
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

620 | P a g e

www.ijacsa.thesai.org

Density based Clustering Algorithm for Distributed

Datasets using Mutual K-Nearest Neighbors

Ahmed Salim

Dept. of Math., Faculty of Sci., Zagazig University, Zagazig, P. O. Box 44519, Egypt

Dept. of Math., Faculty of Sci. and Arts, Al-mithnab, Qassim University, P. O. Box 931, Buridah 51931, Al-mithnab, KSA

Abstract—Privacy and security have always been a concern

that prevents the sharing of data and impedes the success of

many projects. Distributed knowledge computing, if done

correctly, plays a key role in solving such a problem. The main

goal is to obtain valid results while ensuring the non-disclosure of

data. Density-based clustering is a powerful algorithm in

analyzing uncertain data that naturally occur and affect the

performance of many applications like location-based services.

Nowadays, a huge number of datasets have been introduced for

researchers which involve high-dimensional data points with

varying densities. Such datasets contain data points with high-

density regions surrounded by data points with sparse density.

The existing clustering approaches handle these situations

inefficiently, especially in the context of distributed data. In this

paper, we design a new decomposable density-based clustering

algorithm for distributed datasets (DDBC). DDBC utilizes the

concept of mutual k-nearest neighbor relationship to cluster

distributed datasets with different density. The proposed DDBC

algorithm is capable of preserving the privacy and security of

data on each site by requiring a minimal number of

transmissions to other sites.

Keywords—Privacy; mutual k-nearest neighbor; Density-based;

clustering; security; DDBC

I. INTRODUCTION

Distributed Databases is a database that may be stored in
different computers in the same physical location, or may be
distributed over a network of interconnected computers.
Unlike parallel systems, in which the processors are tightly
coupled and constitute a single database system, a distributed
database system consists of loosely coupled sites that share no
physical components.

In a distributed setting, a database is implicitly defined
in explicit databases s located at different sites. We
model a database (that consists of a set of attributes) at the
i
th

 site by a relation include several tuples.

Local databases may be conferred to computation, but data
normalization can't be assumed to be performed for their
schemas.

The implicit database with which the computation is to
be performed is a subset of the set of tuples generated by a
Join operation performed on all s. However, the tuples of
can’t be made explicit at any one site due to entire local
databases, 's, can’t be moved to a single site.

Therefore, the tuples of must remain implicitly specified;
which leads to the problem addressed by the proposed
privacy preserving mining algorithm.

No doubt, that clustering of data points in a data space has
regions with different density requires an effective algorithm
to identify how many clusters should be used to classify the
data points, especially data that is located at different
geographic sites. Most of the algorithms are designed and
developed to work on data that is available in one site. These
algorithms cannot deal with distributed databases, and moving
databases located in various sites is not an easy task. This is
because of the huge size of these databases, ownership, and
the most critical issues are privacy and security.

In a training data space, data points that belong to one
class can have data density different from that for data points
that belong to another class. In such a situation classifying
entire data space to a correct class can become a difficult task
due to the varying density of each existing class. To classify
such datasets, we need a classifier that is sensitive to this
property of the dataset.

The existing classifiers designed so far have problems.
They have too many parameters to adjust before optimal
results are obtained. The data space in Fig. 1 has two classes.
The first class is a dense cluster containing point and the
other class comprise of only one data point, , which is far
away from the dense class.

Using traditional k-nearest neighbor () classifier, with
 , if we want to classify than will be classified as a
member of the dense cluster as point is closer to than
any other point in the data space. We can clearly see that it
does not belong to dense clthe ass but to the class same as
point . will classify points and in same class.

Fig. 1. Blue Points are Class1, Green Point is Class 2 and is Query

Point.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

621 | P a g e

www.ijacsa.thesai.org

Designing an algorithm that can handle the density-based
clustering with distributed databases presents a whole new set
of difficulties. This is especially true when we want to
consider more than 2-dimensional points, which is often the
case.

One easy way for this to occur is to send all of the data
points to one central site and then perform the exact same
algorithm. This is certainly a correct and viable method, but
the problems with this method are that communication is more
expensive than their computations. Moreover, the network
sites may reject to move their data due to privacy, security,
and size considerations; so what is needed is an algorithm that
can have more computations occur at the individual database
sites, and then transmit a minimal amount of information to a
central site so as to reduce communication costs. This paper
utilizes the concept of mutual k-nearest neighbor relationship
to cluster points with different density exist at different sites.
The new algorithm preserves the privacy and security of the
data at each site by asking transmission of only minimal
information to other sites. With this new method, there is less
work done by the central node and more work is done at each
database sites. This will be referred to as the decentralized
method henceforth.

There has never been an algorithm designed that can
cluster distributed databases based on density. There are some
algorithms for clustering partitioned database but with some
constraints on the partitioned data such as [22-24] presenting a
method for k-means clustering when various sites contain
various attributes for a combined set of entities, and the work
in [26,27] discussing a privacy-preserving k-means algorithm
for distributed databases. However, the presented algorithm
only works for a horizontally distributed database split into
two parts. Our proposed algorithm works for vertically and
horizontally partitioned databases in d-dimensional space and
does not put any limitation on the number of partitions.

The remaining of the paper is organized as follows:
Section 2 describes related research. In Section 3, we describe
our methodology for handling the proposed problem. In
Section 4, we describe our proposed algorithm. The example
scenario of our algorithm is given in Section 5. The analysis
and complexity computing of the proposed algorithm is given
in Section 6. In Section 7, we study the properties of our
algorithm via simulation. We conclude our paper in Section 8.

