
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Techniques, Tools and Applications of Graph
Analytic

Faiza Ameer1, Muhammad Kashif Hanif2, Ramzan Talib3, Muhammad Umer Sarwar4,
Zahid Khan5, Khawar Zulfiqar6, Ahmad Riasat7

Department of Computer Science,
Government College University,

Faisalabad, Pakistan

Abstract—Graphs have acute significance because of poly-
tropic nature and have wide spread real world big data appli-
cations, e.g., search engines, social media, knowledge discovery,
network systems, etc. Major challenge is to develop efficient
systems to store, process and analyze large graphs generated by
these applications. Graph analytic is important research area
in big data graphs dealing with efficient extraction of useful
knowledge and interesting patterns from rapidly growing big
data streams. Tremendously huge and complex data of graph
applications requires specially designed graph databases having
special data structures and effective features for data modeling
and querying. The manipulation of large size of data requires
effective scalable and distributed computational techniques for
efficient graph partitioning and communication. Researchers have
proposed different analytical techniques, storage structures, and
processing models. This study provides insight of different graph
analytical techniques and compares existing graph storage and
computational technologies. This work also assesses the perfor-
mance, strengths and limitations of various graph databases and
processing models.

Keywords—Graph; graph analytic; big data; graph tools; ana-
lytical techniques

I. INTRODUCTION

Graphs have astute magnitude due to their versatile and
expressive nature. Real world big data problems like weather
forecasting, geographical changes, large network systems, social
networks, semantic search and knowledge discovery, text
mining, IOT, cyber security, etc. all can be viewed and modeled
as graphs.

Graphs can be used to represent and analyze big data.
Big data is huge volume, high velocity and a large variety of
information asset that demands cost effective, and innovative
forms of information processing for enhanced insight and
decision making [1]. The term huge volume refers to the large
size of static or continuously growing data like Facebook,
Twitter, Google, etc. High Velocity represents the required
speed of data generation, and analysis. Large variety means
the use of various types of structured (e.g., data from relational
databases), semi-structured (e.g., XML and JSON documents),
and unstructured data (e.g., video, audio, images etc.) [1].

Graph analytic is based on graph theory (a branch of
Mathematics). Graph theory was born out of a very practical
urban planning problem. The problem started in Konigsberg
(old city in Russia). The city had two large islands, connected
by seven bridges. Back in 1736, the problem was to device
a walkway from one part of city to another by traversing

all seven bridges only once. A mathematician, named Euler,
proved mathematically that this problem had no solution due
to odd number of bridges. He reformulated the problem and
solved it by eliminating all features except land masses (termed
as vertex) and the connecting bridges (termed as edge). The
resulting mathematical structure was called a graph (Fig. 1). By
solving this problem, Euler laid down the foundations of whole
field of graph theory [2]. Different operations which can be
performed on a graph are add/remove a vertex, add/remove an
edge, or find the nearest neighbors (i.e., finding nodes connected
to the vertex), etc.

Graph analytic models large and complex data problems as
a set of graphs. It expresses relationship patterns of objects by
exploiting the mathematical properties of data and statistical
modeling techniques to provide efficient algorithmic solutions
and discover meaningful patterns [2]. Many organizations are
competing with their peers in market using graph analytic by
making accurate and timely decisions [2]. There exists variant
techniques for graph analytic like path analytic,connectivity
analytic, centrality analytic, and community analytic based
on solution to different types of problems [2]. Each one of
them use different principles and methods to answer divergent
analytical questions.

To handle large graphs, new systems incorporate efficient
storage and processing technologies. The new database technolo-
gies fulfill the growing requirements of current applications and
cover the limitations of traditional database models. Modern
graph related database management system includes graph
databases and graph stores [3]. These databases provide general
features for data storage, data modeling, and support for graph
queries and query languages. Use of graphs in big data have
also generated much interest in the field of large-scale graph
data processing. Modern parallel processing systems are based
on four different processing models: MPI-Like, Map-Reduce,
BSP, and Vertex-Centric Graph Processing. Pregel, Giraph,
GPS, Mizan, and GraphLab are important parallel processing
models.

