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Abstract—For most of the past five decades, the growing 

computational power of supercomputers has come primarily 

from a doubling of clock frequency every 18 months. Over this 

time period, the clock rate increased by six orders of magnitude, 

while the number of processors increased by three orders of 

magnitude. The major challenge caused by the increasing scale 

and complexity of HPC systems is the massive power 

consumption. Due to constraints on heat and the power 

requirements of today's microprocessors, vendors have shifted to 

putting multiple processors (cores) on a chip. The number of 

cores per chip is expected to continue increasing exponentially 

over the next decade. One expected strategy is the correct usage 

of parallel programming models that decrease power 

consumption and increase system performance through massive 

parallelism (concurrency). In the current study, we have 

proposed a Hybrid MVAPICH-2 + CUDA (HMC) parallel 

programming model that outperformed other state-of-the-art 

dual and tri hierarchy level approaches with respect to power 

consumption and execution time. Moreover, the HMC model was 

evaluated by implementing the matrix multiplication 

benchmarking application. Consequently, it can be considered a 

leading model for the emerging Exascale computing system. 
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I. INTRODUCTION 

In the next decade, an extreme level computing system called 
Exascale computing is anticipated to revolutionize 
computational science and engineering by providing 1018 
FLOPS operations per second, which will be comprise hundreds 
of thousands of heterogeneous compute nodes linked by 
complex networks [1]. A projection from the world’s most 
powerful system with the capability of handling Petaflops per 
second developed in the recent past (2014,) creates the 
possibility of producing Exascale systems deployed in the 2020 
timeframe [1][2]. For this Ultra-scale computing system, an 
extensive change in node architectures is expected, replacing the 
current trend of increasing clock speed by doubling the number 
of cores in a system [3][4]. However, a prominent level of 
computation for the Exascale system has some valid limitations, 
such as energy consumption (20MW), time of delivery (2020), 
number of cores (100 million) and cost ($200M) [3][5]. 
According to the US Department of Energy (DOE), energy 
consumption per flop must be less than 20 Pico-Joules (PJs) [6]. 
Under these hard limitations, the development community must 
rethink its use of existing technologies and expand the co-design 
space to find better solutions, new applications, algorithms, 
better technology, and performance. 

In attaining the emerging supercomputing goal, one faces 
number of effective challenges (such as massive power 
consumption, extraordinary parallelism, memory, bandwidth, 
latency, hierarchy level, communication and synchronization 
mechanism, resilience and heterogeneity) that must be 
determined by introducing new hardware, general-purpose 
multi-cores and special-purpose accelerators, frameworks, 
programming models and algorithms. In the last two decades, the 
microprocessor-based single CPU has increased system 
performance and decreased cost; however, because of heat 
dissipation and energy consumption issues, this approach 
reached a limit [7], [8]. The solution was switched to a model in 
which the microprocessor has multiple processing units known 
as "cores" [9], [10]. Therefore, two approaches were introduced 
and are currently being used "multi-core" [11] integrates a few 
cores into a single microprocessor while with "many-core" [12] , 
a large number of cores are integrated into a single device, called 
a GPU (Graphical Processing Unit) or GPGPU (General Purpose 
Computing Graphical Processing Unit). Therefore, the aim is to 
minimize power consumption in the system by increasing 
system performance through a combination of course-grain and 
fine-grain parallelism using heterogeneous parallel programming 
models [13]. 

In the current study, our primary objective was to introduce a 
new parallel programming model that can reduce power 
consumption in the system to deal with several linear/non- linear 
HPC benchmarking applications. In terms of introducing such a 
model, we have conducted an empirical study in which we 
investigated the existing parallel programming models being 
considered for emerging supercomputing systems. In terms of 
consequences, we proposed a new parallel programming model: 
Hybrid MVAPICH-2 + CUDA (HMC), which section III 
describes in detail. 

The rest of the content is organized follows. Section II 
demonstrates the related work of parallel computing software and 
hardware technologies and renowned approaches. Section III 
describes the proposed HMC model. Section IV describes the 
empirical study, consequences and comparative analysis. 

