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Abstract—High-Performance Computing (HPC) recently has 

become important in several sectors, including the scientific and 

manufacturing fields. The continuous growth in building more 

powerful super machines has become noticeable, and the 

Exascale supercomputer will be feasible in the next few years. As 

a result, building massively parallel systems becomes even more 

important to keep up with the upcoming Exascale-related 

technologies. For building such systems, a combination of 

programming models is needed to increase the system's 

parallelism, especially dual and tri-level programming models to 

increase parallelism in heterogeneous systems that include CPUs 

and GPUs. There are several combinations of the dual-

programming model; one of them is MPI+ OpenACC. This 

combination has several features that increase the application’s 

parallelism concerning heterogeneous architecture and support 

different platforms with more performance, productivity, and 

programmability. However, building systems with different 

programming models are error-prone and difficult and are also 

hard to test. Also, testing parallel applications is already a 

difficult task because parallel errors are hard to detect due to the 

non-determined behavior of the parallel application. Integrating 

more than one programming model inside the same application 

makes even it more difficult to test because this integration could 

come with a new type of errors. Our main contribution is to 

identify and categorize OpenACC run-time errors and determine 

their causes with a brief explanation for the first time in 

research. Also, we proposed a solution for detecting run-time 

errors in application implemented in the dual-programming 

model. Our solution based on using hybrid testing techniques to 

discover real and potential run-time errors. Finally, to the best of 

our knowledge, there is no parallel testing tool built to test 

applications programmed by using the dual-programming model 

MPI + OpenACC or any tri-level programming model or even 

the OpenACC programming model to detect their run-time 

errors. Also, OpenACC errors have not been classified or 

identified before. 

Keywords—Software testing; OpenACC run-time error 

classifications; hybrid testing tool; dual-programming model; 

OpenACC 

I. INTRODUCTION 

In the past few years, building Exascale systems based on 
CPU/GPU heterogeneous architecture has become a hot 
research topic. Therefore, creating parallel applications with 
more ability to work with the upcoming Exascale era has also 
become increasingly important. However, the current parallel 
programming languages are not satisfying the increasing need 
for creating parallel applications. Also, parallelism cannot be 
supported efficiently by the majority of traditional 

programming languages. Therefore, programming models, 
which are a group of directives and operations used to support 
parallelism, have been used to add parallelism to the traditional 
programming languages. 

There are several programming models with different 
features and used for various purposes. These programming 
models include the message passing programming model MPI 
[1] and the programming model that support the shared-
memory parallelism such as OpenMP [2]. In addition, there are 
programming models that support CPU/GPU heterogeneous 
systems. The programming models that support heterogeneous 
parallelism are CUDA [3] and OpenCL [4], as low-level 
programming models, and OpenACC [5] as a high-level 
heterogeneous programming model. 

Testing parallel applications is a difficult task because they 
have non-determined behavior, which makes it hard to detect 
their parallel errors when they occur. Even if these errors have 
been detected and the source code modified, it is difficult to 
decide if the errors have been corrected or still but hidden. If 
the application has integrated different programming models 
that will make the testing process even harder. Although there 
are many testing tools dedicated to detecting static and 
dynamic run-time errors, still not enough especially for 
detecting errors that occur in applications implemented in high-
level programming models and also dual-programming 
models. 

This research aims to identify some of OpenACC’s run-
time errors and design a suitable hybrid-testing tool 
architecture for systems implemented in C++ and the dual-
programming model MPI+OpenACC. The combination of 
static and dynamic testing techniques will be used for detecting 
run-time errors by analyzing the source code before and during 
run time, which will improve the testing time and cover a wide 
range of errors. 

The rest of this paper is structured as follows. Section 2 
briefly gives an overview of the related work. Section 3 will 
identify OpenACC run-time error classification. The proposed 
architecture will be discussed in Section 4; the discussion will 
comprise Section 5, and finally the conclusion in Section 6. 