II. RELATED RESEARCH

In order to benefit from the high performance of
multiprocessor computer systems, many efforts have been
made to develop and implement parallel pattern analysis
algorithms [1-11]. Improvement for the k-means algorithm
(IMR-KCA) proposed in [1]. IMR-KCA provides a selection
model to simplify the calculations with multiple clustering
centers by analyzing the flaws of vast redundancy in
traditional k - means algorithms.

The work in [2] proposed a parallel graph-based data
clustering algorithm using CUDA GPU, based on exact
clustering of the minimum spanning tree in terms of minimum
isoperimetric criteria, general superiority of this parallel

algorithm over other competing algorithms in terms of
accuracy and speed.

In [3], the authors proposed Spark’s GraphX based
algorithm for density peaks clustering. Comparing to
MapReduce implementation the system in [3] improves the
performance significantly.

To speed up clustering for a large-scale dataset, parallel k-
means clustering algorithm proposed in [4]. The proposed
algorithm based on mahout API. Experimental results have
shown a marked improvement in the speed of clustering for
large datasets.

The performance of Modified Parallel K-Means algorithm
and Parallel Genetic K-Means algorithm analyzed in [5] using
Java Join and Fork Method.

 Various distributed algorithms have been proposed to
improve the computational performance of data clustering and
its applications [12-20].

In [12], the authors proposed a distributed k-means
clustering algorithm based on the attribute-weight-entropy
regularization technique. Partial clustering problems in the
distributed model presented in [13] and algorithms with
communication sublinear of the input size were proposed.

Design and implementation of a distributed k-means
clustering algorithm for text documents analysis proposed in
[14]. The study of the k-means problem in the distributed
dimension setting discussed in [15].

In [16], the authors proposed to construct two models: the
first model that captures the system level characteristics of
how computation, communication change as the cluster size
increases and the second model, which captures how
convergence rates change with cluster sizes.

The two main differences between our proposed algorithm
and the above algorithms are as follows:

First, the above algorithms minimize the number of
processors, however, in our work, the number of processors is
fixed and we seek to minimize the number of exchanged
messages among the sites; second, the above algorithms only
read data at other sites, however, our algorithm performs
computations at local sites and returns local results.

There are some works in the area of privacy preserving
clustering algorithms of horizontally and vertically partitioned
data [22-25] where these algorithms assumed that the data for
one entity is split across multiple sites, and every site has
information for all the entities for a particular set of the
attributes.

However, our formulation models are more general
situation than the case of a single key and non-overlapping
attribute sets for single records distributed at different sites
[22].

Our goal is to enable the collaboration and participation
between different databases that designed independently and
may have a random intersection of attribute sets with the other
databases at different sites.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

622 | P a g e

www.ijacsa.thesai.org

In [26, 27], the authors presented a multi-round algorithm
for mining horizontally partitioned databases using a privacy-
preserving kNN classifier. The motivation for their work is the
fact that data from various private databases are needed for
research that benefits many organizations but the privacy of
such data should not be breached. Therefore, the goal of the
research was to develop a classifier that provides stringent
privacy required classified information while maintaining
efficiency at the cost of little less accuracy. The problem of
classification is divided into two parts.

The first part consists of selecting the nearest neighbor
preserving the privacy of the database it searches. The second
part includes the classification of the global database on the
basis of the nearest neighbor selection of the previous part.
The authors claim that their approach offers a trade-off
between accuracy, efficiency, and privacy.

In this paper, we propose a decomposable version of the
mutual k-Nearest neighbor-clustering algorithm that works in
this desired manner with a set of networked databases.

A point in the d-dimensional space considered as a
representation for each tuple in the implicit join D and the
distance between two points corresponds to the distance
between two tuples.

An initiator site communicates to the entire sites that
involved in the task and asking them for results of some
computations that executed at each site. Maybe followed by
some new requests of results until the global results are
obtained at the initiator site.

At first sight, the process seems simple, where every site
can run the mutual-KNN clustering algorithm locally and
could preserve complete privacy. However, this could not
work as shown in Fig. 2.

From Fig. 2 consider that it is required to perform
clustering on the data in the figure. From the vertical axis’s
point of view, we can see that there are two clusters centered
at about 2 and 5.5. However, from the 2d point of view, we
can see the difference in the horizontal axis dominates. By the
higher dimensionality, the problem becomes exacerbated [22].

Fig. 2. 2D-Problem that Cannot Converted to Two 1D- Problems

(Adapted from [22]).

III. DISTRIBUTED DATABASE AND COMPUTATION

SCENARIO

A. Vertically and Horizontally Data Distribution

1) Vertically distributed databases: In this model, each

database contains tuples that created by a set of different

attributes with some attributes that may share with ,
and some attributes unique to that are not shared with any

other databases.

Vertically distributed databases require to perform
computations in the implicit Join, , considering that the
tuples of are not allowed to be explicit.

The decomposed algorithm must be able to calculate
common attributes among that it is would have helped in
enumerating the tuples of the Joined , as if were explicit.
The case of a single key and not shared attribute sets for single
records distributed at different sites is considered as a special
case in this formulation model.

2) Horizontally distributed databases: a set of

components such that each contains tuples

consisting of the same set of attributes ; but a distinct set of

data tuples resides at each . Every resides on various

site and all tuples in each , taken together, form the global

database .