II. RELATED WORK 

In [14], [15], [16] and [17], the authors investigated the 
primary challenges for emerging Exascale computing systems. 
According to the authors, supercomputer architectures have gone 
from 1000 processors to 100,000 processors in the last five years 
while next-generation systems will have more than one million 
processors. The rate of growth of parallelism is in fact 
accelerating, it will likely exceed one hundred million when 
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Exascale systems appear. Some estimates even predict that the 
need for multiple threads to cover main memory and 
communication latency means that scientific codes will contain 
billions of threads. However, they determined that the major 
challenge caused by the increasing scale and complexity of HPC 
system’s the massive power consumption. One expected strategy 
is the correct usage of parallel programming models that 
decrease power consumption and increase system performance 
through massive parallelism (concurrency). The increase of 
concurrency from hundreds of thousands to hundreds of millions 
is also a tremendous challenge for system software to manage; in 
addition, it is a challenge with respect to application’s ability to 
achieve good performance at this level of parallelism. 

Further, Carretero. J, et al. [8] said that an Exascale 
architecture should be both energy-efficient and power 
proportional. The subject of reducing the energy consumption in 
computing brought up two main research directions. The first 
direction is concerned with power-aware and thermal- aware 
hardware design, including low-power techniques on all levels. 
The second research direction is based on the development of 
power-aware software for the entire software stack, including 
operating systems, compilers, applications and algorithms. The 
authors investigated several energy- saving mechanisms in 
hardware and software including DVFS (Dynamic voltage 
frequency scaling), clock Gating, power gating, and 
coprocessors or accelerators. Clock gating reduces power 
consumption by disabling the clock in those parts of the circuit 
that are idle or, as in the case of flip-flops, maintain a steady 
state that does not need to be refreshed. Similarly, power gating 
achieves a better power reduction than does clock gating. This 
had led emerging technologies- such as GPU (Graphics 
Processing Unit), MIC (Many Integrated Cores) and FPGA 
(Field Programmable Gate Array) becoming the most promising 
technologies to overcome the power consumption challenge. 

Maglione et al., [18] investigated the Advanced 
Configuration and Power Interface (ACPI), which is an open 
standard for device power management co-developed by 
Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Other 
advanced tools including Memscale and PGCapping were also 
investigated. Memscale includes a control algorithm that 
minimizes the overall system energy based on performance 
counter monitoring while PGCapping integrates power gating 
with DVFS for chip multiprocessors. 

Feng and Xixhou [19] analyzed different modern 
architectures and common applications and illustrated that some 
system components such as caches and network links- 
disproportionately consume extensive power for common HPC 
applications. They demonstrated that a large percentage of power 
consumed in caches and networks can be saved using our 
approach automatically. Regarding energy optimization, energy 
spent on cooling accounts for about 40% of total energy 
consumption in a data center. The author’s focus was to extend 
energy optimization work beyond machine energy savings so 
that cooling energy could be reduced. They worked on a runtime 
system which used Dynamic Voltage and Frequency Scaling 
(DVFS) to minimize the occurrence of hotspots by keeping core 
temperatures in check. The consequences showed that we can 
save considerable cooling energy using this temperature aware 
load balancing. 

Aniruddha, et al. [20] discussed performance optimization 
under power consumption constraints. According to the authors, 
the power consumption of Intel's Sandy Bridge family of 
processors can be user-controlled through the Running Average 
Power Limit (RAPL) library. It has been shown that an increase 
in the power allowed for the processor (and/or memory) does not 
yield a proportional increase in the application's performance. 
Consequently, for a given power budget, it could be better to run 
an application on a larger number of nodes with each node 
capped at lower power rather than fewer nodes, with each 
running at its TDP. 

Geist, Al- and Daniel A. Reed [21] conducted a survey about 
primary high-performance computing challenges. They explored 
the state of the art and reflected on some of the challenges likely 
to be faced during the building of trans- Petascale computing 
systems. The energy required for Petascale clusters is now 
measured in megawatts; commercial cloud data centers consume 
25–60 megawatts. Putative Exascale systems would consume 
hundreds of megawatts using current technologies. For future 
technologies, two architectural paths are emerging to address the 
three key challenges including reliability, energy consumption 
and software complexity. Consequently, energy consumption is 
a major driver in the emergence of the above two architectural 
designs. For large-scale heterogeneous system, energy efficiency 
can be obtained through energy constrained scheduling and 
adaptive parallelism. Energy consumption and power costs must 
be managed with as much care as performance and resilience. By 
contrast, software complexity must be managed to decrease 
software development costs. 

According to [22], hybrid techniques are solutions that allow 
for emerging HPC computing systems to deal with the primary 
issues of power consumption and enhancing performance. The 
authors proposed different hybrid techniques of MPI+X where X 
is any parallel programming model to compute GPU. 
Conventionally this X is considered CUDA or Open ACC. 