II. RELATED WORKS 

In testing parallel applications, there are many studies, 
which varied for several purposes and different scopes. These 
variations of testing tools including tools that detect a specific 
type of errors, the used testing techniques, and the targeted 
programming models as well as the programming model levels 
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single, dual, and try level. There are many researches have 
been done in detecting a specific type of errors such as data 
race and deadlock, using several testing techniques. There are 
many tools that used static and dynamic testing for detecting 
deadlock such as UNDEAD [15]. Other tools are designed to 
detect race condition like the tool introduced in [14]. Finally, in 
[9] there are some detection techniques, which proposed for 
detecting livelock. 

Several testing tools have been dedicated to testing the 
programming models by using different approaches. Some of 
them focusing in testing single programming models such as 
testing tools for MPI [16], [17], OpenMP [18], [19], CUDA 
[20] and OpenCL [21], but other studies tested the dual-
programming models including  MPI + OpenMP [11], [22]. 
Another approach is to focus on the testing techniques such as 
dynamic testing in [9], [10], static testing in [6]–[8], and the 
hybrid-testing techniques in  [11]–[14]. 

There are many debuggers used for HPC applications 
include both open-source and commercial versions. ALLINEA 
DDT [23], is a commercial debugger that supports C++, MPI, 
and OpenMP designed to work on Petascale. Another 
commercial debugger is TotalView [24], which supports MPI, 
OpenMP and CUDA.  These debuggers do not help in testing 
or detecting run-time errors but used to find the causes of these 
errors. Also, the thread, process, and kernel are needed to be 
selected for investigation. In terms of open-source testing tools, 
there are many tools to detect race condition in OpenMP 
including ARCHER [25], which used hybrid techniques to 
identify OpenMP data race. Finally, AutomaDeD [26], 
MEMCHEKER [16] and MUST [27] are used for detecting 
errors in MPI. 

In terms of OpenACC testing, there is a shortage of testing 
OpenACC for detecting run-time errors. However, there are 
some studies that related to evaluating different compilers by 
creating test cases for OpenACC 2.0 as shown in [28]. Another 
study has been published in [29], also for evaluating CAPS, 
PGI, and CRAY compilers. Finally, OpenACC 2.5 was 
evaluated in [30] for validating and verifying the new feature 
of OpenACC compilers' implementation  

Despite efforts made to create and propose software testing 
tools for parallel application, there is still a lot to be done 
primarily for GPU-related programming models and for dual- 
and tri-level programming models for heterogeneous systems. 
Heterogeneous systems can be hybrid CPUs/GPUs 
architectures or different architectures of GPUs. We noted that 
OpenACC has several advantages and benefits and has been 
used widely in the past few years, but it has not targeted any 
testing tools covered in our study. Finally, to the best of our 
knowledge, there is no parallel testing tool built to test 
applications programmed by using the dual-programming 
model MPI + OpenACC or any tri-level programming model. 

III. CLASSIFICATION OF OPENACC RUN-TIME ERRORS 

Many studies have been done in detecting and identifying 
MPI run-time errors, so we will not cover them in our paper. 
However, OpenACC errors have not been previously 
investigated, identified, or classified. Therefore, we investigate 
and analyze OpenACC documents and specifications as well as 

conducting several experiments to identify and classify run-
time errors that cannot be detected by the compilers. 

Similar to any programming model that supports 
parallelism, OpenACC has several run-time errors as a result of 
their parallel nature. Compilers cannot detect these errors, 
which occur after compilation and cause several issues without 
developers' awareness. Usually, run-time errors have similar 
names but with different behavior and causes. For instance, the 
race condition in any application implemented by using one 
type of programming model has different causes and behaves 
differently from race condition in other applications 
implemented by another programming model. Also, run-time 
errors in applications implemented by the dual-programming 
model are different based on the combination between the 
hybrid programming models, and some errors occur 
specifically in a specific programming model. 

