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Abstract—Privacy and security have always been a concern 

that prevents the sharing of data and impedes the success of 

many projects. Distributed knowledge computing, if done 

correctly, plays a key role in solving such a problem. The main 

goal is to obtain valid results while ensuring the non-disclosure of 

data. Density-based clustering is a powerful algorithm in 

analyzing uncertain data that naturally occur and affect the 

performance of many applications like location-based services. 

Nowadays, a huge number of datasets have been introduced for 

researchers which involve high-dimensional data points with 

varying densities. Such datasets contain data points with high-

density regions surrounded by data points with sparse density. 

The existing clustering approaches handle these situations 

inefficiently, especially in the context of distributed data. In this 

paper, we design a new decomposable density-based clustering 

algorithm for distributed datasets (DDBC). DDBC utilizes the 

concept of mutual k-nearest neighbor relationship to cluster 

distributed datasets with different density.  The proposed DDBC 

algorithm is capable of preserving the privacy and security of 

data on each site by requiring a minimal number of 

transmissions to other sites. 

Keywords—Privacy; mutual k-nearest neighbor; Density-based; 

clustering; security; DDBC 

I. INTRODUCTION 

Distributed Databases is a database that may be stored in 
different computers in the same physical location, or may be 
distributed over a network of interconnected computers. 
Unlike parallel systems, in which the processors are tightly 
coupled and constitute a single database system, a distributed 
database system consists of loosely coupled sites that share no 
physical components. 

In a distributed setting, a database   is implicitly defined 
in   explicit databases   s located at   different sites. We 
model a database    (that consists of a set of attributes) at the 
i
th

 site by a relation include several tuples. 

Local databases may be conferred to computation, but data 
normalization can't be assumed to be performed for their 
schemas. 

The implicit database   with which the computation is to 
be performed is a subset of the set of tuples generated by a 
Join operation performed on all   s. However, the tuples of   
can’t be made explicit at any one site due to entire local 
databases,   's, can’t be moved to a single site. 

Therefore, the tuples of   must remain implicitly specified; 
which leads to   the problem addressed by the proposed 
privacy preserving mining algorithm. 

No doubt, that clustering of data points in a data space has 
regions with different density requires an effective algorithm 
to identify how many clusters should be used to classify the 
data points, especially data that is located at different 
geographic sites. Most of the algorithms are designed and 
developed to work on data that is available in one site. These 
algorithms cannot deal with distributed databases, and moving 
databases located in various sites is not an easy task. This is 
because of the huge size of these databases, ownership, and 
the most critical issues are privacy and security. 

In a training data space, data points that belong to one 
class can have data density different from that for data points 
that belong to another class. In such a situation classifying 
entire data space to a correct class can become a difficult task 
due to the varying density of each existing class. To classify 
such datasets, we need a classifier that is sensitive to this 
property of the dataset. 

The existing classifiers designed so far have problems. 
They have too many parameters to adjust before optimal 
results are obtained. The data space in Fig. 1 has two classes. 
The first class is a dense cluster containing point    and the 
other class comprise of only one data point, , which is far 
away from the dense class. 

Using traditional k-nearest neighbor (   ) classifier, with 
    , if we want to classify   than   will be classified as a 
member   of the dense cluster as point    is closer to   than 
any other point in the data space. We can clearly see that it 
does not belong to dense clthe ass but to the class same as 
point  .     will classify points   and   in same class. 

 

Fig. 1. Blue Points are Class1, Green Point is Class 2 and   is Query 

Point. 
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Designing an algorithm that can handle the density-based 
clustering with distributed databases presents a whole new set 
of difficulties. This is especially true when we want to 
consider more than 2-dimensional points, which is often the 
case. 

One easy way for this to occur is to send all of the data 
points to one central site and then perform the exact same 
algorithm. This is certainly a correct and viable method, but 
the problems with this method are that communication is more 
expensive than their computations.  Moreover, the network 
sites may reject to move their data due to privacy, security, 
and size considerations; so what is needed is an algorithm that 
can have more computations occur at the individual database 
sites, and then transmit a minimal amount of information to a 
central site so as to reduce communication costs.  This paper 
utilizes the concept of mutual k-nearest neighbor relationship 
to cluster points with different density exist at different sites. 
The new algorithm preserves the privacy and security of the 
data at each site by asking transmission of only minimal 
information to other sites. With this new method, there is less 
work done by the central node and more work is done at each 
database sites. This will be referred to as the decentralized 
method henceforth. 

There has never been an algorithm designed that can 
cluster distributed databases based on density. There are some 
algorithms for clustering partitioned database but with some 
constraints on the partitioned data such as [22-24] presenting a 
method for k-means clustering when various sites contain 
various attributes for a combined set of entities, and the work 
in [26,27] discussing a privacy-preserving k-means algorithm 
for distributed databases. However, the presented algorithm 
only works for a horizontally distributed database split into 
two parts. Our proposed algorithm works for vertically and 
horizontally partitioned databases in d-dimensional space and 
does not put any limitation on the number of partitions. 

