
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

605 | P a g e

www.ijacsa.thesai.org

Spin-Then-Sleep: A Machine Learning Alternative to

Queue-based Spin-then-Block Strategy

Fadai Ganjaliyev

School of IT and Engineering,

ADA University, Baku, Azerbaijan

Abstract—One of the issues with spinlock protocols is

excessive spinning which results in a waste of CPU cycles. Some

protocols use the hybrid, spin-then-block approach to avoid this

problem. In this case, the contending thread may prefer

relinquishing the CPU instead of spinning, and resumes

execution once notified. This paper presents a machine learning

framework for intelligent sleeping and spinning as an alternative

to the spin-then-block strategy. This framework can be used to

address one of the challenges faced by this strategy: the delay in

the critical path. The work suggests a reinforcement learning

based approach for queue-based locks that aims at having

threads learn to spin or sleep. The challenges of the suggested

technique and future work are also discussed.

Keywords—Spinlock; spin-then-block; reinforcement learning;

queue-based lock; intelligent sleeping

I. INTRODUCTION

Spinlocks have been widely used in multicore systems as a
mechanism to guarantee concurrent access of threads to a
critical section of code. A thread will poll (spin on) a variable
in a loop to grab the lock, to enter such a shared piece of code.
Once the lock is free, the thread will flip it and can enter the
critical section. After it has finished executing the critical
region, it flips the flag back to its original value so that other
threads can acquire the lock as well.

Researchers have developed different types of spinlock
protocols. Test-and-test-and-set with exponential backoff
(TTSE) is the simplest among them [1]. Here, all threads spin
on a globally shared lock flag by issuing a read operation on it
until the lock is found free. At this point, a thread issues the
test-and-set atomic instruction to acquire the lock. A random
delay is inserted between consecutive spins, to reduce the
simultaneous thread attack upon lock release. TTSE protocol
is recommended for low and medium contention levels, as it
scales poorly when contention for the lock is high.

Ticket locks [2] maintain global counters to provide
concurrent access of threads to a critical section. The lock is
composed of two variables: a ticket and a grant variable.
Whenever a thread wants to acquire the lock, it atomically
increments grant variable value and spins unless the two are
equal. Once these variables are equal, the thread can enter the
critical section. When the thread exits the critical section, it
advances the value of the grant variable. Ticket locks

guarantee First-In-First-Out (FIFO) order but suffer from the
same issue of ―thundering herd‖ that TTSE protocol does.

Queue-based locks [3, 4, 5] spread contention on the lock
by maintaining a list of linked nodes created by contending
threads. Threads do not spin on a single lock variable, but
each thread spins on a flag of its successor [3] or the flag of
its own [4], thereby spreading contention among different
memory locations in the system. Once the lock holder exits
critical section, it updates either its flag (when predecessor
spins on it) or the predecessor’s flag (when the predecessor
spins on its flag). Though vulnerable to preemption [6],
queue-based locks are an elegant solution for high contention,
and they guarantee FIFO order.

Spinlocks are an attractive synchronization solution when
the critical section is short. However, when contention for the
lock is high, spinning can be inefficient either, since
concurrent threads may cause unnecessary CPU utilization. To
avoid burning CPU cycles, the spin-then-block approach is
used: a thread does not spin but relinquishes the CPU, and
upon lock release, the holder wakes up the waiting thread
which in turn grabs the lock. From the other hand, this adds up
to the critical path of the application because every unlock
phase requires waking up the waiting thread. A better option
would be not to block and sleep until notified but to go into a
timed sleep so that to wake up just in time – right before the
lock release. Thus, this would achieve two important goals at
the same time: first, avoid unnecessary CPU burn and second,
remove lock handoff delay. We call it spin-then-sleep strategy.

The questions this work addresses are the following: Once
a node created by a contending thread joins a queue, should
the thread spin or should it sleep? Also, if it decides to take a
sleep, then how much it should sleep? For the first question,
the thread has to estimate which either of the two ways will
utilize fewer CPU cycles. As to the second question, the
thread has to be able to predict when the lock will be released.

Key idea: The suggestion is to treat the thread as an agent
whose goal is to automatically learn the cheapest and fastest
way to acquire lock via interaction with the system.

