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Abstract—Classifying imbalanced data with traditional 

classifiers is a huge challenge now-a-days. Imbalance data is a 

situation wherein the ratio of data within classes is not same. 

Many real life situations deal with such problems e.g. Web spam 

detection, Credit card frauds, and fraudulent telephone calls. 

The problem exists everywhere when our objective is to identify 

exceptional cases. The problem is handled by researchers either 

by modifying the existing classifications methods or by 

developing new methods.  This paper review ensemble based 

approaches (Boosting and Bagging based) designed to address 

imbalance in classes by focusing on binary classification. We 

compared 6 Boosting based, 7 Bagging based and 2 hybrid 

ensembles for their performance in imbalance domain. We use 

KEEL tool to evaluate the performance of these methods by 

implementing the methods on seven imbalance data having class 

imbalance ratio from 1.82 to as high as 129.44. Area Under the 

curve (AUC) parameter is recorded as the performance metric. 

We also statistically analyzed the methods using Friedman rank 

test and Wilcoxon Matched Pair signed rank test to strengthen 

the visual interpretations. After analysis, it is proved that 

RusBoost ensemble outperformed every other ensemble in the 

imbalanced data situations. 

Keywords—Ensemble approaches; boosting; bagging; hybrid 

ensembles; imbalanced data-sets; classification 

I. INTRODUCTION 

Classification process is very important in solving many 
real time problems. Various types of classifiers have been 
proposed in research field to solve classification problems. 
These classifiers only gives satisfactory results where the real 
time problems are represented by balanced data-set (the 
proportion of size of data classes is same). But sometimes, 
there are circumstances wherein we want to do the 
classification when the data-set is not balanced (proportion of 
size of data classes is not same) e.g. Web Spam Detection, 
Credit Card Frauds, Fraudulent Telephone calls etc. In such 
cases, if we apply the classification methods which are 
designed to classify balanced data sets, we will not get the 
accurate results. The major problem with imbalanced data set 
is that the data points belong to majority class (bigger class) 
impacts the classifier decision boundaries at the cost of 
minority class (smaller class) which is represented by very 
few points compare to majority class. This concern is known 
with the name as class imbalance problem in the research 
community. The extent of imbalance in data can be measured 
with class imbalance ratio (CIR). CIR is the percentage of size 
of majority class to the size of minority class. CIR value is 
indirectly related to the size of minority class. CIR with high 

value is considered as highly imbalanced data. Various types 
of solutions are developed by research community to handle 
this problem. Methods developed to resolve this issue can be 
divided into three major categories. Data level, algorithm level 
and the combination of data and algorithm level (hybrid) 
approaches. In data level approaches, data is pre-processed for 
balancing the dataset before classification. The biggest benefit 
of this category is that one can use the existing classification 
methods which are developed to classify balanced data-sets. 
Researchers have applied different logics for balancing the 
data. Some methods balance the data by synthetically 
generating the data-points within minority class either 
randomly copying the existing data or by applying some 
intelligent process to generate synthetic data [1-11]. These 
types of methods come under the category of oversampling 
methods. The limitation with random oversampling by 
copying the existing data may lead to overfitting. In case of 
the noisy data-sets, random oversampling may lead to the 
increase of noise within the data-set [12, 13].Some methods 
balance the data by removing data points from majority class 
either randomly or by using some intelligent concept before 
classification [13-19]. The biggest limitation with random 
undersampling is the loss of some important information. 
These type of methods are called undersampling methods. 
There is another sub-type of data-level methods wherein we 
combine the concept of oversampling and undersampling to 
balance the dataset before classification. These types of 
methods are known as hybrid data level methods [20, 21]. In 
algorithm level category, the researchers either modified the 
existing classification methods by working on the biasness of 
classifier towards the bigger class or by developing new 
methods to handle imbalanced data [22-38]. The third 
category, known as hybrid methods, combines data-level and 
algorithm level methods to boost the classifiers performance 
for imbalance data [39-53]. Many researchers combine data-
level methods and algorithm level methods using ensemble 
concept to enhance the performance of earlier classification 
methods which were using only single classifier for getting 
results. Ensemble concept uses multiple classifiers for better 
predictive results compare to the methods which uses only 
single classifier to obtain the results. In this paper, we review 
ensemble based classification techniques which uses Bagging 
and Boosting concept to handle imbalance data-sets. We 
empirically assessed the methods using KEEL tool [54, 55] 
and statistically analyzed the results using Friedman [56] and 
Wilcoxon Matched pair signed rank [57] tests. Section II 
explains the idea of ensembles and review Boosting based and 
Bagging based ensembles designed to resolve class imbalance 
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issue. It also describes the performance criteria used in this 
paper to assess the performance of methods. Empirical 
calculation of ensembles approaches and their statistical 
analysis is discussed in Section III followed by conclusions in 
Section IV. 