The remaining of the paper is organized as follows: 
Section 2 describes related research. In Section 3, we describe 
our methodology for handling the proposed problem. In 
Section 4, we describe our proposed algorithm. The example 
scenario of our algorithm is given in Section 5. The analysis 
and complexity computing of the proposed algorithm is given 
in Section 6. In Section 7, we study the properties of our 
algorithm via simulation. We conclude our paper in Section 8. 

II. RELATED RESEARCH  

In order to benefit from the high performance of 
multiprocessor computer systems, many efforts have been 
made to develop and implement parallel pattern analysis 
algorithms [1-11].  Improvement for the k-means algorithm 
(IMR-KCA) proposed in [1]. IMR-KCA provides a selection 
model to simplify the calculations with multiple clustering 
centers by analyzing the flaws of vast redundancy in 
traditional k - means algorithms. 

The work in [2] proposed a parallel graph-based data 
clustering algorithm using CUDA GPU, based on exact 
clustering of the minimum spanning tree in terms of minimum 
isoperimetric criteria, general superiority of this parallel 

algorithm over other competing algorithms in terms of 
accuracy and speed. 

In [3], the authors proposed Spark’s GraphX based 
algorithm for density peaks clustering. Comparing to 
MapReduce implementation the system in [3] improves the 
performance significantly. 

To speed up clustering for a large-scale dataset, parallel k-
means clustering algorithm proposed in [4].  The proposed 
algorithm based on mahout API. Experimental results have 
shown a marked improvement in the speed of clustering for 
large datasets. 

The performance of Modified Parallel K-Means algorithm 
and Parallel Genetic K-Means algorithm analyzed in [5] using 
Java Join and Fork Method. 

 Various distributed algorithms have been proposed to 
improve the computational performance of data clustering and 
its applications [12-20]. 

In [12], the authors proposed a distributed k-means 
clustering algorithm based on the attribute-weight-entropy 
regularization technique. Partial clustering problems in the 
distributed model presented in [13] and algorithms with 
communication sublinear of the input size were proposed. 

Design and implementation of a distributed k-means 
clustering algorithm for text documents analysis proposed in 
[14]. The study of the k-means problem in the distributed 
dimension setting discussed in [15]. 

In [16], the authors proposed to construct two models:  the 
first model that captures the system level characteristics of 
how computation, communication change as the cluster size 
increases and the second model, which captures how 
convergence rates change with cluster sizes. 

The two main differences between our proposed algorithm 
and the above algorithms are as follows: 

First, the above algorithms minimize the number of 
processors, however, in our work, the number of processors is 
fixed and we seek to minimize the number of exchanged 
messages among the sites; second, the above algorithms only 
read data at other sites, however, our algorithm performs 
computations at local sites and returns local results. 

There are some works in the area of privacy preserving 
clustering algorithms of horizontally and vertically partitioned 
data [22-25] where these algorithms assumed that the data for 
one entity is split across multiple sites, and every site has 
information for all the entities for a particular set of the 
attributes. 

However, our formulation models are more general 
situation than the case of a single key and non-overlapping 
attribute sets for single records distributed at different sites 
[22]. 

Our goal is to enable the collaboration and participation 
between different databases that designed independently and 
may have a random intersection of attribute sets with the other 
databases at different sites. 
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In [26, 27], the authors presented a multi-round algorithm 
for mining horizontally partitioned databases using a privacy-
preserving kNN classifier. The motivation for their work is the 
fact that data from various private databases are needed for 
research that benefits many organizations but the privacy of 
such data should not be breached. Therefore, the goal of the 
research was to develop a classifier that provides stringent 
privacy required classified information while maintaining 
efficiency at the cost of little less accuracy. The problem of 
classification is divided into two parts. 

The first part consists of selecting the nearest neighbor 
preserving the privacy of the database it searches. The second 
part includes the classification of the global database on the 
basis of the nearest neighbor selection of the previous part. 
The authors claim that their approach offers a trade-off 
between accuracy, efficiency, and privacy. 

In this paper, we propose a decomposable version of the 
mutual k-Nearest neighbor-clustering algorithm that works in 
this desired manner with a set of networked databases. 

A point in the d-dimensional space considered as a 
representation for each tuple in the implicit join D and the 
distance between two points corresponds to the distance 
between two tuples. 

An initiator site communicates to the entire sites that 
involved in the task and asking them for results of some 
computations that executed at each site.  Maybe followed by 
some new requests of results until the global results are 
obtained at the initiator site. 

At first sight, the process seems simple, where every site 
can run the mutual-KNN clustering algorithm locally and 
could preserve complete privacy. However, this could not 
work as shown in Fig. 2. 