Further, the authors in [23] proposed a tri-level hybrid of 
MPI+OMP+CUDA (MOC) to achieve massive parallelism. The 
primary purpose of this model was to achieve all levels of 
parallelism including coarse grain, fine grain and finer 
granularity in the system during the execution of any 
benchmarking application over a large cluster system. Therefore, 
the proposed MOC model was implemented on different HPC 
systems and evaluated the performance as well as power 
consumption. The MOC model reduced the system’s power 
consumption by 20 MW overall by enhancing the performance 
by 20 PFLOPS in HPC systems. 

III. PROPOSED HYBRID PARALLEL PROGRAMMING MODEL 

In this section, we present the proposed dual-level parallel 
programming model for the high-end computing system. The 
proposed approach is a hybrid of MVAPICH-2 and CUDA, named 
the Hybrid MVAPICH-2+CUDA (HMC) Model. 

A. Selected Model for Enhancement 

Indeed, as more and more compute cores become available 
on a single node, the expectation is that communication of the 
local node will play an increasingly important role in the overall 
performance of parallel applications such as MPI applications. 
Therefore, it is crucial to optimize intra-node communication 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 5, 2019 

174 | P a g e  

www.ijacsa.thesai.org 

paths utilized by MPI libraries. As much communication of data 
between processors as it will consume more power, so by 
reducing that communications overhead between processors we 
can increase that performance and limit that power consumption 
through intra-node communication. We have decided that 
MPI+CUDA is the best hybrid model. The main reason for that 
is that it has less communication overhead; other reasons are 
described in detail in Section IV. This is done by conducting an 
empirical study and analysis for all the parallel programming 
model that shown in Table I and Table II. 

Many versions of MPI can deliver the best performance. One 
way is to use MVAPICH-2, an open source implementation of 
the Message Passing Interface that can deliver the best 
scalability, performance and fault tolerance for high-end 
computing systems and servers using InfiniBand, which is used 
for interconnect communication and was first popular in high 
performance computing environments, Internet Wide Area 
RDMA Protocol (IWARP) and RDMA Over Converged 
Ethernet (ROCE) networking technologies. It facilitates the task 
of porting MPI applications to run on clusters with NVIDIA 
GPUs by supporting standard MPI calls from GPU device 
memory. Furthermore, it optimizes the data movement between 
host and device and between GPUs in the best way possible 
while requiring no effort from the application developer. 

Random Direct Memory Access (RDMA) is hardware 
architecture we used to implement our hybrid model. It is 
especially useful in massively parallel computer clusters. After 
the initialization of MPI, a global communicator will contain all 
processors on that library. Therefore, unprecedented scalability, 
resiliency, and overhead limitations will be on MPI application. 
However, MVAPICH-2 has more directives that can decrease 
power consumption and deliver the best performance. This 
library will have MPI Sessions- a fundamental change in how we 
address and organize MPI processes that remove the known 
scalability barriers by no longer requiring the inclusion of all 
possible communication peers on the global communicator. 

TABLE I. EXECUTION TIME (PERFORMANCE) 

Matrix 

Size 

MPI + 

OMP 

OMP + 

CUDA 

MPI + 

Open ACC 

MPI + 

CUDA 

MPI + OMP+ 

CUDA 

1000^2 4.5 3.22 3.79 3.01 5.01 

2000^2 14.55 8.55 5.99 4.81 10.81 

3000^2 45.99 37.83 38.21 34.2 32.2 

4000^2 107.06 85.18 60.86 52.29 46.29 

5000^2 202.39 145.62 91.39 88.74 70.74 

6000^2 341.56 189.59 128.22 109.94 107 

TABLE II. POWER CONSUMPTION 

Matrix 

Size 

MPI + 

OMP 

OMP + 

CUDA 

MPI + 

Open ACC 

MPI + 

CUDA 

MPI + OMP+ 

CUDA 

1000^2 311 187.7 198.92 195.4 235.67 

2000^2 334.7 200 207.07 205.13 248.91 

3000^2 329.6 207 226.58 213.05 256.34 

4000^2 332 245.82 243.41 233.21 263.56 

5000^2 323 263.26 262 255.84 268.29 

6000^2 326 271.44 279.52 271.72 273.603 

Session facilitates these efforts with two key contributions: 

 A scalable representation of communication groups. 

