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Abstract—Random Early Detection (RED) is an Active Queue 

Management (AQM) method proposed in the early 1990s to 

reduce the effects of network congestion on the router buffer. 

Although various AQM methods have extended RED to enhance 

network performance, RED is still the most commonly utilized 

method; this is because RED provides stable performance under 

various network statuses. Indeed, RED maintains a manageable 

buffer queue length and avoids congestion resulting from an 

increase in traffic load; this is accomplished using an indicator 

that reflects the status of the buffer and a stochastic technique 

for packet dropping. Although RED predicts congestion, reduces 

packet loss and avoids unnecessary packet dropping, it reacts 

slowly to an increase in buffer queue length, making it 

inadequate to detect and react to sudden heavy congestion. Due 

to the aforementioned limitation, RED is found to be significantly 

influenced by the way in which the congestion indicator is 

calculated and used. In this paper, RED is modified to enhance 

its performance with various network statuses. RED technique is 

modified to overcome several disadvantages in the original 

method and enhance network performance. The results indicate 

that the proposed Enhanced Random Early Detection (EnRED) 

and Time-window Augmented RED (Windowed-RED) 

methods—compared to the original RED, ERED and BLUE 

methods—enhances network performance in terms of loss, 

dropping and packet delay. 

Keywords—Congestion; random early detection; active queue 

management 

I. INTRODUCTION 

The evolution of the computer network and its broad 
usability for communication, remote controlling, organizational 
monitoring and information governing has resulted in the 
widespread utilization of its resources. Congestion is a 
phenomenon that occurs on a computer network when the 
traffic load exceeds the capabilities of these resources. The 
memory allocated by the network router is the most critical 
resource in the network that is susceptible to congestion, which 
can cause delays, packet loss and low network performance 
[1]. Congestion degrades the quality of services provided to the 
users and the applications. To predict congestion before it 
occurs, or before it starts to severely affect performance, 
various Active Queue Management (AQM) methods have been 
proposed. Although AQM methods were proposed to 
overcome the limitations of the first approach, i.e. Random 
Early Detection (RED)[2], RED is still the most commonly 
utilized method; this is because RED provides stable 
performance under various network statuses [3-6]. 

The AQM methods monitor the status of the router buffers, 
calculate the dropping probability (Dp) for each packet arrival, 
and implement packet dropping stochastically based on the 
calculated value. Accordingly, AQM methods take one of the 
two opposite decisions: packet accommodation and packet 
dropping. The role of the router is to accommodate the arrival 
packets to transfer them to the intended destination; However, 
to avoid congestion, packets are dropped when the buffer 
overflows and network performance degrading is expected [4]. 
Generally, the developed AQM methods consist of three main 
components: the congestion indicators used to monitor the 
buffer/network status, the function used to calculate Dp and the 
algorithm that determines when to use these equations and 
indicators [6]. For RED, Dp is calculated using a mathematical 
function with a reference to the average queue length (aql), a 
parameter that reflects the average length over time [7, 8]. 

The advantages of RED are summarized as follows: 
(1) RED predicts congestion before it affects network 
performance and reacts by dropping packets stochastically to 
avoid the effects of congestion; (2) RED, using random 
dropping, avoids global synchronization—a phenomenon that 
occurs when all senders reduce their transmission rates 
simultaneously for a period and then start increasing them 
again, also simultaneously; (3) RED uses aql to calculate the 
average queue length over time. Accordingly, when the arrival 
rate increases for a short while, aql does not increase rapidly. 
Thus, RED avoids dropping packets unnecessarily during 
short, heavy traffic [9]. Thus, the limitations can be 
summarized as follows: (1) RED exhibits low performance 
during sudden congestion, because it uses aql, which is 
insensitive to sudden changes in queue length; (2) RED causes 
packet delay in heavy traffic, because it does not monitor the 
router buffer delays [2, 9-11]. 

