
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

394 | P a g e

www.ijacsa.thesai.org

A Parallel Hybrid-Testing Tool Architecture for a

Dual-Programming Model

Ahmed Mohammed Alghamdi1 , Fathy Elbouraey Eassa2

Faculty of Computing and Information Technology1,2

King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—High-Performance Computing (HPC) recently has

become important in several sectors, including the scientific and

manufacturing fields. The continuous growth in building more

powerful super machines has become noticeable, and the

Exascale supercomputer will be feasible in the next few years. As

a result, building massively parallel systems becomes even more

important to keep up with the upcoming Exascale-related

technologies. For building such systems, a combination of

programming models is needed to increase the system's

parallelism, especially dual and tri-level programming models to

increase parallelism in heterogeneous systems that include CPUs

and GPUs. There are several combinations of the dual-

programming model; one of them is MPI+ OpenACC. This

combination has several features that increase the application’s

parallelism concerning heterogeneous architecture and support

different platforms with more performance, productivity, and

programmability. However, building systems with different

programming models are error-prone and difficult and are also

hard to test. Also, testing parallel applications is already a

difficult task because parallel errors are hard to detect due to the

non-determined behavior of the parallel application. Integrating

more than one programming model inside the same application

makes even it more difficult to test because this integration could

come with a new type of errors. Our main contribution is to

identify and categorize OpenACC run-time errors and determine

their causes with a brief explanation for the first time in

research. Also, we proposed a solution for detecting run-time

errors in application implemented in the dual-programming

model. Our solution based on using hybrid testing techniques to

discover real and potential run-time errors. Finally, to the best of

our knowledge, there is no parallel testing tool built to test

applications programmed by using the dual-programming model

MPI + OpenACC or any tri-level programming model or even

the OpenACC programming model to detect their run-time

errors. Also, OpenACC errors have not been classified or

identified before.

Keywords—Software testing; OpenACC run-time error

classifications; hybrid testing tool; dual-programming model;

OpenACC

I. INTRODUCTION

In the past few years, building Exascale systems based on
CPU/GPU heterogeneous architecture has become a hot
research topic. Therefore, creating parallel applications with
more ability to work with the upcoming Exascale era has also
become increasingly important. However, the current parallel
programming languages are not satisfying the increasing need
for creating parallel applications. Also, parallelism cannot be
supported efficiently by the majority of traditional

programming languages. Therefore, programming models,
which are a group of directives and operations used to support
parallelism, have been used to add parallelism to the traditional
programming languages.

There are several programming models with different
features and used for various purposes. These programming
models include the message passing programming model MPI
[1] and the programming model that support the shared-
memory parallelism such as OpenMP [2]. In addition, there are
programming models that support CPU/GPU heterogeneous
systems. The programming models that support heterogeneous
parallelism are CUDA [3] and OpenCL [4], as low-level
programming models, and OpenACC [5] as a high-level
heterogeneous programming model.

Testing parallel applications is a difficult task because they
have non-determined behavior, which makes it hard to detect
their parallel errors when they occur. Even if these errors have
been detected and the source code modified, it is difficult to
decide if the errors have been corrected or still but hidden. If
the application has integrated different programming models
that will make the testing process even harder. Although there
are many testing tools dedicated to detecting static and
dynamic run-time errors, still not enough especially for
detecting errors that occur in applications implemented in high-
level programming models and also dual-programming
models.

This research aims to identify some of OpenACC’s run-
time errors and design a suitable hybrid-testing tool
architecture for systems implemented in C++ and the dual-
programming model MPI+OpenACC. The combination of
static and dynamic testing techniques will be used for detecting
run-time errors by analyzing the source code before and during
run time, which will improve the testing time and cover a wide
range of errors.

The rest of this paper is structured as follows. Section 2
briefly gives an overview of the related work. Section 3 will
identify OpenACC run-time error classification. The proposed
architecture will be discussed in Section 4; the discussion will
comprise Section 5, and finally the conclusion in Section 6.

II. RELATED WORKS

In testing parallel applications, there are many studies,
which varied for several purposes and different scopes. These
variations of testing tools including tools that detect a specific
type of errors, the used testing techniques, and the targeted
programming models as well as the programming model levels

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

395 | P a g e

www.ijacsa.thesai.org

single, dual, and try level. There are many researches have
been done in detecting a specific type of errors such as data
race and deadlock, using several testing techniques. There are
many tools that used static and dynamic testing for detecting
deadlock such as UNDEAD [15]. Other tools are designed to
detect race condition like the tool introduced in [14]. Finally, in
[9] there are some detection techniques, which proposed for
detecting livelock.

