions: packet accommodation and packet
dropping. The role of the router is to accommodate the arrival
packets to transfer them to the intended destination; However,
to avoid congestion, packets are dropped when the buffer
overflows and network performance degrading is expected [4].
Generally, the developed AQM methods consist of three main
components: the congestion indicators used to monitor the
buffer/network status, the function used to calculate Dp and the
algorithm that determines when to use these equations and
indicators [6]. For RED, Dp is calculated using a mathematical
function with a reference to the average queue length (aql), a
parameter that reflects the average length over time [7, 8].

The advantages of RED are summarized as follows:
(1) RED predicts congestion before it affects network
performance and reacts by dropping packets stochastically to
avoid the effects of congestion; (2) RED, using random
dropping, avoids global synchronization—a phenomenon that
occurs when all senders reduce their transmission rates
simultaneously for a period and then start increasing them
again, also simultaneously; (3) RED uses aql to calculate the
average queue length over time. Accordingly, when the arrival
rate increases for a short while, aql does not increase rapidly.
Thus, RED avoids dropping packets unnecessarily during
short, heavy traffic [9]. Thus, the limitations can be
summarized as follows: (1) RED exhibits low performance
during sudden congestion, because it uses aql, which is
insensitive to sudden changes in queue length; (2) RED causes
packet delay in heavy traffic, because it does not monitor the
router buffer delays [2, 9-11].

Using aql as a congestion indicator has its advantages and
disadvantages. One advantage is that aql is able to avoid false,
and thus deceptive, congestion indications. However, the
disadvantages are the result of sudden high traffic and
unexpected congestion. To overcome this disadvantage, it is
recommended to use modified parameters that are equal to aql
or to ease the dependency on aql to enhance network
performance. However, RED is found to be badly influenced
by the way in which the congestion indicator is calculated and
used [4].

In this paper, RED is modified to enhance its performance
with various network statuses. RED technique is modified to
overcome several disadvantages in the original method and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

359 | P a g e

www.ijacsa.thesai.org

enhance network performance. Enhanced Random Early
Detection (EnRED) and Time-window Augmented RED
(Windowed-RED) methods are proposed to address the
problem of slow reaction time, and thus increase the number of
queued packets in the buffer. The rest of the paper is organized
as follows: Section II discusses the RED method in details and
the disadvantages to be overcome are clarified. Section III
presents the related work. The proposed Work is presented in
Section IV; the simulation details are given in Section V and
the related results is presented in Section VI. Finally, the
conclusion is given in Section VII.

II. RED METHOD

RED is implemented, as given in Algorithm 1, in three
stages; these are: (1) aql calculation, (2) Dp calculation and
stochastic packet dropping, (3) buffer tracing.

Algorithm 1: RED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

PARAMETER SETTING: wq, Thmin, Thmax, Dmax

VARIABLE INITIALIZATION: aql:= 0, count:= -1

FOR-EACH A

1) CALCULATE aql:

 IF (q equal to 0) aql:=(1-w)f(cTime- iTime) * aql

 IF (q not equal to 0) aql:= (1-w)* aql + wq *q

2) CALCULATE Dp & IMPLEMENT packet dropping,

 IF (minth ≤ aql < maxth)

 counter ++

 Dp'= Dmax* (aql -Thmin)/(Thmax - Thmin)

 Dp = Dp'/ (1- counter * Dp')

 IF (Drop(Dp) is TRUE)

 Drop-A, count := 0

 ELSE IF (aql > maxth)

 Drop-A

 counter:= 0

 ELSE

 counter:= -1

3) TRACE Buffer Idleness

 IF (q equal to 0 && Idle equal to False)

 iTime=cTime, Idle = TRUE

 ELSE Idle = False

Parameters:
wq: queue weight
Thmin: minimum threshold
Thmax: maximum threshold
Dmax: maximum probability value

Saved Variables:

A: current packet arrival
Dp: packet-dropping probability
Dp’: initial packet-dropping probability

cTime: current time
q: current queue size
aql: average queue size

iTime: idle time
Idle: idle status true/false
count: # of packets in medium buffer length that are not
dropped. Count is a balanced parameter for Dp calculation

In the first stage, aql is calculated using two different
equations. The first is used if the buffer is currently idle (see
line #5). This equation is a function of the previous aql and the
period of idleness. The second equation is used if the buffer is
not idle, and it is a function of the previous aql and the current
queue size q. In the second stage, Dp is calculated and the
dropping is implemented or skipped according to the three
scenarios.