Using aql as a congestion indicator has its advantages and 
disadvantages. One advantage is that aql is able to avoid false, 
and thus deceptive, congestion indications. However, the 
disadvantages are the result of sudden high traffic and 
unexpected congestion. To overcome this disadvantage, it is 
recommended to use modified parameters that are equal to aql 
or to ease the dependency on aql to enhance network 
performance. However, RED is found to be badly influenced 
by the way in which the congestion indicator is calculated and 
used [4]. 

In this paper, RED is modified to enhance its performance 
with various network statuses. RED technique is modified to 
overcome several disadvantages in the original method and 
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enhance network performance. Enhanced Random Early 
Detection (EnRED) and Time-window Augmented RED 
(Windowed-RED) methods are proposed to address the 
problem of slow reaction time, and thus increase the number of 
queued packets in the buffer. The rest of the paper is organized 
as follows: Section II discusses the RED method in details and 
the disadvantages to be overcome are clarified. Section III 
presents the related work. The proposed Work is presented in 
Section IV; the simulation details are given in Section V and 
the related results is presented in Section VI. Finally, the 
conclusion is given in Section VII. 

II. RED METHOD 

RED is implemented, as given in Algorithm 1, in three 
stages; these are: (1) aql calculation, (2) Dp calculation and 
stochastic packet dropping, (3) buffer tracing. 

Algorithm 1: RED 
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PARAMETER SETTING: wq, Thmin, Thmax, Dmax 

VARIABLE INITIALIZATION: aql:= 0, count:= -1 

FOR-EACH A 

1) CALCULATE aql: 

       IF  (q equal to 0)              aql:=(1-w)f(cTime- iTime) * aql 

       IF  (q not equal to 0)        aql:= (1-w)* aql + wq *q  

2) CALCULATE Dp & IMPLEMENT packet dropping,  

       IF (minth ≤ aql < maxth)   

               counter ++ 

                Dp'= Dmax* (aql -Thmin)/( Thmax - Thmin) 

                Dp = Dp'/ (1- counter * Dp') 

               IF (Drop(Dp) is TRUE)  

                       Drop-A, count := 0 

       ELSE IF (aql > maxth)    

               Drop-A 

               counter:= 0 

       ELSE                              

                counter:= -1 

3) TRACE Buffer Idleness 

       IF (q equal to 0 && Idle equal to False)            

               iTime=cTime, Idle = TRUE 

       ELSE Idle = False 

Parameters:  
wq: queue weight  
Thmin: minimum threshold 
Thmax: maximum threshold 
Dmax: maximum probability value 

Saved Variables: 

A: current packet arrival  
Dp: packet-dropping probability 
Dp’: initial packet-dropping probability 

cTime: current time 
q: current queue size  
aql: average queue size  

iTime: idle time  
Idle: idle status true/false 
count: # of packets in medium buffer length that are not 
dropped. Count is a balanced parameter for Dp calculation 

In the first stage, aql is calculated using two different 
equations. The first is used if the buffer is currently idle (see 
line #5). This equation is a function of the previous aql and the 
period of idleness. The second equation is used if the buffer is 
not idle, and it is a function of the previous aql and the current 
queue size q. In the second stage, Dp is calculated and the 
dropping is implemented or skipped according to the three 
scenarios. 

In the first case, as given in line #8, Dp is calculated as a 
function of aql and another variable, counter, as well as a set of 
parameters. Subsequently, the packet is dropped or 
accommodated as a function of the calculated Dp, while the 
counter variable is set to zero if the packet is dropped. The 
counter parameter counts the number of packets in the critical 
case, which were not dropped according to the stochastic 
decision. The counter is simply increased with each 
accommodated packet, and is reset when a packet is dropped. 
As the value of the counter increases, the Dp value increases 
significantly. This variable is required to avoid, as much as 
possible, dropping sequential packets to circumvent global 
synchronization. In the second case, the packet is dropped and 
the counter is set to zero [12]. In the third case, the packet is 
accommodated and the counter is set to the value of negative 
one. A negative counter value reduces the dropping probability 
when the status of the queue jumps from a low-queue state to a 
high-queue critical state. A Dp value that is calculated using a 
negative value for counter will be of a low value. Accordingly, 
with sudden heavy traffic, the Dp value will increase slowly. 
Finally, in the third stage, the buffer tracing process saves the 
period of idleness [2, 12, 13]. 