The remainder of the paper is organized in different sections.
Section II gives a brief overview of the applications of graphs.
Section III describes different graph analytic techniques. In
Section IV, graph storage techniques are discussed. Sections V
provides different processing models for large graphs. At the
end, we conclude the outcomes.

www.ijacsa.thesai.org 354 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 1. Sample graph and its representation using adjacency matrix.

II. SOME APPLICATIONS/USE CASES OF GRAPHS

A. Social Media

A Facebook page contains some elements, e.g., primary
users, friends, groups, and posts. The posts may contain text,
tags, and media such as images and videos. Some people
comment and like posts. The commenter must be a Facebook
user. Other people may also like or respond to some of the
comments. Many posts have locations associated with them.
If all of these are considered together, graph can be made
to visualize almost the same types of information. In graphs,
everything can be organized in terms of objects and relationship
of these objects (Fig. 2).

Fig. 2. An example of social media graph.

Graphs can helps to answer different questions [2]. For
example,

• Behavioral psychologists, want to know, that a war
game user or any other violent game user, also shows

violent behavior in online fighting or not?

• Following somebody’s post over time and applying text
mining techniques, it can be investigated that person
is addicted to the game or not.

• Are there groups? What are these groups? Who are
the most influential users in group? Which people are
referred to, listened by everybody? Are the players
interacting with other players? Where they belong to?
Who are they? Do they form a close community?
(Fig. 3).

B. Analysis and Planning of Smart Cities

Cities have multiple interacting networks including trans-
portation networks, water and sewage networks, power trans-
mission networks, broadband IP, and M2M networks. Each
network has multiple subtypes, e.g., transportation networks
include the bus networks, the subway network, and the railway
network, etc. These networks can be represented as graphs
where each node has a geographical coordinate (Fig. 4).

A city planner would like to make sure that he covers
the entire city with optimized traversal time and plan traffic
congestion. To accomplish this, he would need to create a
network model. During planning, he needs to make sure that
all the right things happen at the same place. For example,
people coming out of metro stations will find nearby businesses,
IP network, and water supply. Network models also represent
congestion, people’s behavior, materials behavior, and energy
use patterns for network.

C. Fraud Detection

Traditional fraud prevention measures focused on discrete
data points such as specific accounts, individuals, devices or
IP addresses. Sophisticated fraudsters use stolen and synthetic
identities to escape detection. Graph databases (e.g., Neoj4)
are used beyond individual data points to the connections that
link these fraud rings. They uncover difficult to detect patterns
in real time as well as with high accuracy [6]. Taking example
of bank, following are some common fraud patterns:

• A group containing two or more people organize a
fraud ring.

www.ijacsa.thesai.org 355 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 3. Visualizing groups in graph [4].

Fig. 4. Graph in planning a smart city [5].

• These people open accounts using fictional identities
with subset of shared contact information, i.e., phone
numbers and addresses.

• New accounts are added to the original unsecured credit
lines, credit cards, overdraft protection, and personal
loans.

• Whenbanks increase the revolving credit lines, the ring
breaks in, coordinate their activity, max out all of their
credit lines, and disappear.

• Sometimes, fraud rings bring all of their balances to
zero using fake cheques immediately before the prior
step, doubling the damage.

• Even after identification of fraud ring, agents are never
able to reach the fraudster in real time.

• The due debt is written off without paying due amount.

Through graph database, bank’s existing fraud detection
infrastructure can be implied to support ring detection during
key stages in the customer and account life cycle. Real time
graph analysis can help banks identify probable fraud rings
(Fig. 5).

III. GRAPH ANALYTIC TECHNIQUES

The techniques for graph analytic include path analytic,
connectivity analytic, community analytic and centrality ana-
lytic.

A. Path Analytic

Path analytic deals with finding the best path between two
given nodes. Specification of “best” may include optimization of
specific function, traversal of certain nodes/edges, avoidance of
nodes/edges, and satisfaction of some preferences. For example,

www.ijacsa.thesai.org 356 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 5. Graphs in bank fraud detection.