Several testing tools have been dedicated to testing the
programming models by using different approaches. Some of
them focusing in testing single programming models such as
testing tools for MPI [16], [17], OpenMP [18], [19], CUDA
[20] and OpenCL [21], but other studies tested the dual-
programming models including MPI + OpenMP [11], [22].
Another approach is to focus on the testing techniques such as
dynamic testing in [9], [10], static testing in [6]–[8], and the
hybrid-testing techniques in [11]–[14].

There are many debuggers used for HPC applications
include both open-source and commercial versions. ALLINEA
DDT [23], is a commercial debugger that supports C++, MPI,
and OpenMP designed to work on Petascale. Another
commercial debugger is TotalView [24], which supports MPI,
OpenMP and CUDA. These debuggers do not help in testing
or detecting run-time errors but used to find the causes of these
errors. Also, the thread, process, and kernel are needed to be
selected for investigation. In terms of open-source testing tools,
there are many tools to detect race condition in OpenMP
including ARCHER [25], which used hybrid techniques to
identify OpenMP data race. Finally, AutomaDeD [26],
MEMCHEKER [16] and MUST [27] are used for detecting
errors in MPI.

In terms of OpenACC testing, there is a shortage of testing
OpenACC for detecting run-time errors. However, there are
some studies that related to evaluating different compilers by
creating test cases for OpenACC 2.0 as shown in [28]. Another
study has been published in [29], also for evaluating CAPS,
PGI, and CRAY compilers. Finally, OpenACC 2.5 was
evaluated in [30] for validating and verifying the new feature
of OpenACC compilers' implementation

Despite efforts made to create and propose software testing
tools for parallel application, there is still a lot to be done
primarily for GPU-related programming models and for dual-
and tri-level programming models for heterogeneous systems.
Heterogeneous systems can be hybrid CPUs/GPUs
architectures or different architectures of GPUs. We noted that
OpenACC has several advantages and benefits and has been
used widely in the past few years, but it has not targeted any
testing tools covered in our study. Finally, to the best of our
knowledge, there is no parallel testing tool built to test
applications programmed by using the dual-programming
model MPI + OpenACC or any tri-level programming model.

III. CLASSIFICATION OF OPENACC RUN-TIME ERRORS

Many studies have been done in detecting and identifying
MPI run-time errors, so we will not cover them in our paper.
However, OpenACC errors have not been previously
investigated, identified, or classified. Therefore, we investigate
and analyze OpenACC documents and specifications as well as

conducting several experiments to identify and classify run-
time errors that cannot be detected by the compilers.

Similar to any programming model that supports
parallelism, OpenACC has several run-time errors as a result of
their parallel nature. Compilers cannot detect these errors,
which occur after compilation and cause several issues without
developers' awareness. Usually, run-time errors have similar
names but with different behavior and causes. For instance, the
race condition in any application implemented by using one
type of programming model has different causes and behaves
differently from race condition in other applications
implemented by another programming model. Also, run-time
errors in applications implemented by the dual-programming
model are different based on the combination between the
hybrid programming models, and some errors occur
specifically in a specific programming model.

OpenACC directives can be divided into data management
directives and compute directives [31]. Compute directives are
responsible for determining the blocks of the source code that
can distribute the work to multiple threads in the GPU. Data
management directives are responsible for avoiding
unnecessary data movement between CPU and GPU. We use
only compute directives that lead to moving data from and to
the GPU each time we use these directives. The data directives
determine data lifetime in the GPU, and in this time the GPU
essentially owns the data. The data region in OpenACC is
divided into a structured data region and unstructured data
region [32]. The structured data region must have an explicit
start and end points within a single function, and memory
exists within the data region. On the other hand, the
unstructured data region can have more than one start and end
points and can branch across multiple functions, and memory
exists until explicitly deallocated.