From Fig. 2 consider that it is required to perform 
clustering on the data in the figure. From the vertical axis’s 
point of view, we can see that there are two clusters centered 
at about 2 and 5.5. However, from the 2d point of view, we 
can see the difference in the horizontal axis dominates. By the 
higher dimensionality, the problem becomes exacerbated [22]. 

 

Fig. 2. 2D-Problem that Cannot Converted to Two 1D- Problems 

(Adapted from [22]). 

III. DISTRIBUTED DATABASE AND COMPUTATION 

SCENARIO 

A. Vertically and Horizontally Data Distribution 

1) Vertically distributed databases:  In this model, each 

database     contains tuples that created by a set of different 

attributes with some attributes that may share with       ,  
and some attributes unique to      that are not shared with any 

other databases. 

Vertically distributed databases require to perform 
computations in the implicit Join,  , considering that the 
tuples of   are not allowed to be explicit. 

The decomposed algorithm must be able to calculate 
common attributes among   that it is would have helped in 
enumerating the tuples of the Joined  , as if   were explicit. 
The case of a single key and not shared attribute sets for single 
records distributed at different sites is considered as a special 
case in this formulation model. 

2) Horizontally distributed databases: a set of 

components                such that each     contains tuples 

consisting of the same set of attributes  ; but a distinct set of 

data tuples resides at each   . Every        resides on various 

site and all tuples in each   , taken together, form the global 

database  . 

B. Problem Statement 

A number of vertically or horizontally databases that 
distributed at different sites jointly compose an implicitly 
joined global database that has all the data relevant to 
clustering or any other computational tasks. Algorithms that 
work with an imagined implicit join of the local databases are 
more desirable than that work with an individual local 
database; and this is due to constraints of the security, privacy, 
and size of the local databases. 

Assume that   is the global database that formed by 
merging or joining n  local databases (               and 
each     consists  of   a set  of set of attributes   .  Therefore,   

  ⋃   
 
                                                        (1) 

Where    is the set of attributes of   . 

Shared attributes form a subset     , partitions    and   .  

    ⋃                                                                  (2) 

The set of all shared attributes S  of    formed by the 
union of all         . I.e. S has  all  shared attributes 

between all sites. 

  Our target to perform clustering of  , at the initiator site 
      (one of the sites) without moving              or   to 
       because of  the security, privacy, and size of the local 
databases  reasons. 

As a result, local computations should be converted to 
global computations. The local computations at every site 
should be performed considering the shared attributes 
constants, besides, the local results should participate in the 
global solution at      . 
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IV.  DECOMPOSABLE DENSITY-BASED CLUSTERING USING 

MUTUAL K-NEAREST NEIGHBORS (DDBC) 

In this section, we describe the      algorithm. The 
     is based on the concept of mutual  -NN relationship 
between data points in the implicit database  . The initiator 
sends requests (queries or agents) to the sites in order to figure 
out the two-way nearest neighboring relationship among the 
implicit data points.    and   can only become a mutual 
nearest neighbor pair if both   has   and   has   as their 
nearest neighbor. 

 Definition 

Two points   and   with distance      are mutual  -

nearest neighbors if: (1) there are less than   points  between 
  and   and (2) there are m (   ) points, but at least 
(   ) of these points have already found their mutual  -
nearest neighbor, thus they refuse any new mutual nearest 
neighbor relationship with other points. 

A. Decomposition of Global Computation 

In order to find the cluster centers in  , each site 
represented by an agent. Each agent has the capability to 
perform computation locally, or able to move from one 
location to another to perform computations or collect 
statistics.  Without moving local databases to one site, these 
agents collaborate with each other to cluster the implicit 
database  , while, these agents may exchange messages and 
summaries of their local results.       

Computing Shared Relation and Decomposition of 

     (Procedure 1) 

1. First, the initiator finds the shared attributes and 

the shared values among sites by exchanging a 

number of messages.  

2. Then the initiator creates the shared relation by 

executing the following steps:  

a. Using the shared attributes and values, 

the initiator creates the           

relation as the cross product of the 

different values of the attributes in the 

set  .  

b. Then, the initiator generates the Shared 

relation by removing from 

          any tuple that does not 

exists at any of participating site. 

c. Set index for the        relation 

starting with zero. 

An agent at       sends a request to the agents of the 
collaborated sites to start the computations. The presented 
algorithm is designed to minimize communication between 
across sites and to handle various sets of collaborated sites and 
various sets of shared attributes between sites.  Furthermore, 
the proposed algorithm preserves the privacy of the 
communicated data. 

To clarify the decomposition process, assume that the 
required global computation is to find the distance   (        
between   tuples      (              and    
(              in the global database   (   located at one 
site).  