B. Problem Statement

A number of vertically or horizontally databases that
distributed at different sites jointly compose an implicitly
joined global database that has all the data relevant to
clustering or any other computational tasks. Algorithms that
work with an imagined implicit join of the local databases are
more desirable than that work with an individual local
database; and this is due to constraints of the security, privacy,
and size of the local databases.

Assume that is the global database that formed by
merging or joining n local databases (and
each consists of a set of set of attributes . Therefore,

 ⋃

 (1)

Where is the set of attributes of .

Shared attributes form a subset , partitions and .

 ⋃ (2)

The set of all shared attributes S of formed by the
union of all . I.e. S has all shared attributes

between all sites.

 Our target to perform clustering of , at the initiator site
 (one of the sites) without moving or to
 because of the security, privacy, and size of the local
databases reasons.

As a result, local computations should be converted to
global computations. The local computations at every site
should be performed considering the shared attributes
constants, besides, the local results should participate in the
global solution at .

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

623 | P a g e

www.ijacsa.thesai.org

IV. DECOMPOSABLE DENSITY-BASED CLUSTERING USING

MUTUAL K-NEAREST NEIGHBORS (DDBC)

In this section, we describe the algorithm. The
 is based on the concept of mutual -NN relationship
between data points in the implicit database . The initiator
sends requests (queries or agents) to the sites in order to figure
out the two-way nearest neighboring relationship among the
implicit data points. and can only become a mutual
nearest neighbor pair if both has and has as their
nearest neighbor.

 Definition

Two points and with distance are mutual -

nearest neighbors if: (1) there are less than points between
 and and (2) there are m () points, but at least
() of these points have already found their mutual -
nearest neighbor, thus they refuse any new mutual nearest
neighbor relationship with other points.

A. Decomposition of Global Computation

In order to find the cluster centers in , each site
represented by an agent. Each agent has the capability to
perform computation locally, or able to move from one
location to another to perform computations or collect
statistics. Without moving local databases to one site, these
agents collaborate with each other to cluster the implicit
database , while, these agents may exchange messages and
summaries of their local results.

Computing Shared Relation and Decomposition of

 (Procedure 1)

1. First, the initiator finds the shared attributes and

the shared values among sites by exchanging a

number of messages.

2. Then the initiator creates the shared relation by

executing the following steps:

a. Using the shared attributes and values,

the initiator creates the

relation as the cross product of the

different values of the attributes in the

set .

b. Then, the initiator generates the Shared

relation by removing from

 any tuple that does not

exists at any of participating site.

c. Set index for the relation

starting with zero.

An agent at sends a request to the agents of the
collaborated sites to start the computations. The presented
algorithm is designed to minimize communication between
across sites and to handle various sets of collaborated sites and
various sets of shared attributes between sites. Furthermore,
the proposed algorithm preserves the privacy of the
communicated data.

To clarify the decomposition process, assume that the
required global computation is to find the distance (
between tuples (and
(in the global database (located at one
site).

 (√∑ (

 , (3)

Where, { |
 .

However, in a distributed environment, exists as a set of
partitions at various sites and cannot be moved.

The operation
can be decomposed to produce equivalent

results by executing the following procedure.

From the definition of relation, we can note that
each tuple in relation with index represents a class
(we will call it class) of implicit tuples in .

Now we can decompose the operation
to produce the

same results as in case of explicit databases. We divide the
distance into two parts shared distance and unshared distance.

First the shared distance (is the distance
between the values of shared attributes that computed at the
initiator as follows:

 (∑ (

 (4)

where and are the values of shared attributes in
and .

The unshared distance (can be
computed by an agent at (partition at site i) and the
shared values of the attributes at .

 (∑ (

 (5)

Where and are the values of unshared attributes in
 and which correspond to and .

 (can be computed by finding the
unshared distances at the same class and between the tuples at
different classes. Then, the results are aggregated at the
initiator to get the global unshared distance.

Using equation (4) and (5) the decomposition of operation

will be.

 (√ ((

 (6)

As described above, each shared tuple with index j
corresponding to a class of implicit tuples at least one tuple,
the next procedure is to find the distances between each pair
of implicit tuples inside each class (if has more than one
tuple) and the third procedure is to find the distances between
each pair of implicit tuples from different classes.

B. Computing Distances between Implicit Points inside each

Class (Procedure 2)

This procedure aims to find the distance between every
pair of implicit points inside each class.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

624 | P a g e

www.ijacsa.thesai.org

1) Data structures: Distance table exists at the initiator

site. The table contains five columns:

a) Index column stores the index of the Shared tuples,

b) Pair column stores the identification of the points of

each pair,

c) SharedDistance column stores the distance between

the Shared attributes in the implicit tuples which can be

computed using equation (4),

d) UnsharedDistance column stores the distance

between the Unshared attributes in the implicit tuples which

can be computed using equation (5),

e) TotalDistance column stores the total distance and

can be computed using equation (6).

For each shared tuple, the initiator requests from each site
the unshared distance between the unshared attributes that
match with the shared tuple and sends the results back to the
initiator. Finally, the initiator finds the total distance using
equation (6).

2) Local computation: For all Shared tuple k, all site

computes the unshared distances using Equation (5).

a) for each Shared tuple k do

b) At each Di do

c) Select all tuples that belong to the shared k,

d) Compute the unshared distances between every two

tuples inside class k,

e) Return the values of the unshared distances to the

initiator site.