In the latest version of OpenACC 2.7 document [33], there
is an error that appears several times through this document,
which will cause run-time errors if not solved. This error is
related to the presence of the variable in the GPU when needed
to be used, for several OpenACC directives. Basically, it can
happen when the variable is deleted from the GPU by a thread
while it is needed by another thread. Furthermore, if any
variable is not allocated in the GPU when it is needed, a
message that indicates that there is a run-time error occurs in
different parts of the source code without considering or
explaining the cause or the error type. In addition, discovering
these types of errors are difficult, even more complicated
discovering them in applications developed by dual-
programming model. As a result, we detect, identify and
classify some of the OpenACC run-time errors into several
categories determined by the way that OpenACC directives
interact and behave. This classification includes the common
run-time errors that occur because of the nature of parallel
systems using the OpenACC programming model. Also, we
include other errors related to OpenACC programming model
and also classify them into the first two categories. In the
following, we show our classifications.

A. Device-Based Data Transmission Errors

In this classification, run-time errors could happen as a
result of mishandling of data using OpenACC directives and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

396 | P a g e

www.ijacsa.thesai.org

data clauses. Developers easily make these errors if they do not
pay attention to the usage of OpenACC clauses, which leads to
wrong results or non-deterministic behavior. These errors
happen when developers mistakenly use the following data
clauses in structured or unstructured data clauses. The data
clauses include copy, copyin, copyout, create, delete, and
present. Several cases can be included in this classification.

1) Errors that lead to run-time error messages can occur in

unstructured or structured data regions. These errors will issue

a run-time error message that indicates an invalid value. In the

unstructured data region, there is a variable in a copyout

clause in the exit data region without having the same variable

in the enter data region, which the compiler cannot detect. In

this case, there are several scenarios to demonstrate this error;

one of them is the following code in Fig. 1. We noticed that

the variable in the copyout clause is the array "a", but the error

will happen because the variable "a" is deleted before the

copyout clause, so there is nothing to copy back from GPU to

the CPU, as in Fig. 1b. Also, in Fig. 1a, the copyin variable is

the array "b", but a different array "a" in the copyout clause,

which causes the same run-time error. Finally, if the

developers forget to write "acc" in the enter or exit data or

forget to enter the data directive, this error will occur, and the

compiler will not detect it.

In the structured data region, when the developer used the
copy, copyout, create, and present clauses and the variable is
not present in the current GPU, the run-time error message will
be issued. This error cannot be detected by a compiler and will
happen only after compilation at run-time.

2) The other class is errors that could lead to wrong

results without the developer's awareness as well as that of the

compiler, who therefore cannot detect them. There are several

scenarios that could lead to these errors, including the

structured and unstructured data regions. In the unstructured

data region, if the developer uses a create clause instead of a

copyin clause when a copy of the variable needs to be copied

from the CPU to the GPU, this leads the program to yield

wrong results, as is shown in Fig. 2a. Also, the variable is

deleted at the exit region when this variable needs to be copied

back to the CPU, as shown in Fig. 2b. Finally, this error can

also happen when forgetting to write "acc" at the exit data

region or not using the exit data region directive.

In the structured data region, some cases can cause wrong
results when using a data clause, including using copyin
instead of copy when developers want to copy data to the GPU
and do some operations and copy back the results to the CPU.
This will cause wrong results that cannot be detected by the
compiler. This can also happen if a developer forgets to add
"acc" to the data region directive.

B. Memory Errors

These errors also can cause wrong results or run-time
errors, like the previous classification, but can also affect the
GPU memory by keeping variables and matrixes in the GPU
memory without using them. The main idea of this error

classification is that it is based on sending variables to the GPU
without getting back any variables, or keeping some of them
without using or deleting them. Also, this can occur when
creating variables in the GPU without deleting or copyout them
at the exit of the region. This can cause several issues,
including affecting the GPU performance by consuming the
GPU memory unnecessarily and can cause further errors in the
case of using the same memory location with another variable
in another part of the code. This type of error happens in the
unstructured data region because the developer must determine
the enter data and exit data by himself, while in the structured
data region the developer only determines the data clause to
use, and the compiler will deal with the internal operations
needed at the enter and exit data.

(a) Using Create Clause Instead of Copyin Clause.

(b) Deleted the Array without Copyout.

Fig. 1. Unstructured Data Region has Errors Leading to Wrong Results.

(a) Different Copyin and Copyout Arrays.

(b) Deleted the Array before the Copyout.