In Google maps, shortest route would change based on weather,
traffic, and road conditions.

A standard method for finding least weighted path is Dijk-
stra’s algorithm. Complexity for applying Dijkstra’s algorithm
for big data is very high. The worst case complexity of
Dijkstra is proportional to the number of edges times log
(number of nodes). For 1 million nodes and 10 million edges,
the worst case complexity is proportional to approximately
14 million [2]. There are several modification of Dijkstra’s
algorithm to enhance the performance, e.g., Bi-directional
Dijkstra Algorithm, Goal-directed Dijkstra Algorithm, etc.

B. Connectivity Analytic

Connectivity analytic explores the connectivity pattern and
similarity between structures of graphs based on different
features. It also discovers robustness, i.e., which node should
be the next target of attacker.

Degree of a node is the number of edges connected to
a node. Through degree of nodes, we can specify if a node
is more connected than another. Degree of the node can be
calculated by adding in-degree (incoming edges) and out-degree
(outgoing edges) of the node. Similarity of the graph can
be found by comparing degree histogram of the graphs and
calculating vector distance of histogram. Degree histogram
contains number of nodes against degree value of node. Graph
similarity can be calculated by Euclidean distance (Fig. 6) using
the vector distance function given in Equation (1).

D =

√√√√ k∑
i=0

(h1i − h2i)2 (1)

There are many other sophisticated methods/formulas
available to compare graph similarities, e.g., Hellinger distance,
Histogram intersection etc. A joint, two dimensional colorful
histogram of the graph, provides more insight about the
graph [2]. For example, in a social networking graph, the

nodes with more incident edges than outgoing edges represent
members who are listeners.

Fig. 6. Using histogram for finding graphs similarity.

For measuring robustness of the network, we have to
evaluate how much a structure is affected by an attack. It
can be done using Weighted Spectral Distribution (WSD).
WSD emphasizes the contribution of eigenvalues believed to
be important [7].

C. Community Analytic

A cluster of nodes which are more connected to inside
of the cluster than outside of the cluster is called community
(Fig. 7). Community analytic deals with detection and behavior
pattern of communities. For example, who are member of
community? From where they belong to? Is the community
stable? Dominant members in the community? Is community
evolving, growing, splitting or going to be dead? Internal degree
of a sub graph is the summation of edges of all vertices within
the cluster. Summation of edges of all vertices outside the sub
graph is called external degree of cluster.

Communities are found by comparing internal and external
degrees of clusters. A cluster having more internal density
(Equation (2)) than external density (Equation (3)) is called
community.

δint =
of internal edges in C

nc(nC − 1)/2
(2)

A

F

D

H

B

C

E

G

Z

Z

W

U

Y

X

V

1

1

2

3 6 4

Fig. 7. Communities

www.ijacsa.thesai.org 357 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

δext =
of inter cluster edges of C

nc(n− nC)
(3)

A community always have higher internal density than
external density. A community have different local properties
(i.e., clique, n-clique, n-clan, and k-core) and a global property
which is called modularity. Modularity is a global property of
graph. It estimates the quality of the cluster. Louvain community
detection is one of methods of detecting community and
finding modularity of network/community. Clique is a perfect
community where every vertex is connected to every other
vertex in the cluster. Finding cliques is computationally very
hard problem as compared to finding k-size cliques (Fig. 8).
n-clique and n-clan are distance based measures while k-core
is a density based method of finding community. n-clique is a
sub graph having distance of length not more than n between
each member. n-clan is an n-clique having distance between all
nodes not more than n and without involving outsider nodes.
k-core is a cluster in which each vertex is directly connected
to at least k other vertices of the cluster.

D. Centrality Analytic

Centrality analytic characterizes important nodes (influ-
encers) of a network with respect to a specific analysis problem.
Their significance is detected by looking at how central they are
in a community. We know that every node does not have equal
importance in a network. Some nodes are more important than
others in specific perspectives. For example, a central server in
a computer network, a junction station in a transport network
etc. We need to find the nodes which are maximally connected
to other nodes and the nodes if removed would maximally
disturb the communication of other nodes. Network centrality
has centrality and centralization characteristics. Centrality is
the measure of importance of a node (or edge) based on its
position in the network. While, centralization is the measure for
a network (not just a single node). If more nodes start having
higher centrality, then there is less variation in the centrality
values of the network. As a result, the centralization of the
network drops (Fig. 9).