In the first case, as given in line #8, Dp is calculated as a
function of aql and another variable, counter, as well as a set of
parameters. Subsequently, the packet is dropped or
accommodated as a function of the calculated Dp, while the
counter variable is set to zero if the packet is dropped. The
counter parameter counts the number of packets in the critical
case, which were not dropped according to the stochastic
decision. The counter is simply increased with each
accommodated packet, and is reset when a packet is dropped.
As the value of the counter increases, the Dp value increases
significantly. This variable is required to avoid, as much as
possible, dropping sequential packets to circumvent global
synchronization. In the second case, the packet is dropped and
the counter is set to zero [12]. In the third case, the packet is
accommodated and the counter is set to the value of negative
one. A negative counter value reduces the dropping probability
when the status of the queue jumps from a low-queue state to a
high-queue critical state. A Dp value that is calculated using a
negative value for counter will be of a low value. Accordingly,
with sudden heavy traffic, the Dp value will increase slowly.
Finally, in the third stage, the buffer tracing process saves the
period of idleness [2, 12, 13].

RED calculates the value of aql with each packet arrival.
The calculated value is then compared to two pre-determined
threshold values (the minimum and maximum thresholds),
which divide the buffer into three parts, as illustrated in Fig. 1.
The value of aql based on the threshold comparison determines
the action to be taken, which can be one of the following: (1) If
the calculated aql value is less than the minimum threshold,
then the arrival packet is accommodated with a Dp value equal
to zero; no dropping occurs when aql is below the minimum
threshold [14]. (2) If the aql value is greater than the maximum
threshold, then the arrival packet is dropped with Dp equal to
one; The arrival packet is firmly dropped when aql is greater
than the maximum threshold. (3) A stochastic dropping process
is implemented when aql is between the minimum and the
maximum thresholds. In this case, Dp is calculated using a
mathematical function Dp(aql), which depends on the value of
aql that affects Dp proportionally. As such, Dp increases as aql
increases, and vice versa [14-17].

Incoming

packets

Departing

packets

minimum

threshold
maximum

threshold

No droppingDrop all Drop packets randomly

Fig. 1. Buffer Illustration and RED Actions and Parameters.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

360 | P a g e

www.ijacsa.thesai.org

III. RELATED WORK

Various extensions to the RED method have been proposed
in the literature to overcome the limitations discussed above.
For example, Gentle RED (GRED) [12] was proposed to
resolve the delay problem in RED. GRED uses a third
threshold parameter, called the double maximum threshold, in
addition to the other parameters (as illustrated in Fig. 2). The
goal of the introduced threshold is to stabilize aql at a specific
value. Accordingly, the computed aql value is compared to
three thresholds: minimum, maximum and double maximum.
This creates four cases for the calculated Dp rather than three.
This extension, however, increases the dependency on
parameter settings. Moreover, GRED is more sensitive to
sudden congestion, because it reduces packet dropping
compared to RED. Moreover, GRED exhibits poor
performance when heavy congestion occurs while aql is below
the maximum threshold. Thus, Adaptive RED (ARED) [13]
was proposed to resolve the delay problem in RED while
preserving the RED mechanism as much as possible. ARED
used aql, minimum and maximum thresholds as the main
parameters, in addition to a new parameter that represents the
optimal target of the queue length, called target aql (Taql).
Accordingly, aql is compared with three values in ARED, and
Dp is calculated the same as in RED. However, the value of
the initial dropping, Dmax, which is fixed in RED, is calculated
adaptively in ARED. The Dmax value increases or decreased
based on the value of aql compared to Taql.

Other methods extend RED by marginally modifying the
original algorithm. For example, PI [18] uses traffic load value
and aql value to calculate Dp. Accordingly, dropping increases
when traffic load increases when aql is low to reduce delay.
Dynamic RED (DRED) [19] extends RED by comparing
instance queue length to a single threshold value. When queue
length is below the threshold, no dropping is implemented.
Moreover, when queue length is above the threshold, Dp
increases or decreases based on queue length and the previous
Dp value. Random Exponential Marking (REM) [20]
extends RED using instance queue length, instead of aql,
combined with the estimated load rate. However, instance
queue length causes unnecessary packet dropping and false
congestion. BLUE method [21] uses an adaptive value of Dp,
which increases or decreases based on the estimated congestion
status; This is similar to ARED and DRED in regard to packet
loss and the threshold value. Various other AQM methods have
been proposed in the literature, with different modifications
made to the original RED mechanism for different purposes, as
summarized in Table I.