 A tighter integration of MPI applications with the 
underlying runtime system. 

B. HYBRID MVAPICH-2+CUDA (HMC) Model 

As shown in Fig. 1 below, MPI initializes by creating a 
session with a specific run time and get the session name. 
Therefore, any named set of processes that are exposed by that 
session can be converted into a group 'MPI group' and define the 
ranks. These groups will communicate through a parent 
communicator" which is used by MPI to orchestrate (matching) 
the communication needed to create a new communicator". 
Thereafter, it will initialize the data to be computed and every 
processor will retrieve with a rank number. If the rank does not 
master the processor these data distributed over processors 
otherwise, its release and exit. So here will call for the CUDA 
kernel which means it will parallelize the data from the host 
(CPU) to device (GPU) cores for actual execution of DMM. 

In CUDA, the GPU block dispatcher will schedule the grid 
by assigning each thread to one of computational core and these 
threads will be synchronized by self-cooperation. Each block has 
its own shared memory so that the thread will process the data 
using this shared memory within the block then return the result 
to the scheduler .Therefore, this processed data will be on GPU 
global memory that is visible to the host or CPU memory so it 
will copy the processed data from Device to the host memory. 
Finally, if the rank is a master processor, it will receive the 
processed data from all ranks then it will finalize and print the 
result. 

 

Fig. 1. HMC Architecture. 

IV. EXPERIMENTAL RESULTS 

This section present the results of experiments conducted for 
the proposed study. All the experiments were performed on HPC 
Xeon Phi with GPU 1070-ti. To quantify the primary factors 
(including performance and power consumption) in the proposed 
HMC model, we firstly carried out an empirical study in which 
we computed the different datasets of matrix multiplication and 
Implemented multiple parallel programming models, including 
single [24], dual [22], [25] and tri-hybrid [23]. Then we executed 
the same datasets on HMC model. Leading to quantification 
factors, we measured the system’s performance by quantifying 
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execution time against each matrix size. By contrast, the second 
factor of power consumption was measured using the 
TechpowerUp GPU-z 2.6.0 software. A running screen of 
TechpowerUp GPU-z is shown in Fig. 2. 

According to existing state-of-the-art models and strategies, 
single level parallel programming models are not individually 
applicable for emerging HPC systems. Therefore, it must be in 
hybrid to achieve massive parallelism through a cluster system 
with multiple nodes. However, we excluded single level models 
from our comparative analysis, and followed dual- and Tri- 
hybrid parallel programming models. Leading to dual-level 
models, we compared the results with HMC in matrix 
multiplication with different size executions in the range of 
1000x1000 to 6000x6000 matrix size, as shown in Fig. 3. 

As per Fig. 3, we noticed that at an initial execution 1000 and 
2000 matrix sizes, no big difference was seen in all executions, 
through a tremendous change was seen when matrix size was 
increased. We can see a major difference in execution time at 
matrix size 4000x4000 where heterogeneous Computation over 
cluster system outperformed the homogeneous/single computing 
system. From this position, the graph changed gradually onward, 
where the peak reading was noted for the hybrid of MPI+OMP 
with 342 number of seconds for 6000 matrix size execution. By 
contrast, the heterogeneous model on single node executed in 
less time, as OMP+CUDA took 190 seconds .We noticed that 
other heterogeneous models with the hybrid of MPI+ Open ACC 
and MPI+CUDA executed the same matrix size in 125 and 110 
seconds, respectively, as MPI version 3 improved in terms of 
enhancing performance under power consumption limitations. 
Therefore, we integrated MPI-3 (MVAPICH-2) with CUDA 
which is the proposed model of current study and executed all 
these datasets in similar way. We discovered a drastic 
improvement in performance which was 80 second execution 
time against 6000x6000 matrix size. This is because on MPI-3 it 

has more directives, like sessions and groups, and it will be 
scalable. These directives facilitate an improvement in the 
performance of our HMC model. 

According to [23], the proposed MOC model was considered 
promising for emerging HPC systems to attain a massive 
performance. Also, the MOC model introduced three level of 
parallelism, including coarse grain, fine grain and finer grain. 
Therefore, we also executed the similar matrix multiplication 
dataset on MOC and compared it with the proposed HMC model 
as shown in Fig. 4. 

It was observed that HMC outperformed throughout the 
execution as compared to MOC in all datasets. We observed a 
20-second difference in the execution for a large dataset, which 
is the improved performance in HMC. 