3) Global computation: For every Unshared distance

from Di, the initiator finds the sum of all combinations Ci (one

from each Di).

a) Distance[k][SharedDistance] = 0 // The distances

between the shared attributes inside class k.

b) for every Ci do

c) Distance[k][UnsharedDistancei] = ∑

d) Distance[k][TotalDistancei] =

√

C. Computing Distances between implicit Points in Different

Classes (Procedure 3)

This procedure aims to find the distance between every
pair of implicit points between classes.

1) Local computation: For every u and v (two classes or

shared tuples), the initiator request from every site to compute

the unshared distances between the implicit tuples (one in

class u and one in class v) using equation (5).

a) for each combination (j, k) of indices do

b) At each Di do

c) Select all tuples that belong to classes j, and k,

d) Compute the unshared distances between every two

implicit tuples that belong to different classes j and k,

e) Return the values of the unshared distances to the

initiator site.

2) Global computation: For every Unshared distance

from Di, the initiator finds the sum of all combinations Ci (one

from each Di). The initiator computes the summation of this

combination.

a) Distance [(u,v)][SharedDistance] = the distance

between the shared attributes in classes j and k.

b) for every Ci do

c) Distance[(j,k)][UnsharedDistancei]=

∑

d) Distance[(j,k)][TotalDistancei] =

√

 (

D. Computing Distances between every pair of implicit tuples

(Procedure 4)

The main goal of this procedure is to find the distance
between every pair of implicit tuples using the computed
distances (shared and unshared). This will be executed at the
initiator site.

1) for each site i, construct the set CounTupi = {Nj
i : j =

1, 2, . . . , l}, where Nj
i
 is the number of tuples that belong to

class j at site i and l is the number of Shared tuples.

2) Construct the global matrix CountMatrix [l][n] by

considering each CounTupi as a column, where i = 1, 2, . . .,

n, where n is the number of participating sites.

3) For every value CountMatrix[j][i], define the sequence

Counti j = {1, 2, . . . , CountMatrix [j][i]}.

4) For every class j, construct the matrix

MapMatrixl[c][n] as the Cartesian product of all sequences

Count
i
j s, where c is the number of tuples in class j in the

implicit data.

5) For every UnSharedDist
i
j set, construct the square

matrix UnSharedDist-Matrix
i
j [p][p], where p is the number

of tuples in class j at site i (p = CountMatrix [j][i]). This

matrix represents the unshared distances between each pair of

tuples that belongs to class j at site i.

6) For every UnSharedDist
i
j,k set, construct the matrix

UnSharedDist-Matrix
i
j,k[p][q], where p is the number of

tuples in class j and q is the number of tuples in class k at site i

(q = CountMatrix [k][i]). This matrix represents the unshared

distances between any pair of tuples; one in class j and the

other in class k at site i.

7) Using the above-constructed matrices, compute the

global matrix Distance_Matrix [w][w], where w is the number

of tuples in the explicit database. The elements of this matrix

will be computed by taking the square root to the sum of the

Shared and Unshared distances as in Equation (6).

E. Finding Mutual k-Nearest Neighbors (M-kNN) (Procedure

5)

In this procedure, the initiator finds the two-way (i.e.
mutual) nearest k neighbors of each point. The k value of a
point will keep increasing until that point finds its mutual
nearest neighbors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

625 | P a g e

www.ijacsa.thesai.org

1) Data structure: The mutual table exists at the initiator

site. It has four columns:

2) Point_ID column to identify each point,

3) kp column to specify the maximum number of nearest

neighbors that each point can have,

4) k-NN column stores the k-NNs of each point,

5) M-kNN column specifies the mutual k-NNs of each

point.

a) kp = kg // where kg (global) is the initial k for all

points

b) Repeat

c) for every Pi P do

d) Mutual[Pi][kNN] = Find NearestNeighbors(Pi,kpi) //

find the k-nearest neighbors

e) for every Pj kNN(Pi)

f) if Pi kNN(Pj)

g) Mutual[Pi][M-kNN] = Pj

h) end for

i) if Mutual[Pi][M-kNN] =

j) kpi = kpi + 1

k) end for

l) Until N iterations or all points found their M-kNN

F. Generating Initial Set of Clusters (Procedure 6)

In this procedure, the points in Mutual table constructed in
the Finding Mutual k-Nearest Neighbors Procedure will be
used to create initial clusters that will be stored in table
InitialClusters through the following steps. First, the radius of
each point is found using Equation (7) and stored in
InitialClusters. Second, the points are sorted based on their
radius.

∑

 (7)

Finally, the points are read sequentially in order to label
them as follows: For each point Pi, we check if it’s not given a
label, we set it as class initiator and assign a new label for it
(i.e. the point that begins creating a cluster including its M-
kNN). Then we check its M-kNN and assign them labels
according to the following two scenarios:

1) If a mutual k-nearest neighbor (Pj) has not been

assigned an initiator, point Pi becomes its initiator.

2) If (Pj) is already assigned to an initiator we have two

cases:

a. If the distance of (Pj) with its previous

initiator > distance of (Pj) with (Pi) Assign

(Pi) as the initiator of the point.

b. If the distance of the point with its previous

initiator < distance of (Pj) with (Pi): Make

no changes.