Fig. 2. Unstructured Data Region has Errors Leading to a Run-Time Error

Message.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

397 | P a g e

www.ijacsa.thesai.org

C. Race Condition

OpenACC race condition has different causes and behaves
slightly different from other programming models, because of
the nature of OpenACC and how it works in the heterogeneous
architecture. Race condition can occur because of multiple
threads will execute several processes concurrently and the
thread execution sequence makes a difference in the parallel
execution results. In addition, by using OpenACC, developers
cannot guarantee the threads’ execution order [32]. Because of
the developers' responsibility to make sure there is no data
dependency, OpenACC is more likely to have race conditions,
which can happen as a result of several causes and situations,
including:

1) The synchronization between host and device or vice

versa to keep the data coherence between them. The

programmer should be careful when dealing with updating

data between host and device and should know when and how

to do this updating because sometimes this can cause a race

condition. The following example in Fig. 3 shows data race

occurring because multiple threads may be updating the same

element in the "hist" array, which will cause a race condition.

Also, these parallel regions are in the same data region.

2) Paralyzing for loops: We paralyze for the loop so the

code in the body of the loop can run in parallel using

concurrent hardware execution thread. The iteration variable

appears to be incremented sequentially, but threads are

actually using different values of iteration variable in this, for

the loop variable may be running in parallel at the same time.

OpenACC makes no guarantee about the execution order of

the threads. Moreover, it is possible that the last iteration of

the loop may be completed before the zero loop iteration. This

will lead to a potential race condition when the order of

execution is important and affects the operations executed in

the loop body, or when there is a dependency between some

variables in the loop block that need to be updated before

completing the next statements.

3) Shared data read and write: This situation involves

creating a shared array or any dataset in a global kernel, and

trying to read, write, and update from different threads

concurrently—for example, writing a value by a thread in a

location and reading the same location by another thread. This

may cause a potential race condition.

4) Asynchronous Directive: OpenACC supports the

asynchronous and wait directives. Programmers are

responsible for ensuring their applications synchronization

when they use asynchronous and wait directives to avoid a

race condition between the host and device. In OpenACC,

there is a hidden barrier at the end of each compute region,

and the CPU thread execution will not proceed until all GPU

threads have arrived at the end of the OpenACC compute

region [33]. By default, all OpenACC directives are

synchronous, which means that the CPU thread sent the

required data and instructions to the GPU; after that, the CPU

thread will wait for the GPU to complete its work before

continuing execution [31].

Fig. 3. Race Condition because of Synchronization between Host and

Device.

Using asynchronous and wait directives allows the CPU to
continue working while the GPU works at the same time,
which allows the pipelining execution of the system and
enhances performance. However, when developers use these
directives without considering their system requirements and
miss using them, this can lead to a race condition. The
following code in Fig. 4 shows the code that has a race
condition because of the misuse of the asynchronous directive.
The array "A" will go to asynchronous queue number 1, and
"B" will go to queue number 2, and the CPU will continue
working without waiting for the previous two queues to be
completed and without considering that these arrays are needed
before computing array "C". Therefore, array "C" will have a
race condition that leads to wrong results.

5) Reduction clause: The reduction clause variable copies

are generated for each loop iteration, similar to the private

clause, reducing all of these private copies into one final result

that will be returned from the GPU to the CPU [33]. In

OpenACC, a reduction clause can specify the operator on the

scalar variables, including summation, multiplication, and

maximum and minimum operators. Some compilers will

detect reduction on the reduction variable and implicitly insert

the reduction clause, but for others, the programmer should

always indicate reductions in the code.

Although some data dependency can be avoided by using a
reduction clause, misusing the reduction clause in some cases
will lead to OpenACC race condition. When there is no
reduction clause that will lead also to race condition. Because
reduction clause combines the result of each copy of the
reduction variable with the original variable at the end of the
OpenACC compute region, the variable should be initialized to
some value based on the used operator before using the
reduction clause. Otherwise, undefined behavior will result.