Incoming

packets

Departing

packets

minimum

threshold

double maximum

threshold

No

Dropping

Drop

All

High Packet

Dropping

Low Packet

Dropping

maximum

threshold

Fig. 2. Buffer Illustration and GRED Actions and Parameters.

TABLE I. SUMMARY OF RED’S EXTENSIONS

Method Modification Objectives

RED [2] Original
Avoid global
synchronization, reduce

packet loss and dropping

GRED [12]
Use one more threshold to
stabilize aql

Reduce delay

ARED [13]
Adaptively increase the initial

dropping value based on aql
Reduce delay

PI [22]
Use load parameter (besides

aql) to calculate Dp
Reduce delay

DRED [19]
Adaptively increase the initial
dropping value based on ql

Reduce delay

REM [20]

Adaptively increase the initial

dropping value based on ql and
load rate

Reduce loss and

maximize resource
utilization

BLUE [21]

Adaptively increase the initial

dropping value based on packet

loss

Reduce packet loss

SRED [23]

Adaptively increase Dp value

based on aql and number of

active flows

Fair resource allocation

ERED [24]
Use q (besides aql) to calculate
Dp.

Reduce packet loss

MRED [25]
Use the heuristic method to

calculate Dp
Reduce packet loss

AVQ [26] Use delay to calculate Dp Reduce round-trip delay

RaQ[27]
Add more equations that

calculate Dp based on aql

Maximize resource

utilization

Yellow [28] Use load to calculate Dp
Maximize resource
utilization

CRED [3]
Use cloud membership degree

calculation to calculate Dp
Reduce packet dropping

Adaptive

Threshold

RED [16]

Use rules set to calculate Dp
based on aql and q

Reduce packet dropping

Adaptive-
AQMRD

[29]

Adaptive parameter tuning

Reduce packet dropping

and solve

parameterization
problem

FLRED [8]
Use fuzzy logic to calculate Dp

based on aql and delay

Solve parameterization

problem

Overall, existing AQM methods can be broadly classified
into two groups : The first involves methods that preserve the
RED mechanism and parameters for monitoring and reacting,
such as GRED [12] and ARED [13]; The other group contains
methods that implemented major modifications while
preserving the overall concepts of stochastic packet dropping.

Accordingly, the similarities among the existing AQM
methods are: (1) AQM depends on stochastically packet
dropping to avoid global synchronization; (2) AQM dropping
probability is calculated with reference to the buffer or the
network status; (3) AQM buffer monitoring is tracked and the
decision-making is activated with each packet arrival.

The differences between the AQM methods can be
summarized as follows: (1) Different congestion indicators and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

361 | P a g e

www.ijacsa.thesai.org

parameters (such as aql, q, load, delay, loss) are utilized by
different AQM methods. (2) Different decision-making
scenarios are used for different AQM methods; RED used three
scenarios (firmly dropping, stochastic dropping and no
dropping), while other methods keep the stochastic dropping
and add or remove other scenarios. (3) Different AQM
methods use different heuristic equations and methods to
calculate the dropping probability. These differences are
motivated by different objectives, such as to reduce packet
loss, reduce packet dropping, reduce round-trip delay,
maximize resource utilization, and fair allocation. The first four
objectives are conflicted, as reducing delay will minimize
resource utilization and reducing dropping will increase delay.

RED is a well-known, stable AQM technique that was
adapted by the Internet Engineering Task Force (IETF) in RFC
2309. For a long time, RED was utilized in distributed routers
all over the world. Extended methods provide different
capabilities and cause different QoS. Accordingly, replacing
RED with different methods will harm the stability of the
existing systems. Thus, it is necessary to enhance RED while
maintaining its characteristics and configuration.

IV. PROPOSED WORK

As network technology evolves, the limitations of the RED
have been discovered. RED can be viewed as a dual-
mechanism method, in which the first mechanism is a multi-
reaction process activated by the implemented algorithm and
all the utilized parameters, except for aql. This mechanism
reacts differently based on the status of the queue, as discussed
above, and it is the reason behind the first and the second
advantages of the RED method. The second mechanism is the
RED congestion alert mechanism, which is implemented using
aql. This mechanism is related to the third advantage and the
first disadvantage. Accordingly, it is easier to point at the
source of the limitation, which can be referred back to the
utilization of aql. RED uses aql for two tasks: (1) As an
indicator for monitoring to determine the reaction scenario;
(2) As a parameter for dropping the probability calculation.