II. REVIEW OF ENSEMBLE APPROACHES 

A. Fundamentals of Ensemble Approach 

Ensemble approaches train more than one classifiers to 
resolve the same issue. This method is also named committee-
based learning or learning through more than one classifier 
systems. Fig. 1 describes the model of ensemble approach. 
The area of ensemble approaches actually generated from 
three sections i.e. combining more than one classifiers, 
ensembles of weak classifiers and combination of experts 
[58]. Combining classifiers concept was mostly studied under 
pattern recognition area wherein the researchers works on 
strong classifiers and try to design powerful combining rules 
to get stronger combined classifiers. Ensemble of weak 
classifier is mostly studied by machine learning community 
wherein the researchers work upon weak classifiers to design 
powerful procedures for boosting the performance from weak 
to strong. This area has designed vary famous ensemble 
methods like AdaBoost [59] and Bagging etc. Combination of 
experts is studied by neural network community wherein the 
researchers usually consider a divide-and-conquer scheme to 
learn a combination of parametric prototypes jointly. 

Ensemble methods are popular learning paradigm [58] 
since 1990‟s. It is because of two main pioneering work 
proposed in literature. One, which has empirically proved 
[60], analyzed that the outcomes resulted from a set of 
learners are found more precise than the results given by a 
single finest classifier as displayed in Fig. 2. The other, theory 
concept proven by Schapire [61] is that the weak base learners 
can be enhanced to strong learners. As strong classifiers are 
needed to solve many real time problems which are not 
possible to solve using weak classifiers, this need has 
motivated the researchers to generate strong classifiers by 
using ensemble methods. Ensemble methods use multiple 
classification procedures to attain better predictive results. 
Under this approach, various classifiers are trained either 
parallel or sequentially to resolve the same problem. An 
ensemble is created using two steps, by selecting the base 
classifier and then joining them to make ensemble of 
classifiers. Performance of ensemble methods can be decided 
by two factors: Accuracy of the individual learner and 
diversity among all classifiers. Ensemble‟s accuracy is directly 
related to the selection of base classifier. It is widely accepted 
[62] that improvement in the overall predictive accuracy by 
the ensemble can occur only if there is diversity among its 
components i.e. if individual classifiers don‟t always agree. 
Diversity is the measure to which a classifier can make 
different decisions on a single problem. Various ways can be 
used to measure diversity like by manipulating training 
patterns (cross-validation, bagging, boosting), by manipulating 
input features (by considering subset of features for classifier 
learning) and by incorporating random noise. Major research 
in literature belongs to homogeneous ensembles than 
heterogeneous ensembles wherein we use combinations of 

different classifiers to produce results. But heterogeneous 
ensembles can produce more diversified results than 
homogeneous ensembles [66]. Computational complexity is 
very high in case of generating a single classifier than the 
ensemble. Because, while generating single classifier, for 
better performance it is essential to design various versions 
and tuning parameters for better model selection, whereas, the 
computational complexity in combining different classifiers is 
very less. Ensemble approaches reviewed in the paper are 
shown in Fig. 3. 

 

Fig. 1. A Common Ensemble Architecture [58]. 

 

Fig. 2. Salamon and Hansen‟s Observation [58]. 

 

Fig. 3. Ensemble Approaches under Study. 
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B. Ensembles based upon Boosting Concept 

Ensembles are categorized into two models namely 
Boosting and Bagging, based on the methodology of joining 
base classifiers. Boosting method converts the weak classifier 
to strong classifier by sequentially generating the base 
classifier hence it goes in the category of sequential ensemble 
paradigm [58]. In a boosting process, initially a model is build 
using initial training data, then another model is created whose 
purpose is to correct the errors from the model generated from 
previous model. This process is repeated until the perfect 
prediction is done or a maximum number of models are 
generated. Various ensembles, based upon boosting concept, 
reviewed during current study are described as below: 

1) Adaptive boosting method (AdaBoost): AdaBoost, [59] 

the first successful algorithm proposed by Freund and 

Schapire in 1996 using boosting concept for binary 

classification. In AdaBoost, we used complete data-set for 

training every classifier serially. After every iteration, the 

method assigns more weight to the misclassified data points, 

with the objective of accurately classifying the misclassified 

data points recognized during current iteration, in the next 

iteration. Hence, its main objective is to emphasize on the data 

points whose classification is predicted as hard. Weight 

allocated to the misclassified data points after every iteration 

is directly related to the status of misclassified data i.e. How 

hard it is to classify that data point. Weight is initially equally 

assigned to all the data. After every iteration, the weights 

allocated to misclassified data points are increased and 

allocated to correctly classified data points are decreased. 

