
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

172 | P a g e

www.ijacsa.thesai.org

A Low Power Consuming Model of Parallel

Programming for HPC System

Mohammed Nawaf Altouri
1
, Abdullah M. Algarni

2

Department of Computer Science, King Abdulaziz University (KAU)

P.O. Box 80221, Jeddah 21589, Saudi Arabia

Abstract—For most of the past five decades, the growing

computational power of supercomputers has come primarily

from a doubling of clock frequency every 18 months. Over this

time period, the clock rate increased by six orders of magnitude,

while the number of processors increased by three orders of

magnitude. The major challenge caused by the increasing scale

and complexity of HPC systems is the massive power

consumption. Due to constraints on heat and the power

requirements of today's microprocessors, vendors have shifted to

putting multiple processors (cores) on a chip. The number of

cores per chip is expected to continue increasing exponentially

over the next decade. One expected strategy is the correct usage

of parallel programming models that decrease power

consumption and increase system performance through massive

parallelism (concurrency). In the current study, we have

proposed a Hybrid MVAPICH-2 + CUDA (HMC) parallel

programming model that outperformed other state-of-the-art

dual and tri hierarchy level approaches with respect to power

consumption and execution time. Moreover, the HMC model was

evaluated by implementing the matrix multiplication

benchmarking application. Consequently, it can be considered a

leading model for the emerging Exascale computing system.

Keywords—HPC; parallel computation; power consumption;

hybrid programming; MVAPIC2; CUDA

I. INTRODUCTION

In the next decade, an extreme level computing system called
Exascale computing is anticipated to revolutionize
computational science and engineering by providing 1018
FLOPS operations per second, which will be comprise hundreds
of thousands of heterogeneous compute nodes linked by
complex networks [1]. A projection from the world’s most
powerful system with the capability of handling Petaflops per
second developed in the recent past (2014,) creates the
possibility of producing Exascale systems deployed in the 2020
timeframe [1][2]. For this Ultra-scale computing system, an
extensive change in node architectures is expected, replacing the
current trend of increasing clock speed by doubling the number
of cores in a system [3][4]. However, a prominent level of
computation for the Exascale system has some valid limitations,
such as energy consumption (20MW), time of delivery (2020),
number of cores (100 million) and cost ($200M) [3][5].
According to the US Department of Energy (DOE), energy
consumption per flop must be less than 20 Pico-Joules (PJs) [6].
Under these hard limitations, the development community must
rethink its use of existing technologies and expand the co-design
space to find better solutions, new applications, algorithms,
better technology, and performance.

In attaining the emerging supercomputing goal, one faces
number of effective challenges (such as massive power
consumption, extraordinary parallelism, memory, bandwidth,
latency, hierarchy level, communication and synchronization
mechanism, resilience and heterogeneity) that must be
determined by introducing new hardware, general-purpose
multi-cores and special-purpose accelerators, frameworks,
programming models and algorithms. In the last two decades, the
microprocessor-based single CPU has increased system
performance and decreased cost; however, because of heat
dissipation and energy consumption issues, this approach
reached a limit [7], [8]. The solution was switched to a model in
which the microprocessor has multiple processing units known
as "cores" [9], [10]. Therefore, two approaches were introduced
and are currently being used "multi-core" [11] integrates a few
cores into a single microprocessor while with "many-core" [12] ,
a large number of cores are integrated into a single device, called
a GPU (Graphical Processing Unit) or GPGPU (General Purpose
Computing Graphical Processing Unit). Therefore, the aim is to
minimize power consumption in the system by increasing
system performance through a combination of course-grain and
fine-grain parallelism using heterogeneous parallel programming
models [13].

In the current study, our primary objective was to introduce a
new parallel programming model that can reduce power
consumption in the system to deal with several linear/non- linear
HPC benchmarking applications. In terms of introducing such a
model, we have conducted an empirical study in which we
investigated the existing parallel programming models being
considered for emerging supercomputing systems. In terms of
consequences, we proposed a new parallel programming model:
Hybrid MVAPICH-2 + CUDA (HMC), which section III
describes in detail.

The rest of the content is organized follows. Section II
demonstrates the related work of parallel computing software and
hardware technologies and renowned approaches. Section III
describes the proposed HMC model. Section IV describes the
empirical study, consequences and comparative analysis.