6) Independent clause: When developers use the

independent clause, that tells the compiler that this loop is

data-independent, which can cause problems if there is a

dependency. It is the developers' responsibility to ensure not

using independent clause if there is a data dependency because

it allows programmers to tell the compiler that the loop

iterations are data-independent These independent loop

clauses can be used to tell the compiler that all loop iterations

are independent, which means that there is no dependency or

relation between any two loop iterations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

398 | P a g e

www.ijacsa.thesai.org

D. Deadlock

In OpenACC, one cause of deadlock in the CPU is having
livelock in the GPU. This happens because of the nature of the
implicit barrier at the end of each compute region. That means
the GPU will be busy with the livelock while the CPU is
waiting for the GPU to finish its operation. In the usage of the
asynchronous directive, the GPU livelock also causes CPU
deadlock, but by different behavior in terms of the usage of the
wait directive; this will cause the CPU to have deadlock in that
statement. In this case, the deadlock behaviors are based on the
asynchronous and wait directive interactions. The following
Fig. 5 shows deadlock situations that occur in the OpenACC
application.

(a) Implicit Barrier Deadlock.

(b) Wait Directive Deadlock.

Fig. 4. Deadlock because of the GPU Livelock.

Fig. 5. Race Condition because of the Miss use of Asynchronous Directive.

IV. PROPOSED ARCHITECTURE

We propose a parallel hybrid-testing tool for applications
implemented in the dual-programming model (MPI +
OpenACC) and C++ programming language, as shown in Fig.
6. Our design has the ability to detect real and potential run-
time errors, with providing the necessary information for
programmers to help them fix these errors. Our design has
integrated static and dynamic testing techniques for covering a
range of errors.

Fig. 6. The Architecture of Parallel Hybrid Testing Tool

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

399 | P a g e

www.ijacsa.thesai.org

The targeted source code will be analyzed in the static
phase for discovering both potential and real run-time errors as
well as marking the source code for further examination in our
dynamic phase of the testing tool. The real errors which will
defiantly occur during run time will be sent to the programmers
with related information for their action to fix these errors
before execution the source code. As a result, static detection
helps in enhancing the testing performance by reducing the
testing time.

The static part of our architecture includes the following
parts:

 Lexical Analyzer; Take the source code as an input and
convert it into a table of tokens.

 Parser: Analyze the source code checking for correct
syntax in the process and confirming the formal
grammar rules.

 State Transit Graph Generator: Generate a state graph
for the given source code and represent it in a suitable
structure.

 State Graph Comparator: Compare the generated graph
with programming language and model graphs.

Any differences in the comparing process will be resulted
in a list of run-time errors.

In the dynamic part of our design, the source code and the
inserted statements will be taken as an input and pass them to
be instrumented. The instrumenter will provide instrumented
code that includes both user and testing codes written in C++.
The instrumentation has two ways to do include.

1) Add the inserted testing codes to the original source

code.

2) Call API functions to test the targeted part of the source

code.

The first method generates larger source code size because
it includes both user and testing codes. While the second has a
smaller size because only the calling statements will be added
to the user source code, and the function will test the user code.
Also, when we have similar user code to be tested that will lead
to repetitive testing code, in the first method, through the
instrumented code which makes it even bigger. However, in
the second method, we only write the testing code once and
call it multiple times without affecting the instrumented source
code size.

V. DISCUSSION

Despite efforts made to detect run-time errors in the parallel
application, there is still a lot to be done primarily for GPU-
related programming models and for dual- and tri-level
programming models for heterogeneous systems.
Heterogeneous systems can be hybrid CPUs/GPUs
architectures or different architectures of GPUs. We noticed
that OpenACC has several advantages and benefits and has
been used widely in the past few years by non-computer
science specialists, but it has not targeted any testing tools
covered in our study. Also, OpenACC has been used in the top

five high-performance computing applications, and the top
supercomputer in the World Summit also use OpenACC in five
out of 13 applications [34]. As a result, the increase used of
OpenACC will come with more errors that possibly occur and
need to be discovered.

Furthermore, OpenACC errors have not been identified or
classified, which makes it more difficult for us to build our
tool. We studied OpenACC and conduct several experiments
and build different scenarios to understand the run-time errors
behavior in OpenACC as well as their effect when interacting
with MPI. Based on these errors we proposed our design and
determined the techniques to be used for testing the targeted
applications.

In terms of our tool, the hybrid-testing techniques have
been considered in our design. The combination of static and
dynamic techniques takes advantage of both and reduces
testing time by discovering the real errors during static
analysis. The first phase is the static analysis approach which
analyzes the source code before compilation and sending the
resulted report to the programmers with the respective related
information that help them to correct these errors. Also, mark
the needed part for further dynamic investigation because some
errors may or may not occur during run time based on the
execution environment and behavior. The second part is the
dynamic analysis approach which takes the marked parts from
the static analysis, insert suitable testing statements and run
them to test the user program.