Lastly, when an unknown data point is submitted, every 

classifier vote for it and the data point is finally allocated to 

the class based upon the majority votes. It is named adaptive 

as it is build using multiple repetitions for creating a strong 

classifier. The drawback of AdaBoost is that it allocates equal 

weights to the classes and is internally developed to detect 

equal size of classes (for balanced data-sets). In imbalanced 

scenarios, its results are always in the favor of majority class. 

Therefore, to handle this biasness towards majority class, 

many researchers updated equal weight situation of Adaboost 

method so as to modify the method to detect minority class 

accurately. Fig. 4 shows the procedure of AdaBoost. 

2) Smoteboost: N. V. Chawla in 2002 proposed 

SmoteBoost [3] by modifying AdaBoost to address imbalance 

problem in classes. SmoteBoost combines an oversampling 

method SMOTE with standard boosting process. It generates 

synthetic data inside minority class using SMOTE process 

during every iteration of AdaBoost. The weights assigned to 

synthetically generated data remains constant and depend on 

the aggregate sum of information in the new data-set, whereas 

the weights assigned to the original data points are normalized 

so as to form a distribution with the new generated data points. 

When the classifier is trained, the weights assigned to the 

original data points are updated. Again the synthetic data is 

generated in another phase and weights are modified so as to 

match the weight distribution. This process repeats itself till 

we get the required predictions or extreme number of 

classifiers are build. Limitation with the method is that it uses 

oversampling method to balance the data by generating 

synthetic data points therefore it is more computationally 

expensive compare to the methods that are based on 

undersampling approaches. Another limitation of SmoteBoost 

is that in case of noisy data-sets it may end up by increasing 

noisy data-points by random selection of the noise points as a 

candidate to produce synthetic data-points [12, 13]. 

3) Databoost-IM: Guo and Victor in 2004 proposed 

another boosting based method, namely DataBoost-IM [49], 

by combining boosting with data-generation to improve the 

predictive capabilities of classifiers for binary imbalance data-

sets. Its working principle is unlike SmoteBoost as it, firstly, 

identify and separate data points which are hard to predict, 

from both minority as well as majority class, to produce 

synthetic data-points. It also considers bias information 

towards hard to predict data points to produce synthetic data 

on which the classifier from next iteration needs to focus. In 

this process, the weights assigned to both the classes in the 

new training set are re-balanced so that boosting procedure 

can focus on both the classes. Hence, this method focused on 

refining the prediction ability of both the majority and 

minority class. The principle drawback [63] of this procedure 

is that it can‟t manage very high imbalanced situations in light 

of the fact that it creates an extensive amount of data points 

which are troublesome toward oversee by the base classifier. 

 

Fig. 4. AdaBoost Algorithm. 
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4) Modified smoteboost (MSmoteBoost): To handle the 

noise sensitivity of SmoteBoost in 2009, Ma and He gave an 

intelligent boosting approach, MSmoteBoost [41], which 

incorporates MSmote data level method in every iteration of 

AdaBoost. Unlike Smote, MSmoteBoost remove noise data-

points and consider the distribution of minority class. Minority 

class data is divided into three groups as border, security and 

latent noise points. The data points are categorized based on 

the distance from other data points, before generating 

synthetic points. Security data points are those which can 

strengthen the performance and noise points can reduce the 

performance of classifier. Hard to predict data are recognized 

as border category. The method processes the data differently 

with these categories while producing synthetic data points. 

The weights assigned to the new data points are based on the 

total number of points in the new data-set. Hence, their 

weights always remain constant, whereas original data-set's 

data point‟s weights are normalized so that they form a 

distribution with the new generated data points. The assigned 

weights of the original data points are updated after training 

the classifier. 

The process repeats itself till the strong classifier is build. 
As this classifier is also using oversampling approach, Its 
computational cost is also high compare to the ensembles 
based on undersampling. 

5) Random undersampling boosting (RusBoost): In 2010, 

another boosting based ensemble is proposed. It is dissimilar 

from SmoteBoost because it incorporates undersampling data 

level method (Rus) in every iteration of AdaBoost with the 

motive of proposing a simple classifier which can work with 

fast speed than using any oversampling approach. RusBoost 

[39] removes data points randomly from majority class in 

every iteration of AdaBoost. RusBoost doesn‟t allocate new 

weights to the data points. It is sufficient to normalize the 

weights of the remaining data points in the new data-set 

according to the total sum of weights. After the classifier is 

trained, the process updates the weights of the original data-

set. The process is repeated till we get the strong classifier. 

The inspiration of combining Random undersampling and 

boosting method is its simplicity, performance and speed. As 

the data set is balanced by removing data therefore time 

needed to build a model is low compare to oversampling 

models. Loss of required information is the major limitation 

because no intelligent method is used to eliminate data from 

the majority class. Another disadvantage is during noisy 

environments, it may end up removing good data from classes 

due to which there is more impact of noise on the classifier‟s 

performance [12, 13]. 