RED calculates the value of aql with each packet arrival. 
The calculated value is then compared to two pre-determined 
threshold values (the minimum and maximum thresholds), 
which divide the buffer into three parts, as illustrated in Fig. 1. 
The value of aql based on the threshold comparison determines 
the action to be taken, which can be one of the following: (1) If 
the calculated aql value is less than the minimum threshold, 
then the arrival packet is accommodated with a Dp value equal 
to zero; no dropping occurs when aql is below the minimum 
threshold [14]. (2) If the aql value is greater than the maximum 
threshold, then the arrival packet is dropped with Dp equal to 
one; The arrival packet is firmly dropped when aql is greater 
than the maximum threshold. (3) A stochastic dropping process 
is implemented when aql is between the minimum and the 
maximum thresholds. In this case, Dp is calculated using a 
mathematical function Dp(aql), which depends on the value of 
aql that affects Dp proportionally. As such, Dp increases as aql 
increases, and vice versa [14-17]. 
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Fig. 1. Buffer Illustration and RED Actions and Parameters. 
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III. RELATED WORK 

Various extensions to the RED method have been proposed 
in the literature to overcome the limitations discussed above. 
For example, Gentle RED (GRED) [12] was proposed to 
resolve the delay problem in RED. GRED uses a third 
threshold parameter, called the double maximum threshold, in 
addition to the other parameters (as illustrated in Fig. 2). The 
goal of the introduced threshold is to stabilize aql at a specific 
value. Accordingly, the computed aql value is compared to 
three thresholds: minimum, maximum and double maximum. 
This creates four cases for the calculated Dp rather than three. 
This extension, however, increases the dependency on 
parameter settings. Moreover, GRED is more sensitive to 
sudden congestion, because it reduces packet dropping 
compared to RED. Moreover, GRED exhibits poor 
performance when heavy congestion occurs while aql is below 
the maximum threshold. Thus, Adaptive RED (ARED) [13] 
was proposed to resolve the delay problem in RED while 
preserving the RED mechanism as much as possible. ARED 
used aql, minimum and maximum thresholds as the main 
parameters, in addition to a new parameter that represents the 
optimal target of the queue length, called target aql (Taql). 
Accordingly, aql is compared with three values in ARED, and 
Dp is calculated the same as in RED. However, the value of 
the initial dropping, Dmax, which is fixed in RED, is calculated 
adaptively in ARED. The Dmax value increases or decreased 
based on the value of aql compared to Taql. 

Other methods extend RED by marginally modifying the 
original algorithm. For example, PI [18] uses traffic load value 
and aql value to calculate Dp. Accordingly, dropping increases 
when traffic load increases when aql is low to reduce delay. 
Dynamic RED (DRED) [19] extends RED by comparing 
instance queue length to a single threshold value. When queue 
length is below the threshold, no dropping is implemented. 
Moreover, when queue length is above the threshold, Dp 
increases or decreases based on queue length and the previous 
Dp value. Random Exponential Marking (REM) [20] 
extends RED using instance queue length, instead of aql, 
combined with the estimated load rate. However, instance 
queue length causes unnecessary packet dropping and false 
congestion. BLUE method [21] uses an adaptive value of Dp, 
which increases or decreases based on the estimated congestion 
status; This is similar to ARED and DRED in regard to packet 
loss and the threshold value. Various other AQM methods have 
been proposed in the literature, with different modifications 
made to the original RED mechanism for different purposes, as 
summarized in Table I. 
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Fig. 2. Buffer Illustration and GRED Actions and Parameters. 