Find initial clusters

1. cluster = 1

2. for every Pi P do

3. if cluster label Ci is not set then

4. Ci = cluster

5. for every Pj P do

6. if cluster label Cj is not set then

7. Cj = cluster

8. else
9. get Pk cluster exampler of Pj

10. if distance(Pi, Pj) < distance(Pj, Pk) then

11. Cj = cluster

12. end if
13. cluster = cluster + 1

14. end for

15. end for

G. Merging clusters (Procedure 7)

This procedure is based on the inter-cluster distance which
is measured based on some metrics as follows:

 Linkage: A point has a linkage to a cluster N if there is
at least 1 point in N that is M-kNN of point p

 Closeness: Closeness of cluster Clusteri to Clusterj is
number of points in Clusteri that has a Linkage to
Clusterj

 Sharing: Sharing S of cluster Clusteri into Clusterj is
number of Mutual k-Nearest Neighbor pairs that have
one in Clusteri and other in Clusterj

 Connectivity: If Clusteri has ki points and Clusterj has
ki points. Connectivity of Clusteri to Clusterj is defined
as:

 (

) (

 (8)

The merging process starts with finding the connectivity
between every two clusters and select the clusters that have
the highest connectivity value to each other in order to merge
them. Thus the new cluster is a combination of the points of
the two clusters. The calculations of the connectivity will be
repeated between the new cluster and the other clusters. This
process is repeated until no clusters can be merged.

Construct Final Clusters

1. Calculate initial ConnectMatrix CM

2. Repeat

3. for every Ci C do

4. NeighboringClusters = Find NeighboringClusters

(Ci,k)

 // the neighbors are selected based on the

highest connectivity value
5. for every Cj NeighboringClusters(Cj)

6. if Ci NeighboringClusters(Cj, HIGHEST)

7. Cnew = Merge(Ci , Cj)

8. Update(CM)

9. endif

10. end for

11. end for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

626 | P a g e

www.ijacsa.thesai.org

12. Until no more merging can be done or required clusters

have been achieved

V. EXAMPLE SCENARIO

In this section, we present an example scenario to clarify
our proposed algorithm and prove the cases described in
Definition 1. The objective here is to determine the distance
between every possible pair of points in order to cluster the
points based on the density.

Assume that the local databases D1 and D2 from site 1 and
site 2, respectively are shown in Table I. We consider D1 and
D2 consisting of points in a 3-d space. As a result, the implicit
database will contain the points A=(0, 0, 1), B=(2, 3, 1), C=(2,
2, 1), D=(3, 3, 1),E=(3, 2, 1), and F=(5, 5, 1).

From Table I, the Shared attribute is y, and the Shared
values are {0, 3, 2, 5}. The indexed Shared relation showed in
Table II:

 Local Computations

For each Shared k, each site will compute the unshared
distance. The execution of proposed algorithm for Shared
index 1 and the combination (0, 1) as follows:

 For Index 1

– At Site1: the unshared distance will be d1 = (2-3)
2
 = 1.

– At Site2: The unshared distance will be d1 = 0.

– At the coordinator site: we have the following update:

Distance[1][SharedDistance]=0,

Distance[1][UnsharedDistance]=1, and

Distance[1][TotalDistance] = 1

 For combination (0, 1)

– At Site1: the unshared distance between classes 0, and 1

will be d1 = (0-2)
2
 = 4, and d2 = (0-3)

2
 = 9.

– At Site2: the unshared distance between classes 0, and 1

will be d1 = (1-1)
2
 = 0.

– At coordinator site: the Shared distance between the

shared attributes of the two classes (0, 1), will be

Distance[(0,1)][SharedDistance] = (0-3)
2

= 9,

Distance[(0,1)][UnsharedDistance]1 = 4 + 0 = 4,

Distance[(0,1)][UnsharedDistance]2 = 9 + 0 = 9. As a

result, the total distance table will be updated using

equation (6) as follows: Distance[(0,1)][TotalDistance]1 =

3.61, Distance[(0,1)][TotalDistance]2 = 4.24.

Table III contains the calculated distances. From Table III,
we can find the points that correspond to the calculated values.
By transmitting message to every site to find tuples that
correspond index 1, and then join the founded tuples, we get
the following pair: p1 =(2, 2, 1), p2 = (2, 3, 1); p1 and p2
represent point C and B, respectively.

As shown in Table IV, A and F did not find any M-kNN at
the first iteration thus we keep increasing their kp until they
find their M-kNN. Point A and F have met each other at the
third iteration (Table V).

At this stage, we compute the radius of each point using
Eq. (7) and then we sort them according to their radius. After
that, we label the points as described above. The results are
shown in Table VI. Table VII shows the two initial
constructed clusters from the labeled points.

TABLE I. D1 AND D2 AT SITE 1 AND SITE 2

Site1 Site2

X y Y Z

0 0 0 1

2 3 3 1

2 2 2 1

3 3 3 1

3 2 2 1

5 5 5 1

TABLE II. SHARED RELATION

Index Y

0 0

1 3

2 2

3 5

TABLE III. DISTANCE TABLE

Index
Shared

Distance

Unshared

Distance

Total

Distance
Pair

0 0 0 0 -

1 0 1 1 (B,D)

2 0 1 1 (C,E)

3 0 0 0 -

0,1 9 4 3.61 (A,B)

0,1 9 9 4.24 (A,D)

0,2 4 4 2.83 (A,C)

0,2 4 9 3.61 (A,E)

0,3 25 25 7.07 (A,F)

1,2 1 0 1 (B,C)

1,2 1 1 1.41 (B,E)

1,2 1 1 1.41 (D,C)

1,2 1 0 1 (D,E)

1,3 4 9 3.61 (B,F)

1,3 4 4 2.83 (D,F)

2,3 9 9 4.24 (E,F)

2,3 9 4 3.61 (C,F)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

627 | P a g e

www.ijacsa.thesai.org

TABLE IV. M-KNN AT FIRST ITERATION (KP =2 FOR ALL POINTS)

Points kp k-NN M-kNN

A 2 D, C

B 2 C,D C, D

C 2 B, E B, E

D 2 B, E B, E

E 2 C, D C, D

F 2 D, B

TABLE V. M-KNN AT THIRD ITERATION (KP =5 FOR A AND F)

Points kp k-NN M-kNN

A 5 D, C, B, E, F F

B 2 C,D C, D

C 2 B, E B, E

D 2 B, E B, E

E 2 C, D C, D

F 5 D, B, C, E, A A

TABLE VI. GENERATING PRELIMINARY CLUSTERS

Points M-kNN Radius Cluster No.