OpenACC directives can be divided into data management 
directives and compute directives [31]. Compute directives are 
responsible for determining the blocks of the source code that 
can distribute the work to multiple threads in the GPU. Data 
management directives are responsible for avoiding 
unnecessary data movement between CPU and GPU. We use 
only compute directives that lead to moving data from and to 
the GPU each time we use these directives. The data directives 
determine data lifetime in the GPU, and in this time the GPU 
essentially owns the data. The data region in OpenACC is 
divided into a structured data region and unstructured data 
region [32]. The structured data region must have an explicit 
start and end points within a single function, and memory 
exists within the data region. On the other hand, the 
unstructured data region can have more than one start and end 
points and can branch across multiple functions, and memory 
exists until explicitly deallocated. 

In the latest version of OpenACC 2.7 document [33], there 
is an error that appears several times through this document, 
which will cause run-time errors if not solved. This error is 
related to the presence of the variable in the GPU when needed 
to be used, for several OpenACC directives. Basically, it can 
happen when the variable is deleted from the GPU by a thread 
while it is needed by another thread. Furthermore, if any 
variable is not allocated in the GPU when it is needed, a 
message that indicates that there is a run-time error occurs in 
different parts of the source code without considering or 
explaining the cause or the error type. In addition, discovering 
these types of errors are difficult, even more complicated 
discovering them in applications developed by dual-
programming model. As a result, we detect, identify and 
classify some of the OpenACC run-time errors into several 
categories determined by the way that OpenACC directives 
interact and behave. This classification includes the common 
run-time errors that occur because of the nature of parallel 
systems using the OpenACC programming model. Also, we 
include other errors related to OpenACC programming model 
and also classify them into the first two categories. In the 
following, we show our classifications. 

A. Device-Based Data Transmission Errors 

In this classification, run-time errors could happen as a 
result of mishandling of data using OpenACC directives and 
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data clauses. Developers easily make these errors if they do not 
pay attention to the usage of OpenACC clauses, which leads to 
wrong results or non-deterministic behavior. These errors 
happen when developers mistakenly use the following data 
clauses in structured or unstructured data clauses. The data 
clauses include copy, copyin, copyout, create, delete, and 
present. Several cases can be included in this classification. 

1) Errors that lead to run-time error messages can occur in 

unstructured or structured data regions. These errors will issue 

a run-time error message that indicates an invalid value. In the 

unstructured data region, there is a variable in a copyout 

clause in the exit data region without having the same variable 

in the enter data region, which the compiler cannot detect. In 

this case, there are several scenarios to demonstrate this error; 

one of them is the following code in Fig. 1. We noticed that 

the variable in the copyout clause is the array "a", but the error 

will happen because the variable "a" is deleted before the 

copyout clause, so there is nothing to copy back from GPU to 

the CPU, as in Fig. 1b. Also, in Fig. 1a, the copyin variable is 

the array "b", but a different array "a" in the copyout clause, 

which causes the same run-time error. Finally, if the 

developers forget to write "acc" in the enter or exit data or 

forget to enter the data directive, this error will occur, and the 

compiler will not detect it. 

In the structured data region, when the developer used the 
copy, copyout, create, and present clauses and the variable is 
not present in the current GPU, the run-time error message will 
be issued. This error cannot be detected by a compiler and will 
happen only after compilation at run-time. 

2) The other class is errors that could lead to wrong 

results without the developer's awareness as well as that of the 

compiler, who therefore cannot detect them. There are several 

scenarios that could lead to these errors, including the 

structured and unstructured data regions. In the unstructured 

data region, if the developer uses a create clause instead of a 

copyin clause when a copy of the variable needs to be copied 

from the CPU to the GPU, this leads the program to yield 

wrong results, as is shown in Fig. 2a. Also, the variable is 

deleted at the exit region when this variable needs to be copied 

back to the CPU, as shown in Fig. 2b. Finally, this error can 

also happen when forgetting to write "acc" at the exit data 

region or not using the exit data region directive. 

In the structured data region, some cases can cause wrong 
results when using a data clause, including using copyin 
instead of copy when developers want to copy data to the GPU 
and do some operations and copy back the results to the CPU. 
This will cause wrong results that cannot be detected by the 
compiler. This can also happen if a developer forgets to add 
"acc" to the data region directive. 