Network centralization is the sum of the difference between
the maximum centrality and the centrality of the node divided
by the maximum centrality (Equation (4)).

Centralization =

∑
(cmax − c(vi))

cmax
(4)

There are many types of centrality including degree cen-
trality, closeness centrality, betweenness centrality, eigenvector
centrality, and katz centrality. There are different principles and
methods to calculate centrality values.

IV. GRAPH STORAGE TECHNIQUES

As the size increases, more edges stream into graphs
adding more data into database and making real time analysis
a challenge. These graphs may be stored both in RDBMS
or NoSQL for efficient query processing using supportive
query languages. Currently, NoSQL databases are schema less

databases and are getting more attention due to high scalability
and fault-tolerance. NoSQL databases can have key/value stores
(e.g., Apache Cassandra), document stores (e.g. MongoDB),
and graph databases (e.g., AllegroGraph, Neo4J, OpenLink
Virtuoso) [8]. There are two types of database management
system for graphs, i.e., graph stores and graph databases.

Graph stores provide facilities for storing and querying
graphs. G-Store is a storage manager for large vertex-labeled
graphs. Redis graph is a Python implementation for storing
graphs. VertexDB implements a graph store on top of Toky-
oCabinet (a B-tree key/value disk store). Filament is a graph
storage library with default support for SQL through JDB.
Additionally, we can mention CloudGraph, Horton, and Trinity
as prototypes of graph stores [3].

Graph databases can have better speedups over relational
databases for selected problems. For example, graph queries
formulated in terms of paths can be concise and intuitive [8].
Graph databases must provide database languages (for data def-
inition, manipulation and querying), query optimizer, database
engine, external interfaces, storage engine transaction engine,
management, and operation features (tuning, backup, recovery,
etc.). Some databases available according to above criteria are
DEX (Sparksee), AllegroGraph, InfiniteGraph, HypergraphDB,
Neo4J, and Sones.

DEX (Spakrsee) is a high performance graph database
management system based on bitmaps and other secondary
structures. DEX works efficient for the manipulation of very
large graphs. DEX uses a java library for management of graphs
[9]. AllegroGraph was initially developed as graph database
and meets the semantic web standards (i.e., RDF/S, SPARQL
and OW) [3]. AllegroGraph also provides special features for
geo-temporal reasoning and social network analysis.

InfiniteGraph is an object-oriented database to support large-
scale graphs in a distributed environment [3]. It provides the
efficient traversal of relations across massive and distributed
data stores. HyperGraphDB is highly customizable system
based on hypergraph database model. It represents complex
and large scale domain specific knowledge within uniform
conceptual framework. It removes usual difficulties while
dealing with higher order relationships [10]. It is useful for
modeling data of complex applications like artificial intelligence,
bio-informatics, and natural language processing. Most graph
database models supports different features like graph structures,
data definition and manipulation, storage, essential graph
queries, basic integrity constraints, and representation of entities
and relationships [3].

V. COMPUTATIONAL MODELS FOR GRAPH PROCESSING

A parallel computational model abstractly specifies the way
a parallel program will run. In parallel computational model, a
program is divided into multiple concurrently running processes.
It decides how and when these processes communicate and
exchange data. It also observes how parallelism is actually
achieved. In shared memory architecture, the memory of
multiple machines is virtually considered as a single large
memory. While in message passing model, the processes can
directly pass messages to and from other processes or they
can use a common message carrying pipe. There are also
multiple ways for achieving parallelism, e.g., task parallelism,

www.ijacsa.thesai.org 358 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 8. Clique, n-clique, n-clan, k-core

Fig. 9. Centralization of a network

data parallelism. In data parallelism, the data is divided into
partitions. While in task parallelism, a single task is divided into
multiple sub-tasks. In both cases, the partitions are synchronized
and can run independently of each other. A computational model
is independent of the programming languages.