The rest of this paper is structured as follows: Section 2
reviews related work. A short background is provided in
Section 3. The suggested approach is presented in Section 4.
Finally, the challenges, limitations and future work are
discussed in Section 5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

606 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

This paper presents an approach that can serve as an
alternative to the spin-then-block strategy. The key feature is
to feed adaptivity into spinning and sleeping. So, the closest
works to the one presented here are adaptive spinlocks [7, 8,
9], that have been of particular interest to researchers as well.
These works aim at making spinlocks self-aware. That is the
algorithm monitors and tunes itself accordingly. Thus, in [7] a
reactive algorithm is developed which utilizes three protocols:
TTSE, combining tree [10] and MCS lock [4] which is a
queue-based lock. The algorithm switches between protocols
depending on the contention level on the lock. For example,
when the TTSE protocol fails to get the lock after some
number of times, it switches to the MCS lock. In the opposite
direction, the algorithm makes a switch when the queue is
found to be empty for a number of successful fetch-and-op
requests.

Another work [8] develops a backoff protocol that does
not require experimentally tuned parameters. Here, the finding
is that backoff delay depends strongly on the delay outside of
critical section (DoCS) which is defined as the time between
when the lock holder releases the lock and the first attempt to
reacquire the lock. A heuristic, , is found that depends
on DoCS and which has the following form:

 asel
a DoCS

DoCS
 (1)

The DoCS variable is computed via overhead that is
defined as follows:

overhead
latency of remote memory reference

latency of L cache reference
 (2)

The algorithm needs only this variable. Function is
computed once for each lock, and the algorithm adjusts
backoff delay from this value depending on the load level that
is divided into two phases: load rising phase and load
dropping. Whenever a spinning thread observes a rise or drop
in the load, it adjusts its delay derived from the variable .

Authors of [9] have developed a spinlock library
Smartlocks that uses reinforcement learning method of
machine learning to achieve a user-defined goal which can be
related to performance, power, problem-specific criteria or
some combination of these. The application must be
connected to a specific framework that measures the
performance characteristics of it. Performance related data that
arrive from this interface serve as a reward signal to the
machine learning engine of the Smartlocks that run in separate
helper threads. The library currently supports TTSE, Ticket
Locks, MCS and a few other and maintains three main
components: The Protocol Selector, the Wait Strategy
Selector, and the Lock Acquisition Scheduler. Protocol
Selector is responsible for switching between protocols when
a predefined threshold of contention level is reached. The
Wait Strategy Selector defines what action threads must take
when they fail to get the lock and is not implemented since
each protocol has a fixed waiting strategy. The function of the
Lock Acquisition Scheduler component is to generate policies
for lock acquisition and to switch between them. The policy is

not updated at every lock acquisition request but every few
attempts which are not related to application lock acquisitions.

III. BACKGROUND

This section gives brief information on the spin-then-block
strategy. We also motivate the need for intelligent learning of
sleep duration, as well as when to spin and when to sleep and
provide a short background on reinforcement learning too.

A. Anatomy of Spin-Then-Block Strategy

Once a thread links its node to a queue of nodes created by
contending threads for acquiring the lock, it has two options:
spin or release CPU and resume when notified. If the
contention for the lock is low, the thread would prefer
spinning, since it will provide faster lock acquisition and avoid
scheduler interaction. In case the contention for the lock is
high, the thread may prefer giving up the CPU by suspending
itself which involves a context switch. The thread, then, will
wait until the lock holder explicitly wakes it up upon lock
release. The notification will be followed by another context
switch, to restore the state of the thread to what it was before
the suspension. This behavior is known as a spin-then-block
method. Solaris mutex [11] is an example of it. This mutex
spins at low and medium contention and switches to blocking
when contention rises. Spin-then-block strategy suffers from
one major drawback: notification and subsequent wakeup of
the waiting thread lengthen the critical path. If the thread
could approximate timestamp of lock release, then it could
have gone into timed sleep so that to wake up right before the
lock is freed which would eliminate lock handoff delay,
thereby reducing the length of the critical path. The third
option is to spin for a while and then park itself out which is
known as spin-then-park strategy. In this work, we don’t
consider this.

B. Motivation

An important factor here is duration of the sleep. Assume,
a thread which holds the lock is executing the critical
section. Suppose, it has acquired the lock at time

 and will
release it at time . A thread adds a node the queue and
sleeps such that it wakes up at . Another thread ,
then, enters the system, links its node to the queue and sleeps
as well such that it will wake up at . Once thread
wakes up at time , it will spin from to . If, in
comparison to

 the difference is huge, then the
sleep duration was too small which will cause unnecessary
spinning. Thread could have slept instead, should it predict
lock release time more accurately.