B. Memory Errors 

These errors also can cause wrong results or run-time 
errors, like the previous classification, but can also affect the 
GPU memory by keeping variables and matrixes in the GPU 
memory without using them. The main idea of this error 

classification is that it is based on sending variables to the GPU 
without getting back any variables, or keeping some of them 
without using or deleting them. Also, this can occur when 
creating variables in the GPU without deleting or copyout them 
at the exit of the region. This can cause several issues, 
including affecting the GPU performance by consuming the 
GPU memory unnecessarily and can cause further errors in the 
case of using the same memory location with another variable 
in another part of the code. This type of error happens in the 
unstructured data region because the developer must determine 
the enter data and exit data by himself, while in the structured 
data region the developer only determines the data clause to 
use, and the compiler will deal with the internal operations 
needed at the enter and exit data. 

 
(a) Using Create Clause Instead of Copyin Clause.

 
(b) Deleted the Array without Copyout. 

Fig. 1. Unstructured Data Region has Errors Leading to Wrong Results. 

 
(a) Different Copyin and Copyout Arrays. 

 
(b) Deleted the Array before the Copyout. 

Fig. 2. Unstructured Data Region has Errors Leading to a Run-Time Error 

Message. 
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C. Race Condition 

OpenACC race condition has different causes and behaves 
slightly different from other programming models, because of 
the nature of OpenACC and how it works in the heterogeneous 
architecture.  Race condition can occur because of multiple 
threads will execute several processes concurrently and the 
thread execution sequence makes a difference in the parallel 
execution results. In addition, by using OpenACC, developers 
cannot guarantee the threads’ execution order [32].  Because of 
the developers' responsibility to make sure there is no data 
dependency, OpenACC is more likely to have race conditions, 
which can happen as a result of several causes and situations, 
including: 

1) The synchronization between host and device or vice 

versa to keep the data coherence between them. The 

programmer should be careful when dealing with updating 

data between host and device and should know when and how 

to do this updating because sometimes this can cause a race 

condition. The following example in Fig. 3 shows data race 

occurring because multiple threads may be updating the same 

element in the "hist" array, which will cause a race condition. 

Also, these parallel regions are in the same data region. 

2) Paralyzing for loops: We paralyze for the loop so the 

code in the body of the loop can run in parallel using 

concurrent hardware execution thread. The iteration variable 

appears to be incremented sequentially, but threads are 

actually using different values of iteration variable in this, for 

the loop variable may be running in parallel at the same time. 

OpenACC makes no guarantee about the execution order of 

the threads. Moreover, it is possible that the last iteration of 

the loop may be completed before the zero loop iteration. This 

will lead to a potential race condition when the order of 

execution is important and affects the operations executed in 

the loop body, or when there is a dependency between some 

variables in the loop block that need to be updated before 

completing the next statements. 

3) Shared data read and write: This situation involves 

creating a shared array or any dataset in a global kernel, and 

trying to read, write, and update from different threads 

concurrently—for example, writing a value by a thread in a 

location and reading the same location by another thread. This 

may cause a potential race condition. 

4) Asynchronous Directive: OpenACC supports the 

asynchronous and wait directives. Programmers are 

responsible for ensuring their applications synchronization 

when they use asynchronous and wait directives to avoid a 

race condition between the host and device. In OpenACC, 

there is a hidden barrier at the end of each compute region, 

and the CPU thread execution will not proceed until all GPU 

threads have arrived at the end of the OpenACC compute 

region [33]. By default, all OpenACC directives are 

synchronous, which means that the CPU thread sent the 

required data and instructions to the GPU; after that, the CPU 

thread will wait for the GPU to complete its work before 

continuing execution [31]. 

 

Fig. 3. Race Condition because of Synchronization between Host and 

Device. 

Using asynchronous and wait directives allows the CPU to 
continue working while the GPU works at the same time, 
which allows the pipelining execution of the system and 
enhances performance. However, when developers use these 
directives without considering their system requirements and 
miss using them, this can lead to a race condition. The 
following code in Fig. 4 shows the code that has a race 
condition because of the misuse of the asynchronous directive. 
The array "A" will go to asynchronous queue number 1, and 
"B" will go to queue number 2, and the CPU will continue 
working without waiting for the previous two queues to be 
completed and without considering that these arrays are needed 
before computing array "C". Therefore, array "C" will have a 
race condition that leads to wrong results. 