Some of widely used techniques for implementation of big
graph processing algorithms are:

• A customized distributed infrastructure can be devel-
oped [11]. It requires different implementation for
different graph and its processing algorithm.

• An existing distributed computing platform can be
utilized, like Map-Reduce, or SQL-like queries. How-
ever, these structures are often ill suited and lead to
suboptimal performance and usability issues for graph

processing [11].

• A single-computer graph algorithm library can also
be utilized. JDSL [12], BGL [13], NetworkX [14],
LEDA [15], Stanford GraphBase [16], or FGL [17] are
example of such libraries. Major issue with libraries
is scalability [11].

• An existing parallel graph system such as Parallel
BGL [18] and CGMgraph [19] can be deployed. One
major issue is of fault tolerance.

Next, some of the most important distributed computational
models are described.

A. MPI-like

There are many libraries available that use MPI for dis-
tributed graph processing. Some important libraries are Parallel
BGL [18] and CGMgraph [19]. As mentioned above, there
are some important distributed graph processing issues like no
support for fault tolerance [20].

B. MapReduce

MapReduce was developed by Google for processing of big
data. MapReduce consists of two phases: map phase and reduce
phase. The system have a master node and several of workers. In
the map phase, input is divided into smaller jobs by the master
node and then these are assigned to all the workers which work
independently. In the reduce phase, the workers combine the
result for the original problem [20]. MapReduce model did not
turn out to be ideal for many different graph algorithms, e.g.

www.ijacsa.thesai.org 359 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

parallel BFS. It can lead to a lot of computational overhead,
sub-optimal performance, and poor usability [11].

C. Bulk Synchronous Parallel

Bulk Synchronous Parallel (BSP) is a general parallel
processing model which consists of three main attributes, i.e.,
several concurrently running processes, communication layer,
and a synchronization barrier. In communication layer, pairs
of processes exchange messages. BSP works in series of super
steps. Processes perform computation during supersteps. Before
going to next superstep, synchronization barrier maintains
consistency by synchronizing processes. Synchronization may
either happen periodically after a specific time interval or there
may be another specific way. After completing computation
assigned in each super step, every process waits for other
processes to finish the processing and to receive all the messages
destined to it. Once all processes complete, one superstep they
get synchronized and then next superstep is executed. When
a processor is not needed to compute or exchange data, it
becomes inactive. It is activated when it is needed to perform
computation or to exchange message. This model is terminated
when all the processors become inactive. BSP is a simple,
efficient, and scalable model for parallel algorithm design and
analysis. It does not take into account the case of heterogeneous
clusters [21].

D. Vertex-Centric Graph Processing

To apply BSP on big graphs, Google proposed a model of
vertex-centric graph processing [11]. It is especially designed
for big graphs. Each vertex is considered as a processor. After
each superstep, the messages are synchronized, i.e., each vertex
waits for other vertices to finish the processing and also to
receive all the messages destined to it. Similarly, next superstep
is continued and the process keeps repeating until the algorithm
finishes.

The first implementation of this idea is Pregel, which is not
available to the general public. Introduction of Pregel inspired
many other BSP based graph processing systems like GPS
(Graph Processing System) [23], Apache Giraph [24], and
GraphLab [24].

1) Pregel: Pregel is flexible, scalable, and fault tolerant
platform for big graph computation [11]. Similar to BSP,
computation is divided into sequence of supersteps, separated
by global synchronization points. This system mutates graph
topology. Vertex can receive messages from its previous
iteration, send/receive messages to/from other vertices, and
modify its state and also the state of its outgoing edges.