TABLE I. SUMMARY OF RED’S EXTENSIONS 

Method Modification Objectives 

RED [2] Original  
Avoid global 
synchronization, reduce 

packet loss and dropping 

GRED [12] 
Use one more threshold to 
stabilize aql  

Reduce delay 

ARED [13] 
Adaptively increase the initial 

dropping value based on aql 
Reduce delay 

PI [22] 
Use load parameter (besides 

aql) to calculate Dp 
Reduce delay 

DRED [19] 
Adaptively increase the initial 
dropping value based on ql 

Reduce delay 

REM [20] 

Adaptively increase the initial 

dropping value based on ql and 
load rate 

Reduce loss and 

maximize resource 
utilization  

BLUE [21] 

Adaptively increase the initial 

dropping value based on packet 

loss 

Reduce packet loss 

SRED [23] 

Adaptively increase Dp value 

based on aql and number of 

active flows 

Fair resource allocation 

ERED [24] 
Use q (besides aql) to calculate 
Dp. 

Reduce packet loss 

MRED [25] 
Use the heuristic method to 

calculate Dp 
Reduce packet loss 

AVQ [26] Use delay to calculate Dp Reduce round-trip delay 

RaQ[27] 
Add more equations that 

calculate Dp based on aql 

Maximize resource 

utilization 

Yellow [28] Use load to calculate Dp 
Maximize resource 
utilization 

CRED [3] 
Use cloud membership degree 

calculation to calculate Dp 
Reduce packet dropping 

Adaptive 

Threshold 

RED [16] 

Use rules set to calculate Dp 
based on aql and q 

Reduce packet dropping 

Adaptive- 
AQMRD 

[29] 

Adaptive parameter tuning  

Reduce packet dropping 

and solve 

parameterization 
problem 

FLRED [8] 
Use fuzzy logic to calculate Dp 

based on aql and delay 

Solve parameterization 

problem 

Overall, existing AQM methods can be broadly classified 
into two groups : The first involves methods that preserve the 
RED mechanism and parameters for monitoring and reacting, 
such as GRED [12] and ARED [13]; The other group contains 
methods that implemented major modifications while 
preserving the overall concepts of stochastic packet dropping. 

Accordingly, the similarities among the existing AQM 
methods are: (1) AQM depends on stochastically packet 
dropping to avoid global synchronization; (2) AQM dropping 
probability is calculated with reference to the buffer or the 
network status; (3) AQM buffer monitoring is tracked and the 
decision-making is activated with each packet arrival. 

The differences between the AQM methods can be 
summarized as follows: (1) Different congestion indicators and 
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parameters (such as aql, q, load, delay, loss) are utilized by 
different AQM methods. (2) Different decision-making 
scenarios are used for different AQM methods; RED used three 
scenarios (firmly dropping, stochastic dropping and no 
dropping), while other methods keep the stochastic dropping 
and add or remove other scenarios. (3) Different AQM 
methods use different heuristic equations and methods to 
calculate the dropping probability. These differences are 
motivated by different objectives, such as to reduce packet 
loss, reduce packet dropping, reduce round-trip delay, 
maximize resource utilization, and fair allocation. The first four 
objectives are conflicted, as reducing delay will minimize 
resource utilization and reducing dropping will increase delay. 

RED is a well-known, stable AQM technique that was 
adapted by the Internet Engineering Task Force (IETF) in RFC 
2309. For a long time, RED was utilized in distributed routers 
all over the world. Extended methods provide different 
capabilities and cause different QoS. Accordingly, replacing 
RED with different methods will harm the stability of the 
existing systems. Thus, it is necessary to enhance RED while 
maintaining its characteristics and configuration. 

IV. PROPOSED WORK 

As network technology evolves, the limitations of the RED 
have been discovered. RED can be viewed as a dual-
mechanism method, in which the first mechanism is a multi-
reaction process activated by the implemented algorithm and 
all the utilized parameters, except for aql. This mechanism 
reacts differently based on the status of the queue, as discussed 
above, and it is the reason behind the first and the second 
advantages of the RED method. The second mechanism is the 
RED congestion alert mechanism, which is implemented using 
aql. This mechanism is related to the third advantage and the 
first disadvantage. Accordingly, it is easier to point at the 
source of the limitation, which can be referred back to the 
utilization of aql. RED uses aql for two tasks: (1) As an 
indicator for monitoring to determine the reaction scenario; 
(2) As a parameter for dropping the probability calculation. 