Dealing with a parallel application is complicated and
challenging because of their nature and how they behave,
which need more effort to build our tool to cover a wide range
of errors and predict scenarios of how the run-time errors will
behave in each case. Finally, the used techniques will be
determined based on the run-time error type and behavior.

VI. CONCLUSION AND FUTURE WORK

As the Exascale supercomputers will be feasible in a few
years, there is an increasing importance of building parallel
systems. However, there is a shortfall in testing those systems,
especially parallel systems that use heterogeneous
programming models including high- and low-level
programming models. Creating parallel applications by
combining more than one programming model has benefits but
also with more complex codes which are difficult to test and
debug. That will lead to creating new approaches and
techniques to detect run-time errors in such complex parallel
applications.

Despite efforts made to create and propose software testing
tools for parallel application, there is still a lot to be done
primarily for GPU-related programming models and for dual-
and tri-level programming models for heterogeneous systems.
Heterogeneous systems can be hybrid CPUs/GPUs
architectures or different architectures of GPUs. We noted that
OpenACC has several advantages and benefits and has been
used widely in the past few years, but it has not targeted any
testing tools covered in our study.

In this paper, the main contribution that we identify and
classify OpenACC run-time errors and their causes has been
determined, with a brief explanation. Also, we proposed a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

400 | P a g e

www.ijacsa.thesai.org

solution for detecting run-time errors in application
implemented in the dual-programming model. Based on the
number of the application threads, our system will work in
parallel creating testing threads for each needed application
thread to be tested.

Our design will be implemented, and its ability for
detecting run-time errors will be evaluated in our future work.
The AZIZ supercomputer, which is one of the top ten
supercomputers in Saudi Arabia will be used in our
experiments in detecting parallel applications especially with
heterogeneous architecture. Finally, to the best of our
knowledge, there is no parallel testing tool built to test
applications programmed by using the dual-programming
model MPI + OpenACC or any tri-level programming model.

REFERENCES

[1] Message Passing Interface Forum, ―MPI Forum,‖ 2017. [Online].
Available: http://mpi-forum.org/docs/.

[2] OpenMP Architecture Review Board, ―About OpenMP,‖ OpenMP ARB
Corporation, 2018. [Online]. Available: https://www.openmp.org/
about/about-us/.

[3] NVIDIA Corporation, ―About CUDA,‖ 2015. [Online]. Available:
https://developer.nvidia.com/about-cuda.

[4] Khronos Group, ―About OpenCL,‖ Khronos Group, 2017. [Online].
Available: https://www.khronos.org/opencl/.

[5] OpenACC-standard.org, ―About OpenACC,‖ OpenACC Organization,
2017. [Online]. Available: https://www.openacc.org/about.

[6] E. Saillard, P. Carribault, and D. Barthou, ―MPI Thread-Level Checking
for MPI+OpenMP Applications,‖ in EuroPar, vol. 9233, 2015, pp. 31–
42.

[7] J. Jaeger, E. Saillard, P. Carribault, and D. Barthou, ―Correctness
Analysis of MPI-3 Non-Blocking Communications in PARCOACH,‖ in
Proceedings of the 22nd European MPI Users’ Group Meeting on ZZZ -
EuroMPI ’15, 2015, pp. 1–2.

[8] A. Santhiar and A. Kanade, ―Static deadlock detection for asynchronous
C# programs,‖ in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation - PLDI 2017,
2017, pp. 292–305.

[9] M. K. Ganai, ―Dynamic Livelock Analysis of Multi-threaded
Programs,‖ in Runtime Verification, 2013, pp. 3–18.

[10] Y. Cai and Q. Lu, ―Dynamic Testing for Deadlocks via Constraints,‖
IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 825–842, 2016.

[11] E. Saillard, ―Static / Dynamic Analyses for Validation and
Improvements of Multi-Model HPC Applications . To cite this version :
HAL Id : tel-01228072 DOCTEUR DE L ’ UNIVERSITÉ DE
BORDEAUX Analyse statique / dynamique pour la validation et l ’
amélioration des applicat,‖ University of Bordeaux, 2015.