Pregel system consists of one master and multiple workers.
The master coordinates and oversees the activities of worker.
The master divides the input directed graph. It uses an abstract
API of C++ to uniformly distribute these partitions to the
workers. Then signals all the workers to start execution. The
worker nodes calls the compute() method for each active
vertex with the messages received from the last superstep.
After completing its computation; the vertex votes for halt
and becomes inactive, and is not called in the next supersteps.
If this vertex gets new message then it is activated again.
When all vertices become inactive, master marks the end of
current job. If a worker fails, Pregel dynamically reassigns

the job to other worker [11]. In this way, Pregel offers a
fault tolerant system. In addition to fault tolerance, Pregel
offers scalability, efficiency, ease, and simplicity. It also offers
additional performance boosters like combiners and aggregators.
Combiners are used during message passing (especially to a
vertex on another machine). Aggregators are mechanism for
global communication and monitoring of data.

2) Apache Giraph: Apache Giraph [24] is an open-source
system and extends basic BSP model. Yahoo implemented
using Java and built it on Hadoop echo system (Fig. 10).
Giraph follows message passing model and performs global
synchronization without using semaphores.

It uses Hadoop for running workers, HDFS for input and
output data storage. Apache ZooKeeper is used for coordination,
check pointing, and failure recovery schemes. Usability of
Giraph is excellent due to Hadoop web monitoring interface.
Giraph also provides shared aggregators to avoid bottlenecks
at the master, yield substantial memory savings, and reduced
Java garbage collection overheads. It supports different data
structures for vertex adjacency lists. By default, it uses byte
array for faster input loading times but graph mutation is
inefficient. On the other hand, hash map edges efficient for
mutation but inefficient for memory. Giraph is massively paral-
lelizable and uses multi-threading which boosts up the speed of
graph loading, dumping, and computation. Additionally, global
synchronization, debugging, and monitoring progress is easy
in Giraph.

3) Graph Processing System: A Graph Processing System
(GPS) is open source system which is implemented in Java
for computation of extremely large graphs. It offers scalability,
fault tolerance, and ease of programing to express complex
graphs efficiently [23]. It is faster than Giraph [24]. It has
extension of the Pregel API, LALP, and DP for performance
boosting [26]. It introduced master.compute() function to
access, update, and store global aggregated values that are
transparent to vertices. LALP divides the adjacency lists of
high degree vertices among workers along with a mirror of
the vertex. When such vertex broadcasts a message to its
neighbors, one copy of message is sent to its mirror at each
machine and all neighbors in the partition. During execution,
DP dynamically repartitions the graph to balance the workload
across workers. GPS minimize the thread synchronization using
message buffers per-worker rather than per-vertex. However,
overhead of reassigning vertices among workers can exceed
the overall benefits.

4) GraphLab/PowerGraph: GraphLab is an open source
project which is popular for its maturity for graph analytical
tasks. Its recent version is called PowerGraph. It is implemented
in C/C++. GraphLab adopts a gather, apply, scatter (GAS)
data-pulling model and shared memory abstraction [26]. For
each vertex a user-defined GAS function is implemented. In
gather phase, each active vertex collects information from its
neighboring vertices and edges. It then performs a generalized
accumulation operation over them. In apply phase, the vertex
updates its value based on old value and resultant accumulation.
In scatter phase, each active vertex activates its adjacent vertices.
In contrast to BSP model, vertices do not receive messages
for its neighbors but can directly pull their neighbors data (via
Gather). Due to this feature, the communication barriers are no
longer required and execution is completely asynchronous. This

www.ijacsa.thesai.org 360 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 10. Giraph and Hadoop Echo System [22].

Fig. 11. Vertex Cut vs. Edge Cut.

avoids wasting CPU and network resource [24]. GraphLab also
offers an optional synchronous execution mode which requires
communication barriers.

GraphLab performs vertex cuts for partitioning graph while
Giraph, GPS, and Mizan all perform edge cuts (Fig. 11).
It replicates vertices on remote machines and each edge
is assigned to a unique machine. This feature results in
more balanced workloads for asymmetric degree distributions
graphs [24]. In GraphLab graph mutation is partially supported.
Vertices and edges can be added but cannot be removed from
graphs.

5) Mizan: Mizan is a C++ optimized and open source
system [26]. It monitors vertices and optimize the computation
by dynamic load balancing and complex vertex migration.