B C, D 1 B=1, C=1, D=1

C B, E 1 C=1, E=1

D B, E 1 D=1, E=1

E C, D 1 E=1, C=1, D=1

A F 7.07 A=2

F A 7.07 F=2

TABLE VII. INITIAL CLUSTERS

Cluster Members

C1 B, C, D, E

C2 A, F

Now, we check if we can merge any of the constructed
clusters using Eq. (8) to compute the connectivity between the
initial clusters. As shown in Table VIII, all the obtained
connectivity values are zero, therefore, no clusters will be
merged. The clusters in Table VII will be considered our final
clusters.

TABLE VIII. COMPUTATION OF CONNECTIVITY

Clusters Connectivity

C1,2 0

C2,1 0

VI. COMPLEXITY ANALYSIS

The density-based clustering of points that are distributed
vertically among different sites requires part of the
computations to be done locally at each site and the other part
is done globally at the initiator site. The cost of the local
computations is based on the number of messages exchanged
between the various sites [21]. The way that the messages are
exchanged is based on the agent scenario. Both cases for the
agent will be analyzed: stationary agent and mobile agent.

Assume that there are n relations, D1,D2,,Dn, lie in n
various network sites, l number of tuples in Shared relation
and r number of tuples in PreShared relation.

A. Communication Analysis

 Stationary Agent

 Centralized method

The number of messages is the total of the number of the
messages required to retrieve the Shared values, check the
existence of each Pre-shared tuple, computing the distance
between every pair of points inside each class and between
classes. Thus the sum of exchanged messages will be:

1. n messages to find Pre-shared from the local sites,

2. n*r exchanged message to compute shared from pre-

shared,

3. (*n) exchanged messages to compute the unshared

distances inside classes (UnSharedDist
i
j),

4. (

) exchanged messages to compute the unshared

distances between tuples in different classes

UnSharedDist
i
j,k, where (

) is the number of all possible

combinations of two tuples in class j and class k.

5. l*n exchanged messages to compute the ―CounTupi‖ sets.

 ((

 DDBC method:

Unlike a centralized method, in DDBC the Shared tuple is
going to be sent to all or any sites at the same time then the
summaries are received in parallel.

In this case the cost is decreased to:

 (1 + r + (
+ 3)/2).

All of the above analysis considers only the total number
of messages and do not include the complexity of the
computations done at each local site. The local computations
are typically searched operations with complexity O(m),
where m is the number of tuples in each site. Thus, the total
cost of the local computation will be:

 ((

 ((

B. Mobile Agent

In this scenario, the mobile agent visits each site and does
the local computation for each site. In our algorithm, three
visits to each site will be enough to compute: The Pre-shared
tuples, Shared tuples and the unshared distance in each class,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

628 | P a g e

www.ijacsa.thesai.org

unshared distance between classes. Thus the total number of
messages will be 3*n.

As shown in the analysis, the total number of messages
does not depend on the size of the local databases. This is
beneficial, as the communication complexity remains the same
despite the growing size of the local databases. Although it
might affect the cost of the local computations on each site,
our decomposable version still better when compared to a
database joined explicitly from the local sites.

The joined database (i.e. implicit database) would generate
(m

n
) tuples in the worst case in addition to the cost of joining

which is (n*m). The complexity is even worse running
procedures 2 and 3 to compute the distance between each pair
of points in the implicit database as the cost will be O(m

2n
),

but in our decomposable version, the cost is O(m) for each of
the n sites. In addition, the number of messages to generate the
implicit database is much more than the number of messages
required in our algorithm.

Another advantage of the decomposable approach is
preserving the privacy of the local databases since the
computation is done locally and not all tuples are retrieved by
the initiator. In addition, this approach doesn’t affect the
integrity of the local databases as all of the operations on the
database are just queries (i.e. reading queries).

C. Computation Analysis

The rest of the algorithm steps are done globally at the
initiator site using the table generated by procedure 1 and no
more communication is needed with the local sites. In
procedure 5, we sort the pairs according to the distances using
quick sort which takes O(P

2
log P) as we have P points and P

2

pairs. To find the M-kNN, we scan the sorted table for the k-
nearest neighbors which takes O(P

2
) and then scan the

neighbors of each point to check for mutuality, however, as
the number of neighbors is constant we can ignore it. Since
procedure 5 is repeated for i iterations which is also constant
then the total complexity for this procedure is O(P

2
logP).

In procedure 6, the creation of the initial clusters is done
by scanning the list of the points and neighbors of points when
needed, which results in complexity of O(j*P) where j is
number of neighbors for each point and since it’s constant we
can remove it, thus procedure 6 complexity is O(P).