5) Reduction clause: The reduction clause variable copies 

are generated for each loop iteration, similar to the private 

clause, reducing all of these private copies into one final result 

that will be returned from the GPU to the CPU [33]. In 

OpenACC, a reduction clause can specify the operator on the 

scalar variables, including summation, multiplication, and 

maximum and minimum operators. Some compilers will 

detect reduction on the reduction variable and implicitly insert 

the reduction clause, but for others, the programmer should 

always indicate reductions in the code. 

Although some data dependency can be avoided by using a 
reduction clause, misusing the reduction clause in some cases 
will lead to OpenACC race condition. When there is no 
reduction clause that will lead also to race condition. Because 
reduction clause combines the result of each copy of the 
reduction variable with the original variable at the end of the 
OpenACC compute region, the variable should be initialized to 
some value based on the used operator before using the 
reduction clause. Otherwise, undefined behavior will result. 

6) Independent clause: When developers use the 

independent clause, that tells the compiler that this loop is 

data-independent, which can cause problems if there is a 

dependency. It is the developers' responsibility to ensure not 

using independent clause if there is a data dependency because 

it allows programmers to tell the compiler that the loop 

iterations are data-independent These independent loop 

clauses can be used to tell the compiler that all loop iterations 

are independent, which means that there is no dependency or 

relation between any two loop iterations. 
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D. Deadlock 

In OpenACC, one cause of deadlock in the CPU is having 
livelock in the GPU.  This happens because of the nature of the 
implicit barrier at the end of each compute region. That means 
the GPU will be busy with the livelock while the CPU is 
waiting for the GPU to finish its operation. In the usage of the 
asynchronous directive, the GPU livelock also causes CPU 
deadlock, but by different behavior in terms of the usage of the 
wait directive; this will cause the CPU to have deadlock in that 
statement. In this case, the deadlock behaviors are based on the 
asynchronous and wait directive interactions. The following 
Fig. 5 shows deadlock situations that occur in the OpenACC 
application. 

 
(a) Implicit Barrier Deadlock. 

 
(b) Wait Directive Deadlock. 

Fig. 4. Deadlock because of the GPU Livelock. 

 

Fig. 5. Race Condition because of the Miss use of Asynchronous Directive. 

IV. PROPOSED ARCHITECTURE 

We propose a parallel hybrid-testing tool for applications 
implemented in the dual-programming model (MPI + 
OpenACC) and C++ programming language, as shown in Fig. 
6. Our design has the ability to detect real and potential run-
time errors, with providing the necessary information for 
programmers to help them fix these errors. Our design has 
integrated static and dynamic testing techniques for covering a 
range of errors. 

 

Fig. 6. The Architecture of Parallel Hybrid Testing Tool 
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The targeted source code will be analyzed in the static 
phase for discovering both potential and real run-time errors as 
well as marking the source code for further examination in our 
dynamic phase of the testing tool.  The real errors which will 
defiantly occur during run time will be sent to the programmers 
with related information for their action to fix these errors 
before execution the source code. As a result, static detection 
helps in enhancing the testing performance by reducing the 
testing time. 

The static part of our architecture includes the following 
parts: 

 Lexical Analyzer; Take the source code as an input and 
convert it into a table of tokens. 

 Parser: Analyze the source code checking for correct 
syntax in the process and confirming the formal 
grammar rules. 

 State Transit Graph Generator: Generate a state graph 
for the given source code and represent it in a suitable 
structure. 

 State Graph Comparator: Compare the generated graph 
with programming language and model graphs. 

Any differences in the comparing process will be resulted 
in a list of run-time errors. 

In the dynamic part of our design, the source code and the 
inserted statements will be taken as an input and pass them to 
be instrumented. The instrumenter will provide instrumented 
code that includes both user and testing codes written in C++. 
The instrumentation has two ways to do include. 

1) Add the inserted testing codes to the original source 

code. 

2) Call API functions to test the targeted part of the source 

code. 