6) Evolutionary undersampling boosting (EusBoost): In 

2013, an intelligent undersampling based ensemble, EusBoost, 

is proposed which incorporates EUS [40] preprocessing 

method in every iteration of AdaBoost. The basis of EusBoost 

[40] is RusBoost, which is simplest method compare to other 

oversampling approaches. EuaBoost enhances the classifier 

performance by the using the evolutionary undersampling 

approach. The key principle of EusBoost is diversity 

mechanism by considering different subset of data in every 

iteration. 

C. Ensembles based upon Bagging (Bootstrap Aggregation) 

Concept 

Bagging, like Boosting, also build a strong classifier by 
combining multiple weak classifiers for the better 
performance compare to using single classifier. Bagging [64] 
gives the best results if the problem using single classifier is 
overfitting. Unlike Boosting, any data point in bagging has the 
same probability to appear in a new data-set. The process of 
bagging starts by creating sub-sets from the data-set. Then 
each sub-set of data-set is trained independently using 
classifier that results in ensemble of different models. Then 
average of all these different models are used to build a strong 
classifier.  It brings diversity by using different data-sets for 
every classifier. Hence, bagging comes under the category of 
parallel ensemble methods. The inspiration behind these 
ensemble methods is to exploit the independence between the 
weak classifiers [58]. Fig. 5 shows the bagging algorithm. 

1) Smotebagging: SmoteBagging [65] combines 

oversampling of minority class using Smote with bagging. In 

this method both the classes participate in creating each bag. 

A Smote oversamples the data with a% rate during every 

iteration and increased the rate with the multiple of 10 with 

every next iteration. This proportion characterizes the measure 

of positive data points which are arbitrarily resampled from 

the first data-set amid each iteration. The remaining positive 

data is generated by Smote algorithm till the data is balanced. 

Bootstrapping negative data points are created to make the 

ensemble more diverse. 

2) Underbagging: This approach [65] does undersampling 

after creating subset of data from original data-set. Therefore, 

in place of removing data from the whole data-set, it does it 

before training each classifier. Undersampling is done by 

using nearest neighbor principle for balancing the data before 

training the classifier. 

3) MSmotebagging: MSmoteBagging [65, 67] is the 

variation of SmoteBagging wherein minority class is 

oversampled using MSmote data level method. Oversample 

minority class data points using MSMOTE preprocessing 

algorithm. 

 

Fig. 5. Bagging Algorithm. 
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4) Overbagging: In this method [65], data-set is balanced 

when the bags are randomly picked from the original data-set. 

Therefore, in place of removing the data randomly from whole 

data-set, the data is generated randomly within minority class 

of sub-set before every classifier is trained. This method 

includes all the majority class data points in the new bootstrap. 

5) Underoverbagging: UnderBagging to OverBagging 

(UnderOverBagging) [65] method uses the combination of 

oversampling and undersampling process. It considers the 

resampling rate „a%‟ in every iteration which is ranged from 

10% to 100%. Resampling rate is the multiple of 10. 

Therefore, the number of data points trained by every 

classifier in the subsequent iterations will be different. This 

method introduce diversity is the process. 

6) Imbalanced ivotes (IIVotes): IIVotes is the combination 

of SPIDER [68] and IVotes [69]. SPIDER is the preprocessing 

method. .IVotes is a variation of Bagging where the sampling 

is done according to the importance of each data point. 

Although SPIDER method improves the sensitivity of 

minority class but decrease the specificity at the same time. 

IIVotes modified SPIDER method by incorporating IVotes for 

improving the trade-off between specificity and senstivity. 

The main purpose of this method is to acquire a balance 

between the specificity and sensitivity for the minority class in 

contrast to a single classifier combined with SPIDER. 

D. Ensembles based upon Hybrid Ensemble Concept 

(Bagging and Boosting) 

Hybrid Ensemble based methods are the combination of 
bagging, boosting and pre-processing methods. Liu, Wu, and 
Zhou in 2009 proposed EasyEnsemble [53] and 
BalanceCascade [53] and named these methods as exploratory 
undersampling methods. These methods follow different 
approaches to tackle negative data points after every iteration. 
These methods used bagging as the key concept in building 
ensemble and used AdaBoost technique in place of the weak 
classifier. In BalanceCascade the classifiers are trained 
sequentially because it works in a supervised manner. During 
bagging iteration after the AdaBoost classifier is trained, the 
correctly classified majority data are removed from the data-
set and is not processed in the next iterations. As 
EasyEnsemble approach does not execute any operation on the 
data from the original data-set after every AdaBoost iteration. 
So the classifiers are trained in parallel. 

E. Performance Criteria 

In case of imbalanced data-sets, the main objective is to 
identify the minority class so we are considering minority 
class as the positive class. Table I shows the confusion matrix 
for imbalance data-sets. 