Finally, in procedure 6 the connectivity matrix is
computed initially for every pair of clusters which is O (C

2
)

where C is a number of clusters. For a constant number of
iterations, the merging is done according to the highest
connectivity and connectivity matrix is updated.

However, since the number of clusters is strictly smaller
than the number of points the complexity of procedure 6 is
intuitively less than O(P

2
logP). The total complexity of the

Algorithm at the initiator site starting from procedure 5 will be
(P

2
logP).

VII. EXPERIMENTAL RESULTS

In order to show the advantages of our algorithm, we have
conducted a number of experiments to show that the DDBC
algorithm designed for a distributed environment, without

transferring all the databases to a single site, can provide the
same results as the algorithm in a centralized environment.

The experiments have been performed to find the impact
of the number of tuples per database (NTuples), the number of
sites (NSites), and the average number of shared tuples
between local databases (AvgShared) on the results.

In the first test, we show the effect of NSites on the time
and the number of exchanged messages, by increasing NSites
by one starting from 2 to 6.

Fig. 3 shows the effect of NSites in the algorithm
(in an implicit database on both of exchanged messages
(ExMsg) and elapsed time (ET). We can see that there is
direca t relation between NSites and numbethe r of exchanged
messages. Moreover, as NSites increased more time elapsed.

In the second test, we show the relation between NTuples
and ExMsg and ET by varying AvgShared from 5 to 25 with
an increment of 5.

Fig. 4 shows that ExMsg and ET increased as AvgShared
increased that is to run the DDBC algorithm in an implicit
database D.

Finally, we show how the ET and ExMsg vary with NSites.
Fig. 5 shows the relation between NTuples and ExMsg and ET
in the DDBC algorithm.

Notice that the elapsed time to run DDBC increases as
NTuples increased for one summary per message exchange in
a centralized method. On the other hand, the elapsed time to
run DDBC significantly reduced in the optimized method as
NTuples increased.

(a) Exchanged Message.

(b) Elapsed Time.

Fig. 3. Analysis of DDBC on Vertically Partitioned Data

(Distributed) and Centralized Method by Varying Number of Sites.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

629 | P a g e

www.ijacsa.thesai.org

(a) Exchanged Message.

(b) Elapsed Time.

Fig. 4. Analysis of DDBC Algorithm and Centralized Method with a

different Number of Shared Tuples.

(a) Exchanged message

(b) Elapsed time

Fig. 5. Analysis of DDBC Algorithm and Centralized Method using

a different Number of Tuples.

VIII. CONCLUSION

In this paper, we proposed a decomposable version of
Density-based clustering for vertically distributed datasets
located at different geographical sites. The algorithm
composed of four procedures. Overall, the algorithm gives
identical results to those would have been achieved by
creating an implicit database at the initiator site and applying
the algorithm on this database. However, our decomposable
version minimizes the total communication cost between the
initiator site and the local sites as well as the number of
operations done in each site compared to those done on the
implicit database.

Moreover, our algorithm preserves the privacy and
integrity of these sites. In the current version we decompose
the first part of the algorithm which finds the M-kNN into two
parts, the first part finds the distance between every pair which
is done in a decomposable way and the second part finds M-
kNN based on the obtained results and it’s executed at the
initiator site. We are planning to improve the algorithm by
doing the density-based clustering on each local site and
create initial clusters, and then we combine these initial
clusters at the initiator site in order to find the final clusters.
As future work, multithreaded programming to parallelize
message passing operations between points and clusters can be
adapted this will make the M-kNN algorithm more efficient to
cluster data on a big scale.

ACKNOWLEDGMENT

The authors gratefully acknowledge Qassim University,
represented by the Deanship of Scientific Research, on the
material support for this research under the number (3515-
mcs-2018-1-14-S) during the academic year 1440 AH /2019
AD.

REFERENCES

[1] Zhuo Tang, Kunkun Liu, Jinbo Xiao, Li Yang, Zheng Xiao, A
parallel k-means clustering algorithm based on redundance elimination
and extreme points optimization employing MapReduce, Concurrency
Computat.: Pract. Exper. e4109 Published online in Wiley Online
Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.4109, 2017.

[2] Ramin Javadia, Saleh Ashkboosb, An Efficient Parallel Data Clustering
Algorithm Using Isoperimetric Number of Trees,
arXiv:1702.04739 [cs.DC], 2017.

[3] Rui Liua, Xiaoge Lia, Liping Dua, Shuting Zhia, Mian Wei, Parallel
Implementation of Density Peaks Clustering Algorithm Based on Spark,
International Congress of Information and Communication Technology
(ICICT 2017), Procedia Computer Science 107, pp. 442 – 447, 2017.

[4] X. Daoping, Z. Alin and L. Yubo, A Parallel Clustering Algorithm
Implementation Based on Apache Mahout, 2016 Sixth International
Conference on Instrumentation & Measurement, Computer,
Communication and Control (IMCCC), Harbin, pp. 790-795. doi:
10.1109/IMCCC.2016.9, 2016.

[5] N. Francis and J. Mathew, Implementation of parallel clustering
algorithms using Join and Fork model, 2016 Online International
Conference on Green Engineering and Technologies (IC-GET),
Coimbatore, pp. 1-5. doi: 10.1109/GET.2016.7916820, 2016.

[6] I. S. Dhillon, D. S. Modha, A data-clustering algorithm on distributed
memory multiprocessors, in: Large-Scale Parallel Data Mining,
Springer, pp. 245–260, 2000.