   (        √∑ (      
  

   ,              (3) 

Where,     {   |       
  . 

However, in a distributed environment,   exists as a set of 
partitions at various sites and               cannot be moved. 

The operation    
can be decomposed to produce equivalent 

results by executing the following procedure. 

From the definition of        relation, we can note that 
each tuple in        relation with index   represents a class 
(we will call it class  ) of implicit tuples in  . 

Now we can decompose the operation    
to produce the 

same results as in case of explicit databases.  We divide the 
distance into two parts shared distance and unshared distance. 

First the shared distance   (               is the distance 
between the values of shared attributes that computed at the 
initiator as follows: 

  (               ∑ (      
 

      
                           (4) 

where    and    are the values of shared attributes in    
and   . 

The unshared distance    (              can be 
computed by an agent at    (partition     at site i) and the 
shared values of the attributes at   . 

   (               ∑ (        
 

        
                    (5) 

Where     and     are the values of unshared attributes in 
   and    which correspond to    and    . 

   (              can be computed by finding the 
unshared distances at the same class and between the tuples at 
different classes.  Then, the results are aggregated  at the 
initiator to get the global unshared distance. 

Using equation (4) and (5) the decomposition of operation 

     
will be. 

  (        √  (                  (               

                  (6) 

As described above, each shared tuple with index j 
corresponding to a class of implicit tuples at least one tuple, 
the next procedure is to find the distances between each pair 
of implicit tuples inside each class   (if   has more than one 
tuple) and the third procedure is to find the distances between 
each pair of implicit tuples from different classes. 

B. Computing Distances between Implicit Points inside each 

Class (Procedure 2) 

This procedure aims to find the distance between every 
pair of implicit points inside each class. 
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1) Data structures: Distance table exists at the initiator 

site. The table contains five columns: 

a) Index column stores the index of the Shared tuples, 

b) Pair column stores the identification of the points of 

each pair, 

c) SharedDistance column stores the distance between 

the Shared attributes in the implicit tuples which can be 

computed using equation (4),  

d) UnsharedDistance column stores the distance 

between the Unshared attributes in the implicit tuples which 

can be computed using equation (5),  

e) TotalDistance column stores the total distance and 

can be computed using equation (6). 

For each shared tuple, the initiator requests from each site 
the unshared distance between the unshared attributes that 
match with the shared tuple and sends the results back to the 
initiator. Finally, the initiator finds the total distance using 
equation (6). 

2) Local computation: For all Shared tuple k, all site 

computes the unshared distances using Equation (5). 

a) for each Shared tuple k do 

b) At each Di do 

c) Select all tuples that belong to the shared k, 

d) Compute the unshared distances between every two 

tuples inside class k, 

e) Return the values of the unshared distances to the 

initiator site. 

3) Global computation: For every Unshared distance 

from Di, the initiator finds the sum of all combinations Ci (one 

from each Di ). 

a) Distance[k][SharedDistance] = 0 // The distances 

between the shared attributes inside class k. 

b) for every Ci do 

c) Distance[k][UnsharedDistancei] = ∑                     

d) Distance[k][TotalDistancei] = 

√                               

C. Computing Distances between implicit Points in Different 

Classes   (Procedure 3) 

This procedure aims to find the distance between every 
pair of implicit points between classes. 

1) Local computation: For every u and v (two classes or 

shared tuples), the initiator request from every site to compute 

the unshared distances between the implicit tuples (one in 

class u and one in class v)  using equation (5). 

a) for each combination (j, k) of indices do 

b) At each Di do 

c) Select all tuples that belong to classes j, and k, 

d) Compute the unshared distances between every two 

implicit tuples that belong to different classes j and k, 

e) Return the values of the unshared distances to the 

initiator site. 

2) Global computation: For every Unshared distance 

from Di, the initiator finds the sum of all combinations Ci (one 

from each Di ). The initiator computes the summation of this 

combination. 

a) Distance [(u,v)][SharedDistance] = the distance 

between the shared attributes in classes j and k. 

b) for every Ci do 

c) Distance[(j,k)][UnsharedDistancei]=

∑                     

d) Distance[(j,k)][TotalDistancei] = 

√
                                
         (                     

 

D. Computing Distances between every pair of implicit tuples 

(Procedure  4) 

The main goal of this procedure is to find the distance 
between every pair of implicit tuples using the computed 
distances (shared and unshared).  This will be executed at the 
initiator site. 

1) for each site i, construct the set   CounTupi = {Nj
i : j = 

1, 2, . . . , l}, where Nj
i
  is the number of tuples that belong to 

class j at site i and l is the number of Shared tuples. 

2) Construct the global matrix CountMatrix [l][n] by 

considering each CounTupi  as a column, where i = 1, 2, . . ., 

n, where  n is the number of participating sites. 