In fact, all of these tasks use aql in different ways. Since 
using aql has both positive and negative effects, replacing aql 
in all of these tasks is not a good approach; Instead, RED can 
use different bounds and parameters to gain an advantage and 
eliminate its disadvantages. 

In the dropping calculation, using aql has proven to have 
the following advantages: (1) Avoid high dropping with 
limited increase in buffer length; (2) Avoid high delay with 
limited decrease in buffer length. These advantages refer to 
slow changes in aql value with the changes in the buffer 
length, which can be temporarily according to the busty nature 
of the traffic. To determine the reaction scenario, using three 
scenarios for packet dropping (based on a threshold 
comparison) is sufficient and has several advantages. However, 
using aql as a monitoring indicator has the disadvantage of 
providing an unreal indication of the queue status. This 
disadvantage refers to variations in aql as a result of sudden 
congestion. Because the slow variation has both advantages 
and disadvantages, the disadvantage of using aql is directly 
related to the monitoring of the queue rather than the dropping 
calculation. Accordingly, the decision between fully dropping, 

no dropping, and stochastic dropping should be made based on 
the status of the buffer. Thus, instead of using aql to make a 
suitable decision, other indicators should be used to determine 
buffer status. Accordingly, an enhanced random early detection 
(EnREd) method and Windowed RED (WRED) method based 
on simple, yet efficient, monitoring parameters are presented. 

A. Indicator Calculation 

Two indicators are used to replace aql for congestion 
monitoring: instance queue length (q) and average queue 
length on a limited time window (aqlw). At any time, the 
number of packets queued in the router buffer is referred to as 
q. The advantages of using this indicator are: (1) No extra 
calculation is required, as q is used in RED to calculate aql; 
(2) Overcome the disadvantages of using aql in the original 
RED. The indicator aqlw represents an equally averaged packet 
number on a limited time window. Unlike aql, which is 
calculated as a weighted average with low weights for current 
length, aqlw is calculated as the equal-weight average for a 
predetermined time window. Accordingly, aqlw intermediate q 
and aql in considering of past and recent queue length as 
illustrated in Fig. 3 [8]. The advantages of using this indicator 
are: (1) Can fully replace the existing aql for monitoring, 
decision making and probability calculation; (2) Overcome the 
disadvantages of using aql in the original RED, to some extent. 

B. EnRED Mechanism 

The proposed EnRED uses q to determine the reaction 
scenario for packet dropping as each packet arrives. This 
process requires a simple and direct modification to the 
original RED algorithm. As given in Algorithm 2, RED is 
modified at line #8 and line #14 by comparing q with the two 
thresholds, instead of using aql for comparison, as in the 
original RED. EnRED is implemented, as in Algorithm 2, in 
three stages. In the first stage, aql is calculated using two 
different equations. The first is used if the buffer is currently 
idle, as in line #5. The second is used if the buffer is not idle, 
and is a function of the previous aql and the current queue size 
q. In the second stage, Dp is calculated and the dropping is 
implemented or skipped according to three implemented 
scenarios. The first scenario, as given in line #8, is 
implemented when the queue length is between the minimum 
and maximum threshold. Queue length provides a true 
indication of buffer status, regardless of network status. 
Nevertheless, Dp is calculated as a function of the aql that 
reflects the status of the network. Subsequently, the packet is 
dropped or accommodated as a function of the calculated Dp, 
while the counter variable is set to zero if the packet is 
dropped. As the value of counter increases, the Dp value 
increases significantly, and vice versa. This variable is required 
to avoid, as much as possible, dropping sequential packets to 
circumvent global synchronization. The second case is 
implemented when the queue length exceeds the maximum 
threshold. In this case, the packet is dropped and the counter is 
set to zero. Finally, the third case is implemented when the 
queue length is below the minimum threshold, and results in 
packet accommodation and counter reset to the value of 
negative one. In the third stage, the buffer tracking process 
saves the period of idleness. Accordingly, packet monitoring in 
EnRED is the responsibility of the parameter q, while the 
dropping value is calculated based on aql. 
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PARAMETER SETTING: wq, Thmin, Thmax, Dmax 