In fact, all of these tasks use aql in different ways. Since
using aql has both positive and negative effects, replacing aql
in all of these tasks is not a good approach; Instead, RED can
use different bounds and parameters to gain an advantage and
eliminate its disadvantages.

In the dropping calculation, using aql has proven to have
the following advantages: (1) Avoid high dropping with
limited increase in buffer length; (2) Avoid high delay with
limited decrease in buffer length. These advantages refer to
slow changes in aql value with the changes in the buffer
length, which can be temporarily according to the busty nature
of the traffic. To determine the reaction scenario, using three
scenarios for packet dropping (based on a threshold
comparison) is sufficient and has several advantages. However,
using aql as a monitoring indicator has the disadvantage of
providing an unreal indication of the queue status. This
disadvantage refers to variations in aql as a result of sudden
congestion. Because the slow variation has both advantages
and disadvantages, the disadvantage of using aql is directly
related to the monitoring of the queue rather than the dropping
calculation. Accordingly, the decision between fully dropping,

no dropping, and stochastic dropping should be made based on
the status of the buffer. Thus, instead of using aql to make a
suitable decision, other indicators should be used to determine
buffer status. Accordingly, an enhanced random early detection
(EnREd) method and Windowed RED (WRED) method based
on simple, yet efficient, monitoring parameters are presented.

A. Indicator Calculation

Two indicators are used to replace aql for congestion
monitoring: instance queue length (q) and average queue
length on a limited time window (aqlw). At any time, the
number of packets queued in the router buffer is referred to as
q. The advantages of using this indicator are: (1) No extra
calculation is required, as q is used in RED to calculate aql;
(2) Overcome the disadvantages of using aql in the original
RED. The indicator aqlw represents an equally averaged packet
number on a limited time window. Unlike aql, which is
calculated as a weighted average with low weights for current
length, aqlw is calculated as the equal-weight average for a
predetermined time window. Accordingly, aqlw intermediate q
and aql in considering of past and recent queue length as
illustrated in Fig. 3 [8]. The advantages of using this indicator
are: (1) Can fully replace the existing aql for monitoring,
decision making and probability calculation; (2) Overcome the
disadvantages of using aql in the original RED, to some extent.

B. EnRED Mechanism

The proposed EnRED uses q to determine the reaction
scenario for packet dropping as each packet arrives. This
process requires a simple and direct modification to the
original RED algorithm. As given in Algorithm 2, RED is
modified at line #8 and line #14 by comparing q with the two
thresholds, instead of using aql for comparison, as in the
original RED. EnRED is implemented, as in Algorithm 2, in
three stages. In the first stage, aql is calculated using two
different equations. The first is used if the buffer is currently
idle, as in line #5. The second is used if the buffer is not idle,
and is a function of the previous aql and the current queue size
q. In the second stage, Dp is calculated and the dropping is
implemented or skipped according to three implemented
scenarios. The first scenario, as given in line #8, is
implemented when the queue length is between the minimum
and maximum threshold. Queue length provides a true
indication of buffer status, regardless of network status.
Nevertheless, Dp is calculated as a function of the aql that
reflects the status of the network. Subsequently, the packet is
dropped or accommodated as a function of the calculated Dp,
while the counter variable is set to zero if the packet is
dropped. As the value of counter increases, the Dp value
increases significantly, and vice versa. This variable is required
to avoid, as much as possible, dropping sequential packets to
circumvent global synchronization. The second case is
implemented when the queue length exceeds the maximum
threshold. In this case, the packet is dropped and the counter is
set to zero. Finally, the third case is implemented when the
queue length is below the minimum threshold, and results in
packet accommodation and counter reset to the value of
negative one. In the third stage, the buffer tracking process
saves the period of idleness. Accordingly, packet monitoring in
EnRED is the responsibility of the parameter q, while the
dropping value is calculated based on aql.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

362 | P a g e

www.ijacsa.thesai.org

Time

Q
ue

ue
 le

ng
th

Instantaneous

Average

Window-
Average

Fig. 3. The Shape of Different Indicators Overtime.