TABLE I. CONFUSION MATRIX 

 Positive (Minority) Negative (Majority) 

True True Positive  True Negative  

False False Positive  False Negative  

We are using Area under the ROC Curve (AUC) [70, 71] 
as the performance metric to assess the methods. AUC is a 
standout amongst the most famous execution metric used to 
assess the execution of classifiers intended for imbalanced 
data sets. It is a curve in which false-positive rate and true 
positive rate are plotted on x-axis and y-axis respectively. 
AUC is the finest tool for comparing different classifiers. A 
classifier‟s performance is directly proportional to its location 
towards the upper left corner. AUC portrays ROC 
quantitatively. It is calculated as the arithmetic mean of True 
Positive rate and True Negative rate. 

    
             

 
             (1) 

Where        is characterized as the quantity of positive 
data points that are accurately categorised as positive and 
       is the total quantity of negative data points that are 
accurately categorised as negative. AUC reveals the global 
performance of every classifier for all conceivable estimation 
of False Positive rate. 

III. EMPIRICAL ASSESSMENT OF ENSEMBLES 

We have compared 15 ensemble approaches with 7 
imbalanced data with the class imbalance ratio from 1.82 to 
129.44. The characteristics of these data-sets are recorded in 
Appendix A. We used KEEL tool [54, 55] for comparing the 
performance of ensemble approaches by considering Decision 
Tree method (C4.5) as the weak classifier. C4.5 is the widely 
used classifier by many people to compare the algorithms in 
imbalance domains [72, 73]. The AUC of the methods is 
recorded with the following initial settings of the KEEL tool 
(Table II). Tables III and IV listed AUC values along with the 
variance. Results are visually displayed in Fig. 6, Fig. 7 and 
Fig. 8. Average performance of all the ensembles is shown in 
Fig. 9. 

A. Visual Interpretations and Discussions 

It is witnessed from the figures that for Boosting based 
approaches (Fig. 6), RusBoost stands out and outperformed 
every other method for extremely imbalanced data 
(Abalone19 having imbalance ratio of 129.44). In other cases, 
SmoteBoost and RusBoost almost performed equally. In case 
of Bagging based approaches (Fig. 7), Underbagging 
outperformed other methods for highly imbalanced data-set 
whereas the performance of SmoteBagging and UnderBagging 
is almost equal for other data-sets. Hybrid ensembles 
performed equally well for all the data-sets with minor 
differences for some data-sets. In case of Ecoli4, 
Balancecascade outperformed EasyEnsemble whereas in case 
of Abalone19, EasyEnsemble outperformed Balancecascade. 

TABLE II. PARAMETER SETTING OF KEEL TOOL 

Parameter Description Value 

Base Classifier Decision Tree (C4.5) 

Cross Validation 5 Fold 

Data points per leaf 2 

Confidence Level 0.25 

Number of Classifiers 10 

Pruning True 
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TABLE III. AUC VALUES OF ENSEMBLE APPROACHES 

Techniques 

Data-Sets (Class Imbalance ratio :: 1.82 to 129.44) 

Glass1(1.82) Vehicle3 (2.99) Yeast3 (8.10) Ecoli4 (15.80) 

AUC Variance AUC Variance AUC Variance AUC Variance 

Adaboost 0.8093 ±0.0020 0.6812 ±0.0004 0.8351 ±0.0011 0.8449 ±0.0115 

SmoteBoost 0.7839 ±0.0034 0.7442 ±0.0009 0.8917 ±0.0004 0.8826 ±0.0057 

DataBoost-IM Not Performing 0.6917 ±0.0020 0.8919 ±0.0009 0.8489 ±0.0065 

MSmoteBoost 0.7625 ±0.0061 0.7386 ±0.0002 0.9176 ±0.0010 0.8489 ±0.0059 

RusBoost 0.7703 ±0.0041 0.7643 ±0.0001 0.9198 ±0.0004 0.9146 ±0.0015 

EusBoost 0.7836 ±0.0036 0.7713 ±0.0014 0.9321 ±0.0004 0.8760 ±0.0096 

Bagging 0.7556 ±0.0010 0.6602 ±0.0008 0.8529 ±0.0010 0.8906 ±0.0069 

SmoteBagging 0.7444 ±0.0050 0.7488 ±0.0020 0.9350 ±0.0003 0.8996 ±0.0030 

UnderBagging 0.7547 ±0.0038 0.7410 ±0.0005 0.9354 ±0.0003 0.8598 ±0.0018 

MSmoteBagging 0.7219 ±0.0038 0.7678 ±0.0003 0.9291 ±0.0003 0.8632 ±0.0040 

OverBagging 0.7580 ±0.0034 0.7207 ±0.0004 0.9073 ±0.0025 0.8853 ±0.0069 

UnderOverBagging 0.7286 ±0.0024 0.7535 ±0.0004 0.9293 ±0.0005 0.8566 ±0.0040 

IIVotes 0.6745 ±0.0044 0.7330 ±0.0016 0.8908 ±0.0004 0.8879 ±0.0018 

BalanceCascade 0.7491 ±0.0025 0.7282 ±0.0008 0.9135 ±0.0008 0.9093 ±0.0028 

EasyEnsemble 0.7491 ±0.0025 0.7282 ±0.0008 0.9135 ±0.0008 0.8650 ±0.0022 

TABLE IV. AUC VALUES OF ENSEMBLE APPROACHES 

Techniques 

Data-Sets (Class Imbalance ratio :: 1.82 to 129.44) 