Additionally, thread will not be able to grab the lock
once it is free, since by the time lock is released it will not
have its sleep finished (if a thread that has gone into a timed
sleep, there is no way to wake it up). Thread should have
slept for shorter amount of time. In other cases, a thread
should not sleep at all if sleeping for the smallest amount of
time always yields sleeping more than necessary, no matter
how many threads contend for the lock and how loaded the
system is. İn this case pure spinning should the preferred
choice. Fig. 1 illustrates these scenarios. Hence, it is crucial to
be able to decide whether sleeping at all is a good choice or
not and if it is then to sleep for such a period of time that will

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

607 | P a g e

www.ijacsa.thesai.org

minimize spinning by maximizing sleep duration without
sleeping unnecessarily (still sleeping even though the lock is
free).

C. Reinforcement Learning Paradigm

Reinforcement Learning (RL) is a class of supervised
learning algorithms in machine learning [12]. The goal of RL
is to have an agent learn how to behave in an uncertain
environment by interacting with it. A scalar reward signal
guides the learning process and the agent has to learn to
maximize it.

RL is formalized using the Markov Decision Process
(MDP). MDP is defined as a tuple , where
is a set of states, is a set of actions, is a transition
probability function, and is a scalar reward. A state is
collection of characteristics that represent every state that the
agent can be in. The transition function a is probability
distribution over the state space for each state and action
 . Reward function is an expected reward for performing
an action in a state. Transition function together with reward
function defines the model of the environment.

RL is a model-free technique, i.e. it assumes that the agent
does not possess any information about the environment.
Thus, the agent must interact with the environment to collect
the reward. At each step, the agent senses the current state,
chooses an action and transitions to the next state followed by
receiving a reward for choosing this action at this state. The
goal of the agent is to learn an optimal policy that maps states
to actions and maximizes its cumulative reward over the long-
term. The agent tries to learn the optimal policy without
learning transition and reward functions. Fig. 2(a) depicts
agent-environment interaction.

lock lock

acquired by released by

 t2 t1 t3 time

 spin sleep

 lock release

 t1 t2 time

 spin sleep context switch

Fig. 1. (a). Sleeping and Spinning Redundantly; Thread could have

Continued Sleeping from t2 to t1 Rather than Spin; Thread should not have
Slept from t1 to t3; (b). Sleeping for the Shortest Amount of Time Always

Yields Unnecessary Sleeping Since the Lock is Passed by.

Fig. 2. A Reinforcement Learning Agent Interacting with the Environment;

(b) Thread as an RL-Agent.

Fig. 2(b) shows how spin-then-sleep strategy maps to the
RL framework. The thread, which represents the agent, takes
actions, such as spin or sleep. As a result, the thread receives a
reward signal. The reward can be designed in different ways.
For example, if any sleep that does not yield unnecessary
waiting is enough, then the reward can take only three values:
0 for pure spinning, 1 for a sleep that does not result in
unnecessary sleeping and -1, otherwise. The thread then
transitions to a different state where it takes the same or
different actions. In this way, thread learns the best action at
each state. The next section discusses the state, and the reward
structure is in more detail.

IV. RL-BASED SPIN-THEN-SLEEP STRATEGY

This section explains how the spin-then-sleep strategy can
be formulated as an RL problem. It describes what serves as a
reward, action, and state.

Reward. The reward has to lead to the goal. A thread that
linked its node to a queue has two choices to proceed: spin
only or sleep followed by spinning. The latter should be
preferred if it does not yield redundant sleeping because it will
be cheaper. Otherwise, pure spinning is preferred. From the
other hand, to eliminate spinning completely, the thread may
sleep for a sufficiently large period of time. In such a case,
upon wakeup, the thread will grab the lock right away because
it is free. However, the lock could have been freed long ago.
The length of the critical path will be delayed dramatically
then. Thus, upon acquiring the lock, the thread must know
whether its sleep resulted in unnecessary sleeping or not. The
thread can find it out by requiring at least one spin to fail and
the subsequent spin to succeed. At least one failed spin will
guarantee that by the time the thread requests the lock, the
holder has not yet released it yet. So, the reward is defined as
follows: given that a sleep followed by spinning does not
result in redundant sleeping, the more a thread sleeps, the
more reward it receives. On the contrary, if a sleep for some
duration followed by spinning does result in redundant
sleeping, then it receives a negative reward. Pure spinning gets
a reward of 0. Fig. 3 depicts these cases.

ENVIRONMENT

Reward r(t)
Agent

State s(t)
Action a(t+1)

SYSTEM

Sleep duration (t)
Thread

State Attributes (t)
Spin/Sleep(t+1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

608 | P a g e

www.ijacsa.thesai.org

 Reward (0)

 Reward (t)

 t
 Reward (-t)

 t

 t1 time

 spin sleep

Fig. 3. Rewards for Sleeping and Spinning. Lock is Released at Time t1.

acquire_lock (duration, …) {

if (duration = 0) then spin;
 else {sleep(duration); spin;}

 }

Fig. 4. Pseudo Code for Action Acquire_Lock.