VARIABLE INITIALIZATION: aql:= 0, count:= -1 

FOR-EACH A 

1) CALCULATE aql: 

       IF  (q equal to 0)              aql:=(1-w)f(cTime- iTime) * aql 

       IF  (q not equal to 0)        aql:= (1-w)* aql + wq *q  

2) CALCULATE Dp & IMPLEMENT packet dropping,  

       IF (minth ≤ q < maxth)   

               counter ++ 

                Dp'= Dmax* (aql -Thmin)/( Thmax - Thmin) 

                Dp = Dp'/ (1- counter * Dp') 

               IF (Drop(Dp) is TRUE)  

                       Drop-A, count := 0 

       ELSE IF (q > maxth)    

               Drop-A 

               counter:= 0 

       ELSE                              

                counter:= -1 

3) TRACE Buffer Idleness 

       IF (q equal to 0 && Idle equal to False)            

               iTime=cTime,  Idle = TRUE 

       ELSE Idle = False 

C. Time-Window Augmented RED (Windowed-RED) 

The proposed Windowed-RED (also WRED) is 
implemented using aqlw to determine the reaction scenario and 
to calculate dropping probability (Dp). This process required 
replacing all instances of aql with aqlw in the original RED 
algorithm; aqlw is implemented based on two scenarios, as 
given in lines #5 and #6. In the initial stage, aqlw is set to a 
value equal to q. Subsequently, aqlw is calculated on a window 
size that is equal to the buffer size; the window-tailed boundary 
is the current queue length. The dropping calculation and the 
dropping scenarios will be calculated based on aqlw, as given in 
lines #8–14. The tracing empty buffer is eliminated, as the 
utilized aqlw does not require empty buffer tracing. As in 
Algorithm 3, Windowed-RED is implemented in two stages: 
aqlw calculation and Dp calculation and stochastic packet 
dropping. In the first stage, aqlw is calculated in two ways. The 
first is used when Window-RED starts running (see line #5). In 
this case, aqlw is set to a value equal to q. While the second is 
used throughout the execution of the Window-RED, and is 
calculated as window-average of q. In the second stage, Dp is 

calculated and the dropping is implemented or skipped 
according to three implemented scenarios. In the first case, as 
given in line #8, Dp is calculated as a function of aqlw and 
counter. Then, the packet is dropped or accommodated as a 
function of the calculated Dp, while the counter variable is set 
to zero if the packet is dropped. As the value of counter 
increases, the Dp value increases as well, and vice versa. This 
variable is maintained to avoid global synchronization. In the 
second case, the packet is dropped and the counter is set to zero 
if aqlw is greater than the maximum threshold. In the third case, 
the packet is accommodated and the counter is set to the value 
of negative one if aqlw is less than the minimum threshold. 
Accordingly, packet monitoring in Windowed-RED and 
dropping calculation is the responsibility of the parameter aqlw, 
which is more sensitive to queue changes than aql. 

Algorithm 3: WRED 
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PARAMETER SETTING: wq, Thmin, Thmax, Dmax 

VARIABLE INITIALIZATION: aql:= 0, count:= -1 

FOR-EACH A 

1) CALCULATE aql: 

       IF  (#ArrivedPackets < BufferSize)     aqlw:=q       

       Else  aqlw:=   ∑   
                    
                    

2) CALCULATE Dp & IMPLEMENT packet dropping,  

       IF (minth ≤ aqlw < maxth)   

               counter ++ 

                Dp'= Dmax* (aqlw -Thmin)/( Thmax - Thmin) 

                Dp = Dp'/ (1- counter * Dp') 

               IF (Drop(Dp) is TRUE)  

                       Drop-A, count := 0 

       ELSE IF (aqlw > maxth)    