Abalone 9-18 (16.40) Yeast5 (32.78) Abalone19 (129.44) 
Average Performance out 

of 7 data-sets 

AUC Variance AUC Variance AUC Variance AUC 

Adaboost 0.7327 ±0.0239 0.8174 ±0.0013 0.5095 ±0.0006 0.7471 

SmoteBoost 0.7939 ±0.0238 0.9554 ±0.0030 0.5291 ±0.0015 0.7972 

DataBoost-IM 0.7226 ±0.0240 0.9071 ±0.0009 0.5000 ±0.0000 0.7603 

MSmoteBoost 0.7290 ±0.0139 0.9142 ±0.0004 0.4989 ±0.0000 0.7728 

RusBoost 0.8105 ±0.0085 0.9633 ±0.0005 0.6888 ±0.0060 0.8330 

EusBoost 0.7957 ±0.0133 0.9471 ±0.0005 Not Performing 0.8509 

Bagging 0.6510 ±0.0086 0.8744 ±0.0003 0.5000 ±0.0000 0.7407 

SmoteBagging 0.7961 ±0.0149 0.9670 ±0.0007 0.5467 ±0.0008 0.8054 

UnderBagging 0.7733 ±0.0030 0.9592 ±0.0004 0.6894 ±0.0048 0.8161 

MSmoteBagging 0.7303 ±0.0117 0.9340 ±0.0011 0.4996 ±0.0000 0.7780 

OverBagging 0.7377 ±0.0198 0.8788 ±0.0033 0.5488 ±0.0008 0.7767 

UnderOverBagging 0.7527 ±0.0210 0.9413 ±0.0020 0.5264 ±0.0033 0.7841 

IIVotes 0.7456 ±0.0228 0.8328 ±0.0031 0.4990 ±0.0000 0.7520 

BalanceCascade 0.7456 ±0.0185 0.9552 ±0.0005 0.6667 ±0.0069 0.8096 

EasyEnsemble 0.7456 ±0.0185 0.9552 ±0.0005 0.6685 ±0.0066 0.8036 
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Fig. 6. AUC Results of Boosting based Ensembles. 

 

Fig. 7. AUC Results of Bagging based Ensembles. 

 

Fig. 8. AUC Results of Hybrid Ensembles. 

 

Fig. 9. Average AUC Results of all the Ensembles. 

Considering the overall average performance of 
ensembles, it is observed that RusBoost outperformed other 
ensemble methods. The performance of SmoteBagging, 
UnderBagging,  BalanceCascade and SmoteBoost performed 
equally well with the minor variations. 

The visual interpretation about performance of these 
ensembles is not satisfactory and sufficient. So to prove these 
interpretations, we have done statistical validations. 

B. Statistical Validations 

It is very difficult to judge the performance of algorithms 
when their performance is tested with multiple data-sets and 
best performing method is not the same for every case. 
Statistical validation is an efficient tool when we have to 
compare the performance of methods with very little variation. 
To do better analysis we are using non-parametric tests as per 
the recommendation given in [72-74]. We are conducting two 
types of non-parametric tests. We are using Friedman rank test 
[75] to compare multiple methods and to know if there are any 
significant differences between the methods. If the „Null 
hypothesis is rejected‟ then we are using Holm post-hoc test 
[75] to check if the control method (having rank 1) is 
significantly better than other methods (1 x N comparisons).  
This test computes ranks for every algorithm as per the 
following equation: 
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   ]
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Where     is the total number of algorithms,  ̂  is equal to 

the rank total of the i
th

 data-set and  ̂  is the rank total of the j
th

 

algorithm. As per the equation the best performing algorithm 
will have the lowest rank. To compare two methods, we are 
using Wilcoxon Matched Pair signed rank test [57] to find the 
significant differences between two methods. 

1) Statistical framework: We applied the statistical tests 

on the AUC performance metric as per following steps In the 

first step, Best performer method is selected from every group 

of ensembles (Boosting, Bagging and Hybrid) using Friedman 

test and Holm post-hoc analysis. After this step, we left with 

only three best methods out of all the groups. In the second 

step, 3 methods are assessed using Friedman test to find the 

final method which outperformed every other ensemble to 

classify imbalanced data. 