The first method generates larger source code size because 
it includes both user and testing codes. While the second has a 
smaller size because only the calling statements will be added 
to the user source code, and the function will test the user code.  
Also, when we have similar user code to be tested that will lead 
to repetitive testing code, in the first method, through the 
instrumented code which makes it even bigger. However, in 
the second method, we only write the testing code once and 
call it multiple times without affecting the instrumented source 
code size. 

 

V. DISCUSSION 

Despite efforts made to detect run-time errors in the parallel 
application, there is still a lot to be done primarily for GPU-
related programming models and for dual- and tri-level 
programming models for heterogeneous systems. 
Heterogeneous systems can be hybrid CPUs/GPUs 
architectures or different architectures of GPUs. We noticed 
that OpenACC has several advantages and benefits and has 
been used widely in the past few years by non-computer 
science specialists, but it has not targeted any testing tools 
covered in our study. Also, OpenACC has been used in the top 

five high-performance computing applications, and the top 
supercomputer in the World Summit also use OpenACC in five 
out of 13 applications [34].  As a result, the increase used of 
OpenACC will come with more errors that possibly occur and 
need to be discovered. 

Furthermore, OpenACC errors have not been identified or 
classified, which makes it more difficult for us to build our 
tool. We studied OpenACC and conduct several experiments 
and build different scenarios to understand the run-time errors 
behavior in OpenACC as well as their effect when interacting 
with MPI. Based on these errors we proposed our design and 
determined the techniques to be used for testing the targeted 
applications. 

In terms of our tool, the hybrid-testing techniques have 
been considered in our design. The combination of static and 
dynamic techniques takes advantage of both and reduces 
testing time by discovering the real errors during static 
analysis.  The first phase is the static analysis approach which 
analyzes the source code before compilation and sending the 
resulted report to the programmers with the respective related 
information that help them to correct these errors. Also, mark 
the needed part for further dynamic investigation because some 
errors may or may not occur during run time based on the 
execution environment and behavior. The second part is the 
dynamic analysis approach which takes the marked parts from 
the static analysis, insert suitable testing statements and run 
them to test the user program. 

Dealing with a parallel application is complicated and 
challenging because of their nature and how they behave, 
which need more effort to build our tool to cover a wide range 
of errors and predict scenarios of how the run-time errors will 
behave in each case. Finally, the used techniques will be 
determined based on the run-time error type and behavior. 

VI. CONCLUSION AND FUTURE WORK 

As the Exascale supercomputers will be feasible in a few 
years, there is an increasing importance of building parallel 
systems. However, there is a shortfall in testing those systems, 
especially parallel systems that use heterogeneous 
programming models including high- and low-level 
programming models.  Creating parallel applications by 
combining more than one programming model has benefits but 
also with more complex codes which are difficult to test and 
debug.  That will lead to creating new approaches and 
techniques to detect run-time errors in such complex parallel 
applications. 

Despite efforts made to create and propose software testing 
tools for parallel application, there is still a lot to be done 
primarily for GPU-related programming models and for dual- 
and tri-level programming models for heterogeneous systems. 
Heterogeneous systems can be hybrid CPUs/GPUs 
architectures or different architectures of GPUs. We noted that 
OpenACC has several advantages and benefits and has been 
used widely in the past few years, but it has not targeted any 
testing tools covered in our study. 

In this paper, the main contribution that we identify and 
classify OpenACC run-time errors and their causes has been 
determined, with a brief explanation. Also, we proposed a 
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solution for detecting run-time errors in application 
implemented in the dual-programming model. Based on the 
number of the application threads, our system will work in 
parallel creating testing threads for each needed application 
thread to be tested. 

Our design will be implemented, and its ability for 
detecting run-time errors will be evaluated in our future work. 
The AZIZ supercomputer, which is one of the top ten 
supercomputers in Saudi Arabia will be used in our 
experiments in detecting parallel applications especially with 
heterogeneous architecture. Finally, to the best of our 
knowledge, there is no parallel testing tool built to test 
applications programmed by using the dual-programming 
model MPI + OpenACC or any tri-level programming model. 
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