Algorithm 2: EnRED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

PARAMETER SETTING: wq, Thmin, Thmax, Dmax

VARIABLE INITIALIZATION: aql:= 0, count:= -1

FOR-EACH A

1) CALCULATE aql:

 IF (q equal to 0) aql:=(1-w)f(cTime- iTime) * aql

 IF (q not equal to 0) aql:= (1-w)* aql + wq *q

2) CALCULATE Dp & IMPLEMENT packet dropping,

 IF (minth ≤ q < maxth)

 counter ++

 Dp'= Dmax* (aql -Thmin)/(Thmax - Thmin)

 Dp = Dp'/ (1- counter * Dp')

 IF (Drop(Dp) is TRUE)

 Drop-A, count := 0

 ELSE IF (q > maxth)

 Drop-A

 counter:= 0

 ELSE

 counter:= -1

3) TRACE Buffer Idleness

 IF (q equal to 0 && Idle equal to False)

 iTime=cTime, Idle = TRUE

 ELSE Idle = False

C. Time-Window Augmented RED (Windowed-RED)

The proposed Windowed-RED (also WRED) is
implemented using aqlw to determine the reaction scenario and
to calculate dropping probability (Dp). This process required
replacing all instances of aql with aqlw in the original RED
algorithm; aqlw is implemented based on two scenarios, as
given in lines #5 and #6. In the initial stage, aqlw is set to a
value equal to q. Subsequently, aqlw is calculated on a window
size that is equal to the buffer size; the window-tailed boundary
is the current queue length. The dropping calculation and the
dropping scenarios will be calculated based on aqlw, as given in
lines #8–14. The tracing empty buffer is eliminated, as the
utilized aqlw does not require empty buffer tracing. As in
Algorithm 3, Windowed-RED is implemented in two stages:
aqlw calculation and Dp calculation and stochastic packet
dropping. In the first stage, aqlw is calculated in two ways. The
first is used when Window-RED starts running (see line #5). In
this case, aqlw is set to a value equal to q. While the second is
used throughout the execution of the Window-RED, and is
calculated as window-average of q. In the second stage, Dp is

calculated and the dropping is implemented or skipped
according to three implemented scenarios. In the first case, as
given in line #8, Dp is calculated as a function of aqlw and
counter. Then, the packet is dropped or accommodated as a
function of the calculated Dp, while the counter variable is set
to zero if the packet is dropped. As the value of counter
increases, the Dp value increases as well, and vice versa. This
variable is maintained to avoid global synchronization. In the
second case, the packet is dropped and the counter is set to zero
if aqlw is greater than the maximum threshold. In the third case,
the packet is accommodated and the counter is set to the value
of negative one if aqlw is less than the minimum threshold.
Accordingly, packet monitoring in Windowed-RED and
dropping calculation is the responsibility of the parameter aqlw,
which is more sensitive to queue changes than aql.

Algorithm 3: WRED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

PARAMETER SETTING: wq, Thmin, Thmax, Dmax

VARIABLE INITIALIZATION: aql:= 0, count:= -1

FOR-EACH A

1) CALCULATE aql:

 IF (#ArrivedPackets < BufferSize) aqlw:=q

 Else aqlw:= ∑

2) CALCULATE Dp & IMPLEMENT packet dropping,

 IF (minth ≤ aqlw < maxth)

 counter ++

 Dp'= Dmax* (aqlw -Thmin)/(Thmax - Thmin)

 Dp = Dp'/ (1- counter * Dp')

 IF (Drop(Dp) is TRUE)

 Drop-A, count := 0

 ELSE IF (aqlw > maxth)

 Drop-A

 counter:= 0

 ELSE

 counter:= -1

V. SIMULATION AND PARAMETER SETTINGS

In the simulation process, the router buffer is modelled as
first-in-first-out (FIFO). The network as a whole is simulated
using the discrete time queue model, which is commonly used
in simulating and capturing the performance of AQM methods.
Generally, the discrete time queue is represented by a sequence
of time slots, each of which has a single departure process, a
departure and arrival process, a single arrival or none of these.
Accordingly, in each time slot, the arrival and departure
process simulates the stochastic process based on a predefined
arrival and departure rate. A discrete time queue implements
the departure process, dn, before arrival. Accordingly, dn occurs
at time slot n-1. Thus, the performance of the network can be
captured accurately by counting and tracing the arrived,
departure, lost, dropped, and other packets at each time slot
[30, 31]. Eventually, these traced counters can be used to
calculate the network performance accurately [4, 7, 32]. The
simulation parameters are set to match the parameters
recommended in the literature for RED; these parameters are
listed in Table II. The arrival and departure rates are also set to
create different traffic loads and congestion statuses.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