2) Analysis and discussions: Firstly, we apply Friedman 

test on Boosting based ensembles. Fig. 10 shows the ranks 

assigned by Friedman test. As per the ranking, RusBoost 

outperformed in the family of Boosting ensembles whereas 

DataBoost-IM is the worst performer. Table V lists the 

Friedman test statistic for Boosting ensembles. 

TABLE V. TEST STATISTICS USING FRIEDMAN TEST (BOOSTING 

ENSEMBLES) 

N 07 

Chi-Square (FAR) 16.55 

Degree of Freedom (K-1) 5 

p-value 0.005435 
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Fig. 10. Ranks Assigned by Friedman Test. 

In the table, „N‟ is the number of data-sets. „k-1‟ is the 
degree of freedom (which is equal to number of algorithms 
minus 1). The table value of chi-square (χ2) test for „5‟ degree 
of freedom is 11.0705, which is lesser than the FAR calculated 
value 16.55102 and the p-value is less than 0.05. Hence the 
null hypothesis (There is no significant difference between 
these groups of algorithms) is rejected. To know the 
difference, we did Holm post-hoc analysis by considering 
RusBoost as the control method (having rank 1). Holm 
statistics is given in Table VI. As per the statistic, the 
hypothesis for no significant differences is rejected for 
DataBoost-IM, AdaBoost, MSmoteBoost and EusBoost with 
the control method „RusBoost‟ because the p-value is each 
case is less than 0.05. As the p-value of SmoteBoost is equal 
to 0.05, hence there are no significant differences between 
RusBoost and SmoteBoost. We further analyze these two 
algorithms using Wilcoxon Matched Pair signed rank test. The 
test statistics is given in Table VII. R

+  
is the sum of ranks for 

the data-set in which the number of times first algorithm 
(RusBoost) outperformed other (SmoteBoost). R

- 
 rank specify 

the number of times second algorithm (SmoteBoost) 
outperformed the other (RusBoost). It is clearly seen from the 
table that RusBoost performed better than SmoteBoost. So 
RusBoost is selected as the best performer from the Boosting 
based ensemble group. Friedman Test ranking for Bagging 
based ensembles is shown in Fig. 11 and Test statistics are 
shown in Table VIII. SmoteBagging outperformed other 
ensembles with first rank and IIVotes is the worst performer. 
As chi-square (χ

2
) table value for 6 degree of freedom is 

12.5916 which is lower than chi-square (FAR) calculated value 
and p-value is less than 0.05, the null hypothesis is rejected. 
To know the difference between these ensembles, Holm post-
hoc test is conducted with SmoteBagging as the control 
method. Table IX shows the Holm test statistics. All the 
methods except UnderBagging reject the null hypothesis, 
which means that we have to further analyze SmoteBagging 
and Underbagging for any significant differences. To closely 
analyze these two methods, we performed Wilcoxon Matched 
pair test. The test statistics (Table X) shows that p-value is 
more than 0.05 so null hypothesis for no significant 
differences is accepted. But the higher rank in favor of 
SmoteBagging proves its better performance compare to 
UnderBagging. Hence, SmoteBagging is selected as the best 
performer in the category of bagging based ensembles. As we 
have only two methods in hybrid ensemble category so we are 
performing Wilcoxon Matched pair test to analyze these 
methods. From the test statistics (Table XI), it is observed that 

the hypothesis is accepted as the p-value is more than 0.05 but 
the higher rank score of BalanceCascade confirms its 
superiority from EasyEnsemble. So, BalanceCascade is 
selected as the best performer from hybrid ensemble category. 

 

Fig. 11. Ranks Assigned by Friedman Test. 

TABLE VI. STATISTICS USING HOLM TEST FOR COMPARING BOOSTING 

BASED ENSEMBLES 

Control method: RusBoost (1.7143) 

I Methods  Z Value 
Holm 

(p-value) 

Hypothesis 

(α=0.05) 

5 DataBoost-IM  3.142857 0.01 Rejected  

4 AdaBoost 2.857143 0.0125 Rejected  

3 MSmoteBoost 2.714286 0.016667 Rejected  

2 EusBoost 1 0.025 Rejected  

1 SmoteBoost 1 0.05 Not Rejected 

TABLE VII. STATISTICS USING WILCOXON TEST FOR COMPARING 

RUSBOOST AND SMOTEBOOST 

Methods R+ R- Hypothesis (α=0.05) p-value 

RusBoost Vs 
SmoteBoost 

26.0 2.0 

Rejected, Significant 

differences between 

methods 

0.04688 

TABLE VIII. TEST STATISTICS USING FRIEDMAN TEST (BAGGING 

ENSEMBLES) 

N 07 

Chi-Square (FAR) 13.8367 

Degree of Freedom (K-1) 6 

p-value 0.031514 

TABLE IX. STATISTICS USING HOLM TEST FOR COMPARING BAGGING 

BASED ENSEMBLES 

Control method: SmoteBagging (2.1429) 