Action. Spinlock protocols usually maintain three
methods: a method for lock acquisition, lock release, and
execution of critical section. Typically, it is the method for
lock acquisition, say spin(), where thread continuously spins
until it gets the lock. This method of the protocol and routine
for sleeping (which includes sleep and wakeup), say sleep(),
can be united into a single action of the thread as an agent, say
acquire_lock(). That is, the action acquire_lock acts as a
function of a single parameter – sleep duration. If this duration
is zero, then no sleeping is involved, and the thread only spins.
Otherwise, it sleeps for the specified duration and spins the
rest of the time. Fig. 4 shows a pseudo code for this.
Additionally, the thread-agent will have other two actions (for
execution of critical section and lock release) that are no
different from the two methods of the thread. Action
acquire_lock will always be followed by the action for
executing critical section which in turn is followed by the
action for releasing the lock.

State. It is assumed that the system is running on Linux. In
order to derive state attributes, one needs to determine what
affects the time it takes the thread to resume when it intends to
take a sleep. Whenever a thread is about to do so, the
scheduler is invoked. Scheduler activity results in scheduling
latency and dispatch latency. The former is the time it takes to
make scheduling decisions, i.e. time to insert a thread into
scheduler runqueue (queue of threads that are ready to run on
CPU but cannot because CPU is busy) or pick up one from the
runqueue to run on CPU. Starting from the 2.6.23 kernel,
Linux implements the Completely Fair Scheduler (CFS) [13].
CFS spends time for insert and delete operations,
where N is the number of threads in the runqueue, and
constant time for a search operation. It achieves that by
making use of the red-black tree to hold tasks sorted by their
weights and always picking up the leftmost node of the tree to
run on the CPU. Thus, scheduler latency which is essentially a
function of number threads in the runqueue (perhaps of
priority classes as well), contributes to time it takes the thread
to be rescheduled on CPU.

Dispatch latency is the time it takes to complete a context
switch which is the time to store the state of the thread going
into sleep and restore the state of another thread to run. After
the first context switch is completed, the current thread now

sleeps. Sleep duration should take into consideration the
number of contending threads for the lock. The more threads
contend for the lock, the more a thread should sleep to
eliminate spinning as much as possible. Once sleep duration is
over, there is no guarantee that it will get access to the CPU
immediately (in an overloaded system). It depends on how
loaded (busy) the system is. The load of the system can be
expressed as a function of scheduler runqueue and number of
threads executing on CPU, for example, as a ratio of average
number of threads running on CPU to the average number of
threads in the scheduler runqueue per unit of time.

Therefore, the number of threads in the scheduler
runqueue, number of threads currently running on CPU and
number of threads contending for the lock can serve as
candidates for state attributes. At this point, the spin-then-
sleep strategy can be regarded as an RL problem.

V. DISCUSSIONS AND CONCLUSION

Modeling of the spin-then-sleep strategy as a
reinforcement learning problem promises competitive results.
However, certain challenges and limitations are encountered
as well.

State space, as well as action space, is continuous.
Therefore, the learning process may be inefficient both from
performance and storage point of view. Besides, since the
state space is large, the thread may never have a chance to
visit the same state more than once. Hence, the thread will not
be able to try actions at that particular state. In such a case, a
generalization technique such as CMAC [14] can be utilized.
One can use it to generalize the learned experience from
previous states to new states.

Another challenge is related to the exploration-exploitation
tradeoff. From one side, threads need to try different actions to
see their results (rewards), and from the other hand, threads
are not willing to spend much time on learning, since they
have to progress the application for which performance is
crucial. To balance the exploration-exploitation tradeoff, one
can use soft-max policy. To improve it further, one can trigger
computations (reward calculation, policy update) not after
every action of every thread but every few actions, like in [9]
or every few time units.

Reward evaluation is easy to do, and policy update can be
embedded into threads lock release phase which, intuitively,
should require much fewer CPU cycles than lock handoff.
Another option is to have additional threads to maintain it.
However, if each lock would maintain a separate policy, then
space requirements can be dramatic. Locks can be clustered on
some property. An appropriate candidate for it can be the
length of critical section protected by the lock. Locks
clustered to a particular group will maintain a separate policy.
It, thus, will reduce the number of total policies, even though
additional contention points may arise as multiple threads may
attempt to update the same policy at the same time. Future
experiments will reveal more details on this.