363 | P a g e

www.ijacsa.thesai.org

TABLE II. SUMMARY OF RED’S EXTENSIONS

Parameter Values

Probability of Packet Arrival 0.3–0.95

Probability of Packet Departure 0.3, 0.5

Total Number of Slots 2,000,000

Number of Slots for Warm-Up Period 800,000

Number of Slots for Results 1,200,000

Capacity of the Router Buffer 20

Queue Weight for aql Calculation 0.002

Dmax 0.1

minth 3

maxth 9

VI. RESULTS

The performance of the proposed EnRED and WRED is
evaluated and compared to the original RED method, as well as
to the BLUE and ERED methods. The performance is captured
using the set of commonly utilized measures for network
evaluation, which are delay, packet dropping, packet loss, and
total packet missing at the router buffer. When the number of
dropped packets using method A is more than the number of
dropped packets using method B, and while loss is less in
method A, then method A is considered to be more efficient
than method B. Accordingly, to clearly illustrate this indistinct
relationship between loss and drop using AQM methods, the
total missing indicator is used in addition to the well-known
measures.

The first experiment evaluates the proposed methods in
comparison with the other methods under extremely heavy

traffic load. Accordingly, the arrival probability, α, is set to a

value of 0.9; the departure probability, β, is set to 0.3.
According to the results depicted in Fig. 4, packet loss in
EnRED and WRED is less than all other methods (Fig. 4(a)).
Moreover, BLUE and RED lost less packets compared to
ERED, which seems to perform badly under heavy traffic. In
Fig. 4(b), the packet dropping rate of EnRED, WRED and
RED is better than the rate of BLUE. ERED drops less packets
compared to all other methods. Fig. 4(c) illustrates the total
number of packets lost and dropped. All the methods are equal
according to this measure, which means that the method with
less packet loss is better. Accordingly, EnRED and WRED
outperform all other methods; EnRED is slightly better than
WRED, and RED is better than ERED and BLUE.
Accordingly, the experiments showed that the proposed
methods preserve the network performance and deal more
efficiently with the queued packets compared to all other
methods, as the utilized congestion indicators are more
accurate than the indicators used in the other methods. Finally,
in terms of packet delay, BLUE outperforms all other methods,
while the proposed EnRED slightly outperforms RED and
WRED, as illustrated in Fig. 4(d). According to the results
presented in Fig. 4, packet dropping using the indicators
selected in the proposed methods is much better than packet
dropping in the original RED. This is because the utilized
indicator is better at sensing congestion and avoiding packet

loss. Dropping and delay of the proposed methods are not the
best this is because the proposed methods avoid loss.
Nevertheless, delay and dropping for the proposed method are
shown to be comparable with the best methods, except for
ERED, for which the loss rate is huge.

The second experiment evaluates the compared methods
under a heavy traffic load. Accordingly, the arrival probability
is set to a value of 0.9, while the departure probability is set to
0.5. The results of this experiment, as illustrated in Fig. 5, are
almost similar to the obtained results in the first experiment.
Packet loss, using EnRED and WRED, is less than in all other
methods (Fig. 5(a)). Moreover, BLUE and RED drop less
packets compared to ERED. Fig. 5(b) reveals that the packet
dropping of EnRED, WRED and RED is better than all other
methods. Moreover, ERED drops less packets compared to all
other methods. Fig. 5(c) illustrates the total packets lost and
dropped. Accordingly, EnRED and WRED outperform the
other methods, while EnRED is lightly better than WRED, and
RED is better than ERED and BLUE. Finally, in terms of
packet delay, BLUE outperforms all other methods, while the
proposed EnRED slightly outperforms RED and WRED, as
illustrated in Fig. 5(d).