3) For every value CountMatrix[j][i], define the sequence 

Counti   j = {1, 2, . . . , CountMatrix [j][i]}. 

4) For every class j, construct the matrix 

MapMatrixl[c][n] as the Cartesian product of all sequences 

Count
i
j s, where c is the number of tuples in class j in the 

implicit data. 

5)  For every UnSharedDist
i
j set, construct the square 

matrix UnSharedDist-Matrix
i
j [p][p], where p is the number 

of tuples in class j at site i (p = CountMatrix [j][i]). This 

matrix represents the unshared distances between each pair of 

tuples that belongs to class j at site i. 

6) For every UnSharedDist
i
j,k set, construct the matrix 

UnSharedDist-Matrix
i
j,k[p][q], where p is the number of 

tuples in class j and q is the number of tuples in class k at site i 

(q = CountMatrix [k][i]). This matrix represents the unshared 

distances between any pair of tuples; one in class j and the 

other in class k at site i. 

7) Using the above-constructed matrices, compute the 

global matrix Distance_Matrix [w][w], where w is the number 

of tuples in the explicit database. The elements of this matrix 

will be computed by taking the square root to the sum of the 

Shared and Unshared distances as in Equation (6). 

E. Finding Mutual k-Nearest Neighbors (M-kNN) (Procedure 

5) 

In this procedure, the initiator finds the two-way (i.e. 
mutual) nearest k neighbors of each point. The k value of a 
point will keep increasing until that point finds its mutual 
nearest neighbors. 
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1) Data structure: The mutual table exists at the initiator 

site. It has four columns: 

2) Point_ID column to identify each point, 

3) kp  column to specify the maximum number of nearest 

neighbors that each point can have, 

4)  k-NN column stores the k-NNs of each point, 

5) M-kNN column specifies the mutual k-NNs of each 

point. 

a) kp = kg   // where kg (global) is the initial k for all 

points 

b) Repeat 

c) for every Pi  P do 

d) Mutual[Pi ][kNN] = Find NearestNeighbors(Pi,kpi)  // 

find the k-nearest neighbors 

e) for every Pj  kNN(Pi ) 

f) if Pi  kNN(Pj ) 

g) Mutual[Pi][M-kNN] =  Pj 

h) end for 

i) if Mutual[Pi][M-kNN] =   

j) kpi = kpi + 1 

k) end for 

l) Until N iterations or all points found their M-kNN 

F. Generating Initial Set of Clusters (Procedure 6) 

In this procedure, the points in Mutual table constructed in 
the Finding Mutual k-Nearest Neighbors Procedure will be 
used to create initial clusters that will be stored in table 
InitialClusters through the following steps. First, the radius of 
each point is found using Equation (7) and stored in 
InitialClusters. Second, the points are sorted based on their 
radius. 

   
∑   

 
   

 
                  (7) 

Finally, the points are read sequentially in order to label 
them as follows: For each point Pi, we check if it’s not given a 
label, we set it as class initiator and assign a new label for it 
(i.e. the point that begins creating a cluster including its M-
kNN). Then we check its M-kNN and assign them labels 
according to the following two scenarios: 

1) If a mutual k-nearest neighbor (Pj) has not been 

assigned an initiator, point Pi becomes its initiator. 

2) If (Pj) is already assigned to an initiator we have two 

cases: 

a. If the distance of (Pj) with its previous 

initiator > distance of (Pj) with (Pi) Assign 

(Pi) as the initiator of the point. 

b. If the distance of the point with its previous 

initiator < distance of (Pj) with (Pi): Make 

no changes. 

Find initial clusters  

1. cluster = 1 

2. for every Pi  P do 

3. if cluster label Ci is not set then 

4. Ci  = cluster 

5. for every Pj  P do 

6. if cluster label Cj is not set then 

7. Cj  = cluster 

8. else  
9. get Pk cluster exampler of Pj 

10. if distance(Pi, Pj) < distance(Pj, Pk) then 

11. Cj  = cluster 

12. end if 
13. cluster = cluster + 1  

14. end for 

15. end for 

G. Merging clusters (Procedure 7) 

This procedure is based on the inter-cluster distance which 
is measured based on some metrics as follows: 

 Linkage: A point has a linkage to a cluster N if there is 
at least 1 point in N that is M-kNN of point p 

 Closeness: Closeness of cluster Clusteri to Clusterj is 
number of points in Clusteri that has a Linkage to 
Clusterj 

 Sharing: Sharing S of cluster Clusteri into Clusterj is 
number of Mutual k-Nearest Neighbor pairs that have 
one in Clusteri and other in Clusterj 

 Connectivity: If Clusteri has ki points and Clusterj has 
ki points. Connectivity of Clusteri to Clusterj is defined 
as: 

               (
        

     
)  (

         

  
            (8) 

The merging process starts with finding the connectivity 
between every two clusters and select the clusters that have 
the highest connectivity value to each other in order to merge 
them. Thus the new cluster is a combination of the points of 
the two clusters. The calculations of the connectivity will be 
repeated between the new cluster and the other clusters. This 
process is repeated until no clusters can be merged. 