Further, to quantify the second objective of study, we 
observed the power consumption in all the selected models and 
compared it to proposed HMC model. The analysis mechanisms 
were similar to those used for execution time. We firstly 
evaluated dual-level homogeneous and heterogeneous models 
and compared them to HMC with respect to power consumption, 
as shown in Fig. 5. 

MVAPICH-2 introduced the new directives, which are used 
to optimize the communication cost among the processors. 
Consequently, it causes a reduction in the system’s power 
consumption during execution. Based on these improvements, 
we observed that HMC decreased the power consumption 
throughout the executions. For small computations, up to 50 
watts’ power consumption was observed that was reduced in 
HMC by comparing the consumed power measured in the best 
model MPI+CUDA from existing state-of-the-art mechanisms. 
As shown in Fig. 6, the power consumption was evaluated in the 
MOC model to conduct a comparative analysis with HMC 
model. 

 

Fig. 2. TechpowerUp GPU-z Running. 
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Fig. 3.  (Performance) Execution Time for Matrix Multiplication in Dual 

Level Models vs HMC. 

 

Fig. 4. (Performance) Execution Time for Matrix Multiplication in MOC 

Model vs HMC. 

 

Fig. 5. (Power consumption) Dual Level Models vs HMC. 

 

Fig. 6. (Power Consumption) MOC Tri-Hybrid vs HMC Model. 

This time we observed a vital difference in power 
consumption throughout the executions. For small dataset, the 
observed power consumption was up to 80 watts, which is big 
difference and an achievement in terms of study’s second 
objective. The same ratio was discovered for all other 
executions. Finally, HMC consumed 240 watts for 6000x6000 
matrix size. We critically noted that this level of power 
consumption was observed in 2000x2000 for the MOC model, 
which was computed in a very small time. However, a drastic 
change in both objectives was achieved in proposed HMC 
model, which is a big achievement with respect to satisfying the 
requirements of emerging HPC systems. 

V. DISCUSSION 

The proposed study was primarily concerned with emerging 
High-Performance Computing and its perspectives objectives, 
which are majorly concerned to enhancing performance under 
the power consumption limitations. These concerns are vital 
challenges now a day for current and future ICT. According to 
research communities, there are two solutions to these primary 
challenges, increasing number of cores in the system to achieve 
massive performance in the system. This approach is not 
feasible, as it will increase the power consumption in the system, 
there another solution is required which is achieving massive 
parallelism in the system to reduce the execution time that will 
eventually decrease the power consumption in the system. 
Leading to the second option, this study proposed a new parallel 
programming model called Hybrid MVAPICH-2 and CUDA 
(HMC). 

HMC is fundamentally an extension of the dual level model 
of MPI and CUDA. The issue in a hybrid of MPI+CUDA was 
similar that it could not fulfill the demand of HPC systems. MPI- 
3 (MVAPIC2) it has more directives like sessions and groups 
and it will be scalable. We observed that the quantified execution 
in HMC was 10% less as compare the other parallel 
programming models. Further, we also noted that the power 
consumption was much consumed in dual and tri-level hybrid 
models but HMC consume 50 to 60 WATTs less comparatively. 

VI. CONCLUSIONS 

Emerging HPC technologies are experiencing more priority 
and demand in all scientific fields. It has been anticipated that 
Exascale HPC systems will be introduced at the end of 2020. 
According to current state-of-the-art technologies, Exascale 
systems face two vital challenges, including Power consumption 
when increasing system performance to achieve Exa-flops level 
of calculations. Various research communities have taken 
initiatives to address these challenges. With respect to these 
objectives, the current study proposed a new model named 
Hybrid MVAPICH-2+CUDA (HMC) to address such 
challenges. The HMC model implemented in matrix 
multiplication benchmarking application and compared the 
quantified performance and power consumption with existing 
dual- and tri-hybrid parallel programming models. We observed 
that the HMC model outperformed in all cases when we 
compared it to other dual- and tri-level parallel programming 
models. HMC reduced the power consumption up to 80 watts 
with the same dataset execution within 70 sec less time, 
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comparatively. These improvements can serve as the foundation 
of an initiative to consider HMC as a leading model in the era of 
HPC systems. 

From future perspectives, HMC is required to implement a 
large cluster system through which we can quantify the said 
attributes on different platforms. Moreover, we must implement 
HMC on different benchmarking applications to observe the 
behavior of the proposed model when we change the benchmark. 
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