The third experiment evaluates the methods based on
moderate traffic load. Accordingly, both the arrival
probability and departure probability are set to a value of 0.5.
The results of this experiment are illustrated in Fig. 6. Loss is
avoided by all methods (Fig. 6(a)). Similarly, dropping is not
necessary when the traffic load is moderate, and thus the
evaluated methods did not implement packet dropping except
for the BLUE method, which scarified unnecessary packets
(Fig. 6(b)). Fig. 6(c) reveals that BLUE is the worst in such a
case, because it drops unnecessary packets. Finally, Fig. 6(d)
illustrates that delay is almost equal in all evaluated methods
except for the BLUE method, which exhibits an improved
delay due to the implemented dropping. The fourth experiment
evaluates and compares the proposed methods based on light
traffic load, as illustrated in Fig. 7. Accordingly, the arrival
probability is set to a value of 0.3 and the departure probability
is set to 0.5. Moreover, no dropping or packet loss occurred,
and the results are almost identical for all the compared
methods.

Fig. 8 presents and compares the results of the various
methods using the average of several arrival probabilities with
a departure probability of 0.5. The results indicate that RED,
EnRED and WRED are the best in terms of packet dropping,
while BLUE outperforms ERED. For dropping, ERED is the
best, while RED, EnRED and WRED outperform the BLUE
method. In terms of delay, BLUE is the best, while EnRED
outperform RED and WRED, which outperforms ERED.
Accordingly, the proposed EnRED method and Windowed-
RED method enhance network performance, avoid congestion
and preserve delay in extremely heavy, heavy and moderate
traffic. As noted, replacing the congestion indicator with a firm
indicator or tightening the loose indicator with a more compact
indicator in the windowed-RED significantly enhances RED
performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

364 | P a g e

www.ijacsa.thesai.org

(a) (b)

(c) (d)

Fig. 4. Performance Results under Extremely Heavy Traffic.

(a) (b)

(c) (d)

Fig. 5. Performance Results under Heavy Traffic.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

365 | P a g e

www.ijacsa.thesai.org

(a) (b)

(c) (d)

Fig. 6. Performance Results under Moderate Traffic.

(a) (b)

(c) (d)

Fig. 7. Performance Results under Light Traffic.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

366 | P a g e

www.ijacsa.thesai.org

(a) (b)

(c) (d)

Fig. 8. Performance Results for Various Arrival Rates.

VII. CONCLUSION

In this paper, the RED technique is analyzed, and the
source of the shortcomings is identified. The loose congestion
indicator in RED that leads to packet loss is fixed using two
approaches: First, by preserving all the steps in the original
RED and replacing the loose congestion indicator with a firmer
one. Secondly, by replacing the loose congestion indicator and
with a more confirmed one. Thus, both methods preserve the
form of the original RED, and consequently, the stability of the
existing systems that use RED. Although WRED is not as good
as EnRED, it has the advantage of reducing the number of
utilized parameters, and thus reducing the sensitivity of
parameter initialization. The results also confirm that RED
outperforms both ERED and BLUE. Future work should focus
on using other indicators that enhance network performance
and reduce overall delay.

REFERENCES

[1] Sharma, N., et al., P-RED: Probability Based Random Early Detection
Algorithm for Queue Management in MANET, in Advances in
Computer and Computational Sciences. 2018, Springer. p. 637-643.

[2] Floyd, S. and V. Jacobson, Random early detection gateways for
congestion avoidance. IEEE/ACM Trans. Netw., 1993. 1(4): p. 397-413.

[3] Zhao, Y., et al., An Improved Algorithm of Nonlinear RED Based on
Membership Cloud Theory. Chinese Journal of Electronics, 2017. 26(3):
p. 537-543.

[4] Yu-hong, Z., Z. Xue-feng, and T. Xu-yan, Research on the Improved
Way of RED Algorithm S-RED. International Journal of u-and e-
Service, Science and Technology, 2016. 9(2): p. 375-384.

[5] Briscoe, B., Insights from Curvy RED (Random Early Detection). 2015,
Technical report TR-TUB8-2015-003, BT.

[6] Jamali, S., N. Alipasandi, and B. Alipasandi, An Improvement over
Random Early Detection Algorithm: A Self-Tuning Approach. Journal
of Electrical and Computer Engineering Innovations, 2014. 2(2): p. 57-
61.

[7] Baklizi, M., et al., Fuzzy logic controller of gentle random early
detection based on average queue length and delay rate. International
Journal of Fuzzy Systems, 2014. 16(1): p. 9-19.

[8] Abualhaj, M.M., A.A. Abu-Shareha, and M.M. Al-Tahrawi, FLRED: an
efficient fuzzy logic based network congestion control method. Neural
Computing and Applications, 2018. 30(3): p. 925–935.