Construct Final Clusters 

1. Calculate initial ConnectMatrix CM 

2. Repeat 

3. for every Ci  C do 

4. NeighboringClusters  = Find NeighboringClusters 

(Ci,k)  

           // the neighbors are selected based on the 

highest connectivity value 
5. for every Cj  NeighboringClusters(Cj) 

6. if Ci  NeighboringClusters(Cj, HIGHEST) 

7. Cnew = Merge(Ci , Cj) 

8. Update(CM) 

9. endif 

10. end for 

11. end for 
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12. Until no more merging can be done or required clusters 

have been achieved 

V. EXAMPLE SCENARIO 

In this section, we present an example scenario to clarify 
our proposed algorithm and prove the cases described in 
Definition 1. The objective here is to determine the distance 
between every possible pair of points in order to cluster the 
points based on the density. 

Assume that the local databases D1 and D2 from site 1 and 
site 2, respectively are shown in Table I. We consider D1 and 
D2 consisting of points in a 3-d space. As a result, the implicit 
database will contain the points A=(0, 0, 1), B=(2, 3, 1), C=(2, 
2, 1), D=(3, 3, 1),E=(3, 2, 1), and F=(5, 5, 1). 

From Table I, the Shared attribute is y, and the Shared 
values are {0, 3, 2, 5}. The indexed Shared relation showed in 
Table II: 

 Local Computations 

For each Shared k, each site will compute the unshared 
distance. The execution of proposed algorithm for Shared 
index 1 and the combination (0, 1) as follows: 

 For Index 1 

– At Site1: the unshared distance will be d1 = (2-3)
2
 = 1. 

– At Site2: The unshared distance will be d1 = 0. 

– At the coordinator site:  we have the following update: 

Distance[1][SharedDistance]=0, 

Distance[1][UnsharedDistance]=1,  and 

Distance[1][TotalDistance] = 1 

 For combination (0, 1) 

– At Site1: the unshared distance between classes 0, and 1 

will be d1 = (0-2)
2
 = 4, and d2 = (0-3)

2
 = 9. 

– At Site2: the unshared distance between classes 0, and 1 

will be d1 = (1-1)
2
 = 0. 

– At coordinator site: the Shared distance between the 

shared attributes of the two classes (0, 1), will be 

Distance[(0,1)][SharedDistance]  = (0-3)
2 

= 9, 

Distance[(0,1)][UnsharedDistance]1 = 4 + 0 = 4, 

Distance[(0,1)][UnsharedDistance]2 = 9 + 0 = 9. As a 

result, the total distance table will be updated using 

equation (6) as follows: Distance[(0,1)][TotalDistance]1 = 

3.61, Distance[(0,1)][TotalDistance]2 = 4.24. 

Table III contains the calculated distances. From Table III, 
we can find the points that correspond to the calculated values. 
By transmitting message to every site to find tuples that 
correspond index 1,  and then join the founded tuples, we get 
the following pair: p1 =(2, 2, 1), p2 = (2, 3, 1); p1 and p2 
represent point C and B, respectively. 

As shown in Table IV, A and F did not find any M-kNN at 
the first iteration thus we keep increasing their kp until they 
find their M-kNN. Point A and F have met each other at the 
third iteration (Table V). 

At this stage, we compute the radius of each point using 
Eq. (7) and then we sort them according to their radius. After 
that, we label the points as described above. The results are 
shown in Table VI. Table VII shows the two initial 
constructed clusters from the labeled points. 

TABLE I. D1 AND D2 AT SITE 1 AND SITE 2 

Site1  Site2 

X y  Y Z 

0 0  0 1 

2 3  3 1 

2 2  2 1 

3 3  3 1 

3 2  2 1 

5 5  5 1 

TABLE II. SHARED RELATION 

Index Y 

0 0 

1 3 

2 2 

3 5 

TABLE III. DISTANCE TABLE 

Index 
Shared 

Distance 

Unshared 

Distance 

Total 

Distance 
Pair 

0 0 0 0 - 

1 0 1 1 (B,D) 

2 0 1 1 (C,E) 

3 0 0 0 - 

0,1 9 4 3.61 (A,B) 

0,1 9 9 4.24 (A,D) 

0,2 4 4 2.83 (A,C) 

0,2 4 9 3.61 (A,E) 

0,3 25 25 7.07 (A,F) 

1,2 1 0 1 (B,C) 

1,2 1 1 1.41 (B,E) 

1,2 1 1 1.41 (D,C) 

1,2 1 0 1 (D,E) 

1,3 4 9 3.61 (B,F) 