Mizan requires separate pre-partitioning of graph. Due to this
overhead, Mizan is not suitable for large graph because it can
exceed the overall benefits of the system [24]. Moreover, it has
few bugs and many useful features are missing.

6) GraphX: GraphX is an embedded graph processing
system which supports GraphLab and Pregel abstractions [26].
GraphX framework is built on top of Apache Spark which is a
widely used distributed dataflow framework (Fig. 12).

It does not require changes to Spark. It enforces graph
computation through a specific join, map, and group by
dataflow pattern [27]. GraphX API is modified version of
Pregel abstraction and a range of common graph operations.
Through this API, graphs can be composed with unstructured
and tabular data. The physical data can be represented as a

www.ijacsa.thesai.org 361 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 12. Apache Spark and Graphx [25].

graph as well as collections without data movement, duplication,
and sacrificing performance or flexibility [27].

GraphX optimizes distributed join and materialized view
maintenance for better graph processing performance. It
provides low-cost fault tolerance [27]. Its performance is
comparable with specialized graph processing systems. It
provides better end-to-end performance for pipelined jobs.
However, it takes longer than GraphLab for actual graph
computation [26].

VI. CONCLUSION

This work describes a broad overview of the storage
techniques and algorithmic strategies for graph analytics.
Moreover, we point out the critical challenges that need to
be addressed. Graph databases provide an intrinsic support to
data structures, data modeling, querying, and some integrity
constraints features that results in faster computation. However,
there is still need for further development in the definition
of standard graph database languages for computation and
querying of graph databases. Moreover, new query languages
are needed which should be capable of expressing graph
analytical operations. Big graphs requires special and faster
parallel computation models which offers different features like
fault tolerance, flexibility, simplicity, better usability, optimal
performance, scalability, computational efficiency, and better
resource utilization. We are working on security requirements
of graph analytics.

REFERENCES

[1] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, meth-
ods, and analytics,” International Journal of Information Management,
vol. 35, no. 2, pp. 137–144, 2015.

[2] A. Gupta, “Graph Analytics for Big Data,” https://www.coursera.org/
learn/big-data-graph-analytics, [Accessed: 2017-05-22].

[3] R. Angles, “A comparison of current graph database models,” in
Data Engineering Workshops (ICDEW), 2012 IEEE 28th International
Conference on. IEEE, 2012, pp. 171–177.

[4] “Visualizing groups in graph,” http://allthingsgraphed.com/2014/08/28/
facebook-friends-network/, accessed: 2017-04-15.

[5] “smart cities,” https://futurism.com/
heres-a-look-at-the-smart-cities-of-the-future/, accessed: 2017-02-12.

[6] “Financial services and neo4j: fraud detection,” https://neo4j.com/blog/
financial-services-neo4j-fraud-detection/?ref=solutions, accessed: 2017-
06-10.

[7] D. Fay, H. Haddadi, S. Uhlig, A. W. Moore, R. Mortier, and A. Ja-
makovic, “Weighted spectral distribution,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAM-CL-TR-729, 2008.

[8] C. T. Have and L. J. Jensen, “Are graph databases ready for bioinfor-
matics?” Bioinformatics, vol. 29, no. 24, pp. 3107–3108, 2013.

[9] N. Martinez-Bazan, S. Gomez-Villamor, and F. Escale-Claveras, “Dex:
A high-performance graph database management system,” in Data Engi-
neering Workshops (ICDEW), 2011 IEEE 27th International Conference
on. IEEE, 2011, pp. 124–127.

[10] B. Iordanov, “Hypergraphdb: a generalized graph database,” in Inter-
national Conference on Web-Age Information Management. Springer,
2010, pp. 25–36.

[11] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[12] M. T. Goodrich and R. Tamassia, Data structures and algorithms in
Java. John Wiley & Sons, 2008.

[13] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library:
User Guide and Reference Manual, Portable Documents. Pearson
Education, 2001.

[14] D. A. Schult and P. Swart, “Exploring network structure, dynamics, and
function using networkx,” in Proceedings of the 7th Python in Science
Conferences (SciPy 2008), vol. 2008, 2008, pp. 11–16.