[9] Chen, W. and S.-H. Yang, The mechanism of adapting RED parameters
to TCP traffic. Computer Communications, 2009. 32(13): p. 1525-1530.

[10] Seifaddini, O., A. Abdullah, and a.H. Vosough, RED, GRED, AGRED
CONGESTION CONTROL ALGORITHMS IN HETEROGENEOUS
TRAFFIC TYPES, in International Conference on Computing and
Informatics. 2013.

[11] Alshimaa, I., et al., Enhanced Random Early Detection (ENRED).
International Journal of Computer Applications, 2014. 92.

[12] Floyd, S. Recommendations On Using the Gentle Variant of RED.
http://www.aciri.org/floyd/red/gentle.html 2000.

[13] Floyd, S., R. Gummadi, and S. Shenker, Adaptive RED: An Algorithm
for Increasing the Robustness of RED's Active Queue Management.
AT&T Center for Internet Research at ICSI, 2001.

[14] Baklizi, M., et al., Performance assessment of AGRED, RED and GRED
congestion control algorithms. Information Technology Journal, 2012.
11(2): p. 255.

[15] Marin, A., et al. Performance evaluation of AQM techniques with
heterogeneous traffic. in 2016 13th IEEE Annual Consumer
Communications & Networking Conference (CCNC). 2016. IEEE.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

367 | P a g e

www.ijacsa.thesai.org

[16] Patel, Z.M. Queue occupancy estimation technique for adaptive
threshold based RED. in Circuits and Systems (ICCS), 2017 IEEE
International Conference on. 2017. IEEE.

[17] Sun, J., M. Zukerman, and M. Palaniswami, Stabilizing RED using a
fuzzy controller, in International Conference on Communications
(ICC'07). 2007, IEEE. p. 266-271.

[18] Silva, G.J., A. Datta, and S.P. Bhattacharyya, PI stabilization of first-
order systems with time delay. Automatica, 2001. 37(12): p. 2025-2031.

[19] Aweya, J., M. Ouellette, and D.Y. Montuno, A control theoretic
approach to active queue management. Comput. Netw., 2001. 36(2-3):
p. 203-235.

[20] Lapsley, D. and S. Low. Random early marking: an optimisation
approach to Internet congestion control. in Networks, 1999. (ICON '99)
Proceedings. IEEE International Conference on. 1999.

[21] Feng, W.-c., et al., BLUE: A New Class of Active Queue Management
Algorithms. 1999, University of Michigan, Ann Arbor, MI, Technical
Report.

[22] Hollot, C.V., et al. On designing improved controllers for AQM routers
supporting TCP flows. in INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE. 2001. IEEE.

[23] Ott, T.J., T.V. Lakshman, and L. Wong. SRED: stabilized RED. in
INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE. 1999.

[24] Abbasov, B. and S. Korukoglu, Effective RED: An algorithm to improve
RED's performance by reducing packet loss rate. Journal of Network
and Computer Applications, 2009. 32(3): p. 703-709.

[25] Koo, J., et al. MRED: a new approach to random early detection. in
Information Networking, 2001. Proceedings. 15th International
Conference on. 2001. IEEE.

[26] Kunniyur, S. and R. Srikant, End-to-end congestion control schemes:
Utility functions, random losses and ECN marks. Networking,
IEEE/ACM Transactions on, 2003. 11(5): p. 689-702.

[27] Sun, J. and M. Zukerman, RaQ: A robust active queue management
scheme based on rate and queue length. Computer Communications,
2007. 30(8): p. 1731-1741.

[28] Long, C., et al., The Yellow active queue management algorithm.
Computer Networks, 2005. 47(4): p. 525-550.

[29] Bhatnagar, S. and S. Patel, A stochastic approximation approach to
active queue management. Telecommunication Systems, 2018. 68(1): p.
89-104.

[30] Khatari, M. and G. Samara, Congestion control approach based on
effective random early detection and fuzzy logic. arXiv preprint
arXiv:1712.04247, 2017.

[31] Guizani, M., et al., Network modeling and simulation: a practical
perspective. 2010: John Wiley & Sons.

[32] Tsavlidis, L., P. Efraimidis, and R.-A. Koutsiamanis, Prince: an
effective router mechanism for networks with selfish flows. Journal of
Internet Engineering, 2016. 6(1).