1,3 4 4 2.83 (D,F) 

2,3 9 9 4.24 (E,F) 

2,3 9 4 3.61 (C,F) 
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TABLE IV. M-KNN AT FIRST ITERATION (KP =2 FOR ALL POINTS) 

Points kp k-NN M-kNN 

A 2 D, C  

B 2 C,D  C, D 

C 2 B, E B, E 

D 2 B, E B, E 

E 2 C, D C, D 

F 2 D, B  

TABLE V. M-KNN AT THIRD ITERATION (KP =5 FOR A AND F) 

Points kp k-NN M-kNN 

A 5 D, C, B, E, F F 

B 2 C,D  C, D 

C 2 B, E B, E 

D 2 B, E B, E 

E 2 C, D C, D 

F 5 D, B, C, E, A A 

TABLE VI. GENERATING PRELIMINARY CLUSTERS 

Points M-kNN Radius Cluster No. 

B C, D 1 B=1, C=1, D=1 

C B, E 1 C=1, E=1 

D B, E 1 D=1, E=1 

E C, D  1 E=1, C=1, D=1  

A F 7.07 A=2 

F A 7.07 F=2 

TABLE VII. INITIAL CLUSTERS 
 

Cluster Members 

C1 B, C, D, E 

C2 A, F 

Now, we check if we can merge any of the constructed 
clusters using Eq. (8) to compute the connectivity between the 
initial clusters. As shown in Table VIII, all the obtained 
connectivity values are zero, therefore, no clusters will be 
merged. The clusters in Table VII will be considered our final 
clusters. 

TABLE VIII. COMPUTATION OF CONNECTIVITY 

Clusters Connectivity 

C1,2 0 

C2,1 0 

VI. COMPLEXITY ANALYSIS 

The density-based clustering of points that are distributed 
vertically among different sites requires part of the 
computations to be done locally at each site and the other part 
is done globally at the initiator site. The cost of the local 
computations is based on the number of messages exchanged 
between the various sites [21]. The way that the messages are 
exchanged is based on the agent scenario. Both cases for the 
agent will be analyzed: stationary agent and mobile agent. 

Assume that there are n relations, D1,D2, . . . .,Dn, lie in n 
various network sites, l number of tuples in Shared relation 
and r  number of tuples in PreShared relation. 

A.  Communication Analysis 

 Stationary Agent 

 Centralized method 

The number of messages is the total of the number of the 
messages required to retrieve the Shared values, check the 
existence of each Pre-shared tuple, computing the distance 
between every pair of points inside each class and between 
classes.  Thus the sum of exchanged messages will be: 

1. n messages to find Pre-shared from the local sites, 

2. n*r exchanged message to compute shared from pre-

shared, 

3. (  *n) exchanged messages to compute the unshared 

distances inside classes (UnSharedDist
i
j ), 

4. ( 
 
)      exchanged messages to compute the unshared 

distances between tuples in different classes 

UnSharedDist
i
j,k, where ( 

 
) is the number of all possible 

combinations of two tuples in class j and class k. 

5. l*n exchanged messages to compute the ―CounTupi‖ sets. 

                           (       (         

 DDBC method: 

Unlike a centralized method, in DDBC the Shared tuple is 
going to be sent to all or any sites at the same time then the 
summaries are received in parallel. 

In this case the cost is decreased to: 

                          (1 + r +   (  
+ 3)/2). 

All of the above analysis considers only the total number 
of messages and do not include the complexity of the 
computations done at each local site. The local computations 
are typically searched operations with complexity O(m), 
where m is the number of tuples in each site. Thus, the total 
cost of the local computation will be: 

                                 (      (         

                         (       (         

B. Mobile Agent 

In this scenario, the mobile agent visits each site and does 
the local computation for each site. In our algorithm, three 
visits to each site will be enough to compute: The Pre-shared 
tuples, Shared tuples and the unshared distance in each class, 
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unshared distance between classes. Thus the total number of 
messages will be 3*n. 

As shown in the analysis, the total number of messages 
does not depend on the size of the local databases. This is 
beneficial, as the communication complexity remains the same 
despite the growing size of the local databases. Although it 
might affect the cost of the local computations on each site, 
our decomposable version still better when compared to a 
database joined explicitly from the local sites. 

The joined database (i.e. implicit database) would generate 
(m

n
) tuples in the worst case in addition to the cost of joining 

which is (n*m). The complexity is even worse running 
procedures 2 and 3 to compute the distance between each pair 
of points in the implicit database as the cost will be O(m

2n
), 

but in our decomposable version, the cost is O(m) for each of 
the n sites. In addition, the number of messages to generate the 
implicit database is much more than the number of messages 
required in our algorithm. 