[15] K. Mehlhorn and S. Näher, LEDA: a platform for combinatorial and
geometric computing. Cambridge university press, 1999.

[16] D. E. Knuth, The Stanford GraphBase: a platform for combinatorial
computing. Addison-Wesley Reading, 1993, vol. 37.

[17] M. Erwig, “Inductive graphs and functional graph algorithms,” Journal
of Functional Programming, vol. 11, no. 05, pp. 467–492, 2001.

[18] D. Gregor and A. Lumsdaine, “The parallel bgl: A generic library
for distributed graph computations,” Parallel Object-Oriented Scientific
Computing (POOSC), vol. 2, pp. 1–18, 2005.

www.ijacsa.thesai.org 362 | P a g e

https://www.coursera.org/learn/big-data-graph-analytics
https://www.coursera.org/learn/big-data-graph-analytics
http://allthingsgraphed.com/2014/08/28/facebook-friends-network/
http://allthingsgraphed.com/2014/08/28/facebook-friends-network/
https://futurism.com/heres-a-look-at-the-smart-cities-of-the-future/
https://futurism.com/heres-a-look-at-the-smart-cities-of-the-future/
https://neo4j.com/blog/financial-services-neo4j-fraud-detection/?ref=solutions
https://neo4j.com/blog/financial-services-neo4j-fraud-detection/?ref=solutions

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

[19] A. Chan, F. Dehne, and R. Taylor, “Cgmgraph/cgmlib: Implementing
and testing cgm graph algorithms on pc clusters and shared memory
machines,” The international Journal of High Performance Computing
Applications, vol. 19, no. 1, pp. 81–97, 2005.

[20] M. U. Nisar, A Comparison of Techniques for Graph Analytics on Big
Data. uga, 2013.

[21] L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[22] “Giraph and Hadoop Echo System,” https://image.slidesharecdn.
com/hadoopsummit2014-140403113102-phpapp02/95/
giraph-at-hadoop-summit-2014-19-638.jpg?cb=1396526440, accessed:
2017-03-12.

[23] S. Salihoglu and J. Widom, “Gps: A graph processing system,” in
Proceedings of the 25th International Conference on Scientific and

Statistical Database Management. ACM, 2013, p. 22.
[24] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin,

“An experimental comparison of pregel-like graph processing systems,”
Proceedings of the VLDB Endowment, vol. 7, no. 12, pp. 1047–1058,
2014.

[25] “Apache spark and graphx,” https://www.safaribooksonline.com/library/
view/learning-spark/9781449359034/ch01.html, accessed: 2017-06-15.

[26] Y. Lu, J. Cheng, D. Yan, and H. Wu, “Large-scale distributed graph
computing systems: An experimental evaluation,” Proceedings of the
VLDB Endowment, vol. 8, no. 3, pp. 281–292, 2014.

[27] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework.”

www.ijacsa.thesai.org 363 | P a g e

https://image.slidesharecdn.com/hadoopsummit2014-140403113102-phpapp02/95/giraph-at-hadoop-summit-2014-19-638.jpg?cb=1396526440
https://image.slidesharecdn.com/hadoopsummit2014-140403113102-phpapp02/95/giraph-at-hadoop-summit-2014-19-638.jpg?cb=1396526440
https://image.slidesharecdn.com/hadoopsummit2014-140403113102-phpapp02/95/giraph-at-hadoop-summit-2014-19-638.jpg?cb=1396526440
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch01.html
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch01.html

	Introduction
	Some Applications/Use Cases of Graphs
	Social Media
	Analysis and Planning of Smart Cities
	Fraud Detection

	Graph Analytic Techniques
	Path Analytic
	Connectivity Analytic
	Community Analytic
	Centrality Analytic

	Graph Storage Techniques
	Computational Models for Graph Processing
	MPI-like
	MapReduce
	Bulk Synchronous Parallel
	Vertex-Centric Graph Processing
	Pregel
	Apache Giraph
	Graph Processing System
	GraphLab/PowerGraph
	Mizan
	GraphX

	Conclusion
	References