               Drop-A 

               counter:= 0 

       ELSE                              

                counter:= -1 

V. SIMULATION AND PARAMETER SETTINGS 

In the simulation process, the router buffer is modelled as 
first-in-first-out (FIFO). The network as a whole is simulated 
using the discrete time queue model, which is commonly used 
in simulating and capturing the performance of AQM methods. 
Generally, the discrete time queue is represented by a sequence 
of time slots, each of which has a single departure process, a 
departure and arrival process, a single arrival or none of these. 
Accordingly, in each time slot, the arrival and departure 
process simulates the stochastic process based on a predefined 
arrival and departure rate. A discrete time queue implements 
the departure process, dn, before arrival. Accordingly, dn occurs 
at time slot n-1. Thus, the performance of the network can be 
captured accurately by counting and tracing the arrived, 
departure, lost, dropped, and other packets at each time slot 
[30, 31]. Eventually, these traced counters can be used to 
calculate the network performance accurately [4, 7, 32]. The 
simulation parameters are set to match the parameters 
recommended in the literature for RED; these parameters are 
listed in Table II. The arrival and departure rates are also set to 
create different traffic loads and congestion statuses. 
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TABLE II. SUMMARY OF RED’S EXTENSIONS 

Parameter Values 

Probability of Packet Arrival 0.3–0.95 

Probability of Packet Departure 0.3, 0.5 

Total Number of Slots 2,000,000 

Number of Slots for Warm-Up Period 800,000 

Number of Slots for Results  1,200,000 

Capacity of the Router Buffer  20 

Queue Weight for aql Calculation 0.002 

Dmax 0.1 

minth 3 

maxth 9 

VI. RESULTS 

The performance of the proposed EnRED and WRED is 
evaluated and compared to the original RED method, as well as 
to the BLUE and ERED methods. The performance is captured 
using the set of commonly utilized measures for network 
evaluation, which are delay, packet dropping, packet loss, and 
total packet missing at the router buffer. When the number of 
dropped packets using method A is more than the number of 
dropped packets using method B, and while loss is less in 
method A, then method A is considered to be more efficient 
than method B. Accordingly, to clearly illustrate this indistinct 
relationship between loss and drop using AQM methods, the 
total missing indicator is used in addition to the well-known 
measures. 

The first experiment evaluates the proposed methods in 
comparison with the other methods under extremely heavy 

traffic load. Accordingly, the arrival probability, α, is set to a 

value of 0.9; the departure probability, β, is set to 0.3. 
According to the results depicted in Fig. 4, packet loss in 
EnRED and WRED is less than all other methods (Fig. 4(a)). 
Moreover, BLUE and RED lost less packets compared to 
ERED, which seems to perform badly under heavy traffic. In 
Fig. 4(b), the packet dropping rate of EnRED, WRED and 
RED is better than the rate of BLUE. ERED drops less packets 
compared to all other methods. Fig. 4(c) illustrates the total 
number of packets lost and dropped. All the methods are equal 
according to this measure, which means that the method with 
less packet loss is better. Accordingly, EnRED and WRED 
outperform all other methods; EnRED is slightly better than 
WRED, and RED is better than ERED and BLUE. 
Accordingly, the experiments showed that the proposed 
methods preserve the network performance and deal more 
efficiently with the queued packets compared to all other 
methods, as the utilized congestion indicators are more 
accurate than the indicators used in the other methods. Finally, 
in terms of packet delay, BLUE outperforms all other methods, 
while the proposed EnRED slightly outperforms RED and 
WRED, as illustrated in Fig. 4(d). According to the results 
presented in Fig. 4, packet dropping using the indicators 
selected in the proposed methods is much better than packet 
dropping in the original RED. This is because the utilized 
indicator is better at sensing congestion and avoiding packet 

loss. Dropping and delay of the proposed methods are not the 
best this is because the proposed methods avoid loss. 
Nevertheless, delay and dropping for the proposed method are 
shown to be comparable with the best methods, except for 
ERED, for which the loss rate is huge. 