Another advantage of the decomposable approach is 
preserving the privacy of the local databases since the 
computation is done locally and not all tuples are retrieved by 
the initiator. In addition, this approach doesn’t affect the 
integrity of the local databases as all of the operations on the 
database are just queries (i.e. reading queries). 

C.  Computation Analysis 

The rest of the algorithm steps are done globally at the 
initiator site using the table generated by procedure 1 and no 
more communication is needed with the local sites. In 
procedure 5, we sort the pairs according to the distances using 
quick sort which takes O(P

2
log P) as we have P points and P

2
 

pairs. To find the M-kNN, we scan the sorted table for the k-
nearest neighbors which takes O(P

2
) and then scan the 

neighbors of each point to check for mutuality, however, as 
the number of neighbors is constant we can ignore it. Since 
procedure 5 is repeated for i iterations which is also constant 
then the total complexity for this procedure is O(P

2
logP). 

In procedure 6, the creation of the initial clusters is done 
by scanning the list of the points and neighbors of points when 
needed, which results in complexity of O(j*P) where j is 
number of neighbors for each point and since it’s constant we 
can remove it, thus procedure 6 complexity is O(P). 

Finally, in procedure 6 the connectivity matrix is 
computed initially for every pair of clusters which is O (C

2
) 

where C is a number of clusters. For a constant number of 
iterations, the merging is done according to the highest 
connectivity and connectivity matrix is updated. 

However, since the number of clusters is strictly smaller 
than the number of points the complexity of procedure 6 is 
intuitively less than O(P

2
logP). The total complexity of the 

Algorithm at the initiator site starting from procedure 5 will be 
(P

2
logP). 

VII. EXPERIMENTAL RESULTS 

In order to show the advantages of our algorithm, we have 
conducted a number of experiments to show that the DDBC 
algorithm designed for a distributed environment, without 

transferring all the databases to a single site, can provide the 
same results as the algorithm in a centralized environment. 

The experiments have been performed to find the impact 
of the number of tuples per database (NTuples), the number of 
sites (NSites), and the average number of shared tuples 
between local databases (AvgShared) on the results. 

In the first test, we show the effect of NSites on the time 
and the number of exchanged messages, by increasing NSites 
by one starting from 2 to 6. 

Fig. 3 shows the effect of NSites in the      algorithm 
(in an implicit database    on both of exchanged messages 
(ExMsg) and elapsed  time (ET). We can see that there is 
direca t relation between NSites and numbethe r of exchanged 
messages. Moreover, as NSites increased more time elapsed. 

In the second test, we show the relation between NTuples 
and ExMsg and ET by varying AvgShared from 5  to  25 with 
an increment of 5. 

Fig. 4 shows that ExMsg and ET increased as AvgShared 
increased that is to run the DDBC algorithm in an implicit 
database D. 

Finally, we show how the ET and ExMsg vary with NSites. 
Fig. 5 shows the relation between NTuples and ExMsg and ET 
in the DDBC algorithm. 

Notice that the elapsed time to run DDBC increases as 
NTuples increased for one summary per message exchange in 
a centralized method. On the other hand, the elapsed time to 
run DDBC significantly reduced in the optimized method as 
NTuples increased. 

 
(a) Exchanged Message. 

 
(b) Elapsed Time. 

Fig. 3. Analysis of DDBC on Vertically Partitioned Data 

(Distributed) and Centralized Method by Varying Number of Sites. 
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(a) Exchanged Message. 

 
(b) Elapsed Time. 

Fig. 4. Analysis of DDBC Algorithm and Centralized Method with a 

different Number of Shared Tuples. 

 
(a) Exchanged message 

 
(b) Elapsed time 

Fig. 5. Analysis of DDBC Algorithm and Centralized Method using 

a different Number of Tuples. 

VIII. CONCLUSION 

In this paper, we proposed a decomposable version of 
Density-based clustering for vertically distributed datasets 
located at different geographical sites. The algorithm 
composed of four procedures. Overall, the algorithm gives 
identical results to those would have been achieved by 
creating an implicit database at the initiator site and applying 
the algorithm on this database. However, our decomposable 
version minimizes the total communication cost between the 
initiator site and the local sites as well as the number of 
operations done in each site compared to those done on the 
implicit database. 

Moreover, our algorithm preserves the privacy and 
integrity of these sites. In the current version we decompose 
the first part of the algorithm which finds the M-kNN into two 
parts, the first part finds the distance between every pair which 
is done in a decomposable way and the second part finds M-
kNN based on the obtained results and it’s executed at the 
initiator site. We are planning to improve the algorithm by 
doing the density-based clustering on each local site and 
create initial clusters, and then we combine these initial 
clusters at the initiator site in order to find the final clusters. 
As future work, multithreaded programming to parallelize 
message passing operations between points and clusters can be 
adapted this will make the M-kNN algorithm more efficient to 
cluster data on a big scale. 
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