[7] C. F. Olson, Parallel algorithms for hierarchical clustering, Parallel
computing 21 (8), pp. 1313–1325, 1995.

https://arxiv.org/abs/1702.04739

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 3, 2019

630 | P a g e

www.ijacsa.thesai.org

[8] E. Dahlhaus, Parallel algorithms for hierarchical clustering and
applications to split decomposition and parity graph recognition, Journal
of Algorithms 36 (2), pp. 205–240, 2000.

[9] A. E. Aboutabl, M. N. Elsayed, A novel parallel algorithm for clustering
documents based on the hierarchical agglomerative approach, Int. J.
Comput. Sci. Inf. Technol.(IJCSIT) 3 (2), pp.152–163, 2011.

[10] W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on
mapreduce, in: Cloud Computing, Springer, pp. 674–679, 2009.

[11] J. Wassenberg, W. Middelmann, P. Sanders, An efficient parallel
algorithm for graphbased image segmentation, in: Computer Analysis of
Images and Patterns, Springer, pp. 1003–1010, 2009.

[12] J. Zhou, Y. Zhang, Y. Jiang, C. L. P. Chen and L. Chen, A distributed
K-means clustering algorithm in wireless sensor networks, International
Conference on Informative and Cybernetics for Computational Social
Systems (ICCSS), Chengdu, pp. 26-30. doi:
10.1109/ICCSS.2015.7281143, 2015.

[13] Sudipto Guha, Yi Li, Qin Zhang, Distributed Partial Clustering, SPAA
'17 Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 143-152, 2017.

[14] Martin Sarnovsky, Noema Carnoka, Distributed Algorithm for Text
Documents Clustering Based on k-Means Approach, Information
Systems Architecture and Technology: Proceedings of 36th International
Conference on Information Systems Architecture and Technology –
ISAT 2015 – Part II, pp. 165-174, 2015.

[15] Hu Ding, Yu Liu, Lingxiao Huang, Jian Li , K-means clustering with
distributed dimensions, Proceedings of the 33rd International
Conference on Machine Learning, New York, NY, USA 16. JMLR:
W&CP volume 48, 2016.

[16] Xinghao Pan, Shivaram Venkataraman, Zizheng Tai, Joseph Gonzalez,
Hemingway: Modeling Distributed Optimization Algorithms,

arXiv:1702.05865 [cs.DC], 2017.

[17] E.Januzaj, H.-P.Kriegel, M.Pfeifle. Scalable Density-Based Distributed
Clustering[C]//Proceedings of PKDD04:231-244, 2004.

[18] W.Ni,G.Chen,Y.J.Wu,etc.Local Density Based Distributed Clustering
Algorithm. Journal of Software, 19(9):2339-2348, 2008.

[19] M.M.Zhen,G.L.Ji.DK-Means-An Improved Distributed Clustering
Algorithm[J].Journal of Computer Research and Development,44(2):84-
88, 2007.

[20] L.Li,J.Y.Tang,B.Ge,etc. k-DmeansWM: An Effective Distributed
Clustering Algorithm Based on P2P[J]. Computer Science,37(1): 39-41,
2010.

[21] Wang, C.—Chen, M.: On the Complexity of Distributed Query
Optimization: IEEE Transactions on Knowledge and Data Engineering,
Vol. 8, No. 4, pp. 650–662, 1996.

[22] J.Vaidya, C.Clifton. Privacy-Preserving K-Means Clustering Over
Vertically Partitioned Data[C] Proceedings of ACM SIGKDD03: pp.
206-215, 2003.

[23] Shrikant, J. Privacy Preserving Data Mining Over Vertically
Partitioned Data. PhD Dissertation, Purde University 2004.

[24] X. Lin, C. Clifton, M.Zhu. Privacy Preserving Clustering with
Distributed EM Mixture Modeling[J]. Knowledge and Information
Systems, 8(1): 68-81, 2005.

[25] Y. Yao, G. L. Ji.: Distributed Clustering Algorithm Based on Privacy
Protection [J]. Computer Science,36(3): pp. 100-105, 2009.

[26] L. Xiong, S. Chitti and L. Liu, Mining Multiple Private Databases Using
a kNN Classifier, AMC SAC, pp 435-440, 2007.

[27] Inan, A. Kaya, S. V. Saygin, Y. Savas, E. Hintoglu, A. A. Levi, A.:
Privacy Preserving Clustering on Horizontally Partitioned Data. Data &
Knowledge Engineering (DKE), Vol. 63, No. 3, pp. 646–666, 2007.

http://dl.acm.org/author_page.cfm?id=81331493787&coll=DL&dl=ACM&trk=0&cfid=805845572&cftoken=97418223
http://dl.acm.org/author_page.cfm?id=99659189894&coll=DL&dl=ACM&trk=0&cfid=805845572&cftoken=97418223
http://dl.acm.org/author_page.cfm?id=89758783857&coll=DL&dl=ACM&trk=0&cfid=805845572&cftoken=97418223
http://spaa.acm.org/
http://spaa.acm.org/
https://link.springer.com/book/10.1007/978-3-319-28561-0
https://link.springer.com/book/10.1007/978-3-319-28561-0
https://link.springer.com/book/10.1007/978-3-319-28561-0
https://link.springer.com/book/10.1007/978-3-319-28561-0
https://arxiv.org/find/cs/1/au:+Pan_X/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Venkataraman_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Tai_Z/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gonzalez_J/0/1/0/all/0/1
https://arxiv.org/abs/1702.05865