I Methods Z Value 
Holm 

(p-value) 

Hypothesis 

(α=0.05) 

6 IIVotes 2.96923 0.0083 Rejected  

5 Bagging 2.59807 0.01 Rejected  

4 MSmoteBagging 2.10320 0.0125 Rejected  

3 OverBagging 1.60833 0.016667 Rejected  

2 UnderOverBagging 1.48461 0.025 Rejected  

1 UnderBagging 0.49487 0.05 Not Rejected 
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TABLE X. STATISTICS USING WILCOXON TEST FOR COMPARING 

SMOTEBAGGING AND UNDERBAGGING 

Methods R+ R- Hypothesis (α=0.05) p-value 

SmoteBagging Vs 
UnderBagging 

16.0 12.0 
Accepted, No 
significant differences 

0.67260 

TABLE XI. STATISTICS USING WILCOXON TEST FOR COMPARING 

BALANCECASCADE AND EASYENSEMBLE 

Methods R+ R- Hypothesis (α=0.05) p-value 

BalanceCascade 

Vs EasyEnsemble 
11.0 10.0 

Accepted, No 

significant differences 
0.83393 

Next step is to analyze these three best performer methods. 
We again performed Friedman Test with these three methods. 
Ranks assigned by the test shows (Fig. 12) that RusBoost is 
the best performer and Balancecascade is the worst performer 
and Friedman Test statistic (Table XII) reveals that chi-square 
(χ

2
) table value for 2 degree of freedom (5.9915) is less than 

calculated value (6.0), hence there are no significant 
differences between the methods. We further analyze the 
methods with Holm post-hoc analysis. Test statistics 
(Table XIII) shows that RusBoost and SmoteBagging are 
similar as the null hypothesis for no significant differences is 
accepted. As a last step to find the best performer out of all 
ensemble methods, we closely analyzed RusBoost and 
SmoteBagging with Wilcoxon matched pair test. Although, 
the p-value of the test statistic shown in the table (Table XIV) 
is more than 0.05, which means that there are no significant 
differences between these pair of methods but the higher rank 
value of RusBoost shows that its performance is better than 
SmoteBagging. Another advantage of RusBoost is that as it is 
using undersampling approach within the boosting process to 
classify the data-set so it is computationally less expensive 
compare to SmoteBagging which follows oversampling 
approach and bagging process for classification. 

 

Fig. 12. Ranks Assigned by Friedman Test. 

TABLE XII. TEST STATISTICS USING FRIEDMAN TEST (BEST PERFORMER 

ENSEMBLES) 

N 07 

Chi-Square (FAR) 6.0 

Degree of Freedom (K-1) 2 

p-value 0.049787 

TABLE XIII. STATISTICS USING HOLM TEST FOR COMPARING THE 

CANDIDATE METHODS FOR BEST PERFORMER ENSEMBLES 

Control method: RusBoost (1.2857) 

I Methods Z Value 
Holm 

(p-value) 

Hypothesis 

(α=0.05) 

2 BalanceCascade 2.405351 0.025 Rejected  

1 SmoteBagging 1.603567 0.05 Not Rejected 

TABLE XIV. STATISTICS USING WILCOXON TEST FOR COMPARISON 

BETWEEN RUSBOOST AND SMOTEBAGGING 

Methods R+ R- Hypothesis 

(α=0.05) 
p-value 

RusBoost Vs 
SmoteBagging 

23.0 5.0 
Accepted, No 
significant differences 

0.108319 

From the visual interpretations and the statistical analysis, 
we can say that RusBoost outperformed other ensemble based 
methods in the imbalance domains. 

IV. CONCLUSION 

In the current study, we review various boosting and 
bagging based ensemble approaches for their performance in 
imbalanced domains by focusing on binary classification. We 
empirically assessed 15 approaches using 7 imbalanced data 
sets (KEEL repository) with the class imbalance ratio from 
1.82 to as high as 129.44. After analyzing the results through 
statistical analysis methods (Wilcoxon matched signed rank 
and Friedman test), it is reported that RusBoost has 
outperformed other 14 methods considering any level of 
imbalance ratio. In future, we are planning to propose an 
ensemble approach which can work efficiently in the presence 
of other data impurities like noise, etc. along with data-set. 

APPENDIX A 

TABLE AI PROPERTIES OF DATA SETS 

Sr. 

No 
Data sets 

Imbala

nce 

Ratio 

Number of 

Dimensions 

Minority 

Class % 

Size of 

data-set 

1 Glass1 1.82 9 35.51 214 

2 Vehicle3 2.99 18 25.06 846 

3 Yeast3 8.10 8 10.98 1484 

4 Ecoli4 15.80 7 5.95 336 

5 Abalone9-18 16.40 8 5.75 731 

6 Yeast5 32.78 8 2.96 1484 

7 Abalone19 129.44 8 0.77 4174 
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