Though the presented approach is generally quite
promising, there exist situations in which case it cannot be
applicable. First, it assumes that context switch time is
constant which is not always the case. The direct cost of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

609 | P a g e

www.ijacsa.thesai.org

context switch that includes pipeline flush and Translation
Lookaside Buffer (TLB) reload will be different for different
threads. Moreover, context switch also has associated indirect
cost. When a thread wakes up and resumes execution, it may
not find the data it needs in the CPU cache, and thus a cache
miss will occur. This will affect the time it takes the thread to
resume. For different memory access models, this cost will
vary. Also, the reward structure is entirely agnostic of the load
of the scheduler. It targets at minimizing the cost associated
with lock acquisition and may do so even at the expense of
deteriorating scheduler performance. In an extremely
overloaded system, mostly sleeping will be preferred but too
many context switches can make the scheduler very busy.

This work has explored one of the challenges faced by the
spin-then-block method related to critical path delay at the
lock handoff phase. As a solution, a more generic, a machine
learning based approach is suggested to have threads learn
when to sleep or spin. The technique models lock acquisition
and release as a reinforcement learning problem. It can also be
used to release the software designer from hardcoding cases
that decide sleeping or spinning. As of now, no experimental
setup has been done to test this design. Future studies will
concentrate on running experiments to improve it, for
example, by refining the reward structure. Certain
developments can be made to reduce the action space as well.
All this is a part of future work.

ACKNOWLEDGMENT

This work has been carried out in Center for Data
Analytics Research at ADA University.

REFERENCES

[1] T. E. Anderson, ―The Performance of spin lock alternatives for shared-
memory multiprocessors,‖ IEEE Transactions on Parallel and
Distributed Systems, vol. 1, pp. 6–16, 1990.

[2] D. P. Reed, R. K. Kanodia, ―Synchronization with event counts and
sequencers,‖ Communications of the ACM, vol. , pp. 5-123, 1979.

[3] J. M. Mellor-Crummey, M.L. Scott, ―Algorithms for scalable
synchronization on shared-memory multiprocessors,‖ ACM
Transactions on Computer Systems, vol. 9, pp. 21-65, 1991.

[4] P. S. Magnusson, A. Landin, E. Hagersten, ―Quelocks on cache coherent
multiprocessors,‖ Proceedings of Eights International Parallel
Processing Symposium, pp. 165-171, 1994.

[5] A. Kägi, D. Burger, J. R. Goodman, ―Efficient synchronization: let them
all eat QOLB,‖ Proceedings of the Twenty-Fourth Annual International
Symposium on Computer Architecture, pp. 170-180, 1997.

[6] B. He, W. N. Scherer, M. L. Scott, ―Preemption adaptivity in time-
published queue-based spin locks,‖ Proceedings of the Twelfth
International Conference on High Performance Computing, pp. 7-8,
2005.

[7] B. H. Lim, A. Agarwal, ―Reactive synchronization algorithms for
multiprocessors,‖ ACM SIGOPS Operating System Review, vol. 8, pp.
25-35, 1994.

[8] P. H. Ha, M. Papatriantafilou, P. Tsigas, ―Reactive spin-locks: a self-
tuning approach,‖ Proceedings of the Eighth International Symposium
on Parallel Architectures, Algorithms and Networks, pp. 33-39, 2005.

[9] J. Eastep, D. Wingate, M. D. Santam rogio, A. Agarwal, ―Smartlocks:
self-aware synchronization through lock acquisition scheduling,‖
Proceedings of the Seventh International Conference on Autonomic
Computing, pp. 215-224, 2010.

[10] J. R. Goodman, M. K. Vernon, P. J. Woest, ―Efficient synchronization
primitives for large-scale cache-coherent multiprocessors,‖ Proceedings
of the third international conference on Architectural support for
programming languages and operating systems, pp. 64-75, 1989.

[11] J. Mauro, R. McDougall, ―Solaris internals: core kernel components,‖
Sun Microsystems Press, 2001.

[12] R. Sutton, ―Reinforcement Learning: An Introduction,‖ MIT Press,
2017.

[13] C. S. Wong, I. Tan, and R. D. Kumari, F. Wey, ―Towards achieving
fairness in the linux scheduler,‖ ACM SIGOPS Operating Systems
Review, vol. 42, pp. 34–43, 2008.

[14] R. Sutton, ―Generalization in Reinforcement Learning: Successful
Examples Using Sparse Coarse Coding,‖ MIT Press, 996.

https://dl.acm.org/author_page.cfm?id=81100171405&coll=DL&dl=ACM&trk=0
https://www.semanticscholar.org/author/Marina-Papatriantafilou/1752071