[12] H. Ma, L. Wang, and K. Krishnamoorthy, ―Detecting Thread-Safety
Violations in Hybrid OpenMP/MPI Programs,‖ in 2015 IEEE
International Conference on Cluster Computing, 2015, pp. 460–463.

[13] Y. Huang, ―An Analyzer for Message Passing Programs,‖ Brigham
Young University, 2016.

[14] R. Surendran, ―Debugging, Repair, and Synthesis of Task-Parallel
Programs,‖ RICE UNIVERSITY, 2017.

[15] J. Zhou, S. Silvestro, H. Liu, Y. Cai, and T. Liu, ―UNDEAD : Detecting
and Preventing Deadlocks in Production Software,‖ in Proceedings of

the 32nd IEEE/ACM International Conference on Automated Software
Engineering, 2017, pp. 729–740.

[16] The Open MPI Organization, ―Open MPI: Open Source High
Performance Computing,‖ 2018. [Online]. Available: https://www.open-
mpi.org/.

[17] E. Saillard, P. Carribault, and D. Barthou, ―PARCOACH: Combining
static and dynamic validation of MPI collective communications,‖ Int. J.
High Perform. Comput. Appl., vol. 28, no. 4, pp. 425–434, 2014.

[18] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, and Z. Yang,
―Symbolic Analysis of Concurrency Errors in OpenMP Programs,‖ in
2013 42nd International Conference on Parallel Processing, 2013, pp.
510–516.

[19] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, ―An Extended
Polyhedral Model for SPMD Programs and Its Use in Static Data Race
Detection,‖ 2017, pp. 106–120.

[20] R. Sharma, M. Bauer, and A. Aiken, ―Verification of producer-
consumer synchronization in GPU programs,‖ ACM SIGPLAN Not.,
vol. 50, no. 6, pp. 88–98, 2015.

[21] P. Collingbourne, C. Cadar, and P. H. J. Kelly, ―Symbolic Testing of
OpenCL Code,‖ in Hardware and Software: Verification and Testing,
2012, pp. 203–218.

[22] B. Klemme, ―Software Testing of Parallel Programming Frameworks,‖
University of New Mexico, 2016.

[23] Allinea Software Ltd, ―ALLINEA DDT,‖ ARM HPC Tools, 2018.
[Online]. Available: https://www.arm.com/products/development-
tools/hpc-tools/cross-platform/forge/ddt.

[24] R. W. S. Inc., ―TotalView for HPC,‖ 2018. [Online]. Available:
https://www.roguewave.com/products-services/totalview.

[25] Lawrence Livermore National Laboratory, University of Utah, and
RWTH Aachen University, ―ARCHER,‖ GitHub, 2018. [Online].
Available: https://github.com/PRUNERS/archer.

[26] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H. Ahn, and
M. Schulz, ―AutomaDeD: Automata-based debugging for dissimilar
parallel tasks,‖ in IFIP International Conference on Dependable Systems
& Networks (DSN), 2010, pp. 231–240.

[27] RWTH Aachen University, ―MUST: MPI Runtime Error Detection
Tool,‖ 2018.

[28] J. Yang, ―A Validation Suite for High-Level Directive-Based
Programming Model for Accelerators a Validation Suite for High-Level
Directive-Based Programming Model for,‖ University of Houston, 2015.

[29] C. Wang, R. Xu, S. Chandrasekaran, B. Chapman, and O. Hernandez,
―A validation testsuite for OpenACC 1.0,‖ in Proceedings of the
International Parallel and Distributed Processing Symposium, IPDPS,
2014, pp. 1407–1416.

[30] K. Friedline, S. Chandrasekaran, M. G. Lopez, and O. Hernandez,
―OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures,‖
2017, pp. 557–575.

[31] S. Chandrasekaran and G. Juckeland, OpenACC for Programmers:
Concepts and Strategies, First edit. Addison-Wesley Professional, 2017.

[32] R. Farber, Parallel Programming with OpenACC. 2016.

[33] OpenACC Standards, ―The OpenACC Application Programming
Interface version 2.7,‖ 2018.

[34] M. McCorkle, ―ORNL Launches Summit Supercomputer,‖ The U.S.
Department of Energy’s Oak Ridge National Laboratory, 2018.
[Online]. Available: https://www.ornl.gov/news/ornl-launches-summit-
supercomputer.