The second experiment evaluates the compared methods 
under a heavy traffic load. Accordingly, the arrival probability 
is set to a value of 0.9, while the departure probability is set to 
0.5. The results of this experiment, as illustrated in Fig. 5, are 
almost similar to the obtained results in the first experiment. 
Packet loss, using EnRED and WRED, is less than in all other 
methods (Fig. 5(a)). Moreover, BLUE and RED drop less 
packets compared to ERED. Fig. 5(b) reveals that the packet 
dropping of EnRED, WRED and RED is better than all other 
methods. Moreover, ERED drops less packets compared to all 
other methods. Fig. 5(c) illustrates the total packets lost and 
dropped. Accordingly, EnRED and WRED outperform the 
other methods, while EnRED is lightly better than WRED, and 
RED is better than ERED and BLUE. Finally, in terms of 
packet delay, BLUE outperforms all other methods, while the 
proposed EnRED slightly outperforms RED and WRED, as 
illustrated in Fig. 5(d). 

The third experiment evaluates the methods based on 
moderate traffic load. Accordingly, both the arrival 
probability and departure probability are set to a value of 0.5. 
The results of this experiment are illustrated in Fig. 6. Loss is 
avoided by all methods (Fig. 6(a)). Similarly, dropping is not 
necessary when the traffic load is moderate, and thus the 
evaluated methods did not implement packet dropping except 
for the BLUE method, which scarified unnecessary packets 
(Fig. 6(b)). Fig. 6(c) reveals that BLUE is the worst in such a 
case, because it drops unnecessary packets. Finally, Fig. 6(d) 
illustrates that delay is almost equal in all evaluated methods 
except for the BLUE method, which exhibits an improved 
delay due to the implemented dropping. The fourth experiment 
evaluates and compares the proposed methods based on light 
traffic load, as illustrated in Fig. 7. Accordingly, the arrival 
probability is set to a value of 0.3 and the departure probability 
is set to 0.5. Moreover, no dropping or packet loss occurred, 
and the results are almost identical for all the compared 
methods. 

Fig. 8 presents and compares the results of the various 
methods using the average of several arrival probabilities with 
a departure probability of 0.5. The results indicate that RED, 
EnRED and WRED are the best in terms of packet dropping, 
while BLUE outperforms ERED. For dropping, ERED is the 
best, while RED, EnRED and WRED outperform the BLUE 
method. In terms of delay, BLUE is the best, while EnRED 
outperform RED and WRED, which outperforms ERED. 
Accordingly, the proposed EnRED method and Windowed-
RED method enhance network performance, avoid congestion 
and preserve delay in extremely heavy, heavy and moderate 
traffic. As noted, replacing the congestion indicator with a firm 
indicator or tightening the loose indicator with a more compact 
indicator in the windowed-RED significantly enhances RED 
performance. 
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(a)       (b) 

 
(c)       (d) 

Fig. 4. Performance Results under Extremely Heavy Traffic. 

 
(a)       (b) 

 
(c)       (d) 

Fig. 5. Performance Results under Heavy Traffic. 
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(a)       (b) 
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Fig. 6. Performance Results under Moderate Traffic. 

 
(a)       (b) 

 
(c)       (d) 

Fig. 7. Performance Results under Light Traffic. 
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(a)       (b) 

 
(c)       (d) 

Fig. 8. Performance Results for Various Arrival Rates. 

VII. CONCLUSION 

In this paper, the RED technique is analyzed, and the 
source of the shortcomings is identified. The loose congestion 
indicator in RED that leads to packet loss is fixed using two 
approaches: First, by preserving all the steps in the original 
RED and replacing the loose congestion indicator with a firmer 
one. Secondly, by replacing the loose congestion indicator and 
with a more confirmed one. Thus, both methods preserve the 
form of the original RED, and consequently, the stability of the 
existing systems that use RED. Although WRED is not as good 
as EnRED, it has the advantage of reducing the number of 
utilized parameters, and thus reducing the sensitivity of 
parameter initialization. The results also confirm that RED 
outperforms both ERED and BLUE. Future work should focus 
on using other indicators that enhance network performance 
and reduce overall delay. 
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