II. RELATED WORK

In [14], [15], [16] and [17], the authors investigated the
primary challenges for emerging Exascale computing systems.
According to the authors, supercomputer architectures have gone
from 1000 processors to 100,000 processors in the last five years
while next-generation systems will have more than one million
processors. The rate of growth of parallelism is in fact
accelerating, it will likely exceed one hundred million when

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

173 | P a g e

www.ijacsa.thesai.org

Exascale systems appear. Some estimates even predict that the
need for multiple threads to cover main memory and
communication latency means that scientific codes will contain
billions of threads. However, they determined that the major
challenge caused by the increasing scale and complexity of HPC
system’s the massive power consumption. One expected strategy
is the correct usage of parallel programming models that
decrease power consumption and increase system performance
through massive parallelism (concurrency). The increase of
concurrency from hundreds of thousands to hundreds of millions
is also a tremendous challenge for system software to manage; in
addition, it is a challenge with respect to application’s ability to
achieve good performance at this level of parallelism.

Further, Carretero. J, et al. [8] said that an Exascale
architecture should be both energy-efficient and power
proportional. The subject of reducing the energy consumption in
computing brought up two main research directions. The first
direction is concerned with power-aware and thermal- aware
hardware design, including low-power techniques on all levels.
The second research direction is based on the development of
power-aware software for the entire software stack, including
operating systems, compilers, applications and algorithms. The
authors investigated several energy- saving mechanisms in
hardware and software including DVFS (Dynamic voltage
frequency scaling), clock Gating, power gating, and
coprocessors or accelerators. Clock gating reduces power
consumption by disabling the clock in those parts of the circuit
that are idle or, as in the case of flip-flops, maintain a steady
state that does not need to be refreshed. Similarly, power gating
achieves a better power reduction than does clock gating. This
had led emerging technologies- such as GPU (Graphics
Processing Unit), MIC (Many Integrated Cores) and FPGA
(Field Programmable Gate Array) becoming the most promising
technologies to overcome the power consumption challenge.

Maglione et al., [18] investigated the Advanced
Configuration and Power Interface (ACPI), which is an open
standard for device power management co-developed by
Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Other
advanced tools including Memscale and PGCapping were also
investigated. Memscale includes a control algorithm that
minimizes the overall system energy based on performance
counter monitoring while PGCapping integrates power gating
with DVFS for chip multiprocessors.

Feng and Xixhou [19] analyzed different modern
architectures and common applications and illustrated that some
system components such as caches and network links-
disproportionately consume extensive power for common HPC
applications. They demonstrated that a large percentage of power
consumed in caches and networks can be saved using our
approach automatically. Regarding energy optimization, energy
spent on cooling accounts for about 40% of total energy
consumption in a data center. The author’s focus was to extend
energy optimization work beyond machine energy savings so
that cooling energy could be reduced. They worked on a runtime
system which used Dynamic Voltage and Frequency Scaling
(DVFS) to minimize the occurrence of hotspots by keeping core
temperatures in check. The consequences showed that we can
save considerable cooling energy using this temperature aware
load balancing.

Aniruddha, et al. [20] discussed performance optimization
under power consumption constraints. According to the authors,
the power consumption of Intel's Sandy Bridge family of
processors can be user-controlled through the Running Average
Power Limit (RAPL) library. It has been shown that an increase
in the power allowed for the processor (and/or memory) does not
yield a proportional increase in the application's performance.
Consequently, for a given power budget, it could be better to run
an application on a larger number of nodes with each node
capped at lower power rather than fewer nodes, with each
running at its TDP.

Geist, Al- and Daniel A. Reed [21] conducted a survey about
primary high-performance computing challenges. They explored
the state of the art and reflected on some of the challenges likely
to be faced during the building of trans- Petascale computing
systems. The energy required for Petascale clusters is now
measured in megawatts; commercial cloud data centers consume
25–60 megawatts. Putative Exascale systems would consume
hundreds of megawatts using current technologies. For future
technologies, two architectural paths are emerging to address the
three key challenges including reliability, energy consumption
and software complexity. Consequently, energy consumption is
a major driver in the emergence of the above two architectural
designs. For large-scale heterogeneous system, energy efficiency
can be obtained through energy constrained scheduling and
adaptive parallelism. Energy consumption and power costs must
be managed with as much care as performance and resilience. By
contrast, software complexity must be managed to decrease
software development costs.

According to [22], hybrid techniques are solutions that allow
for emerging HPC computing systems to deal with the primary
issues of power consumption and enhancing performance. The
authors proposed different hybrid techniques of MPI+X where X
is any parallel programming model to compute GPU.
Conventionally this X is considered CUDA or Open ACC.

Further, the authors in [23] proposed a tri-level hybrid of
MPI+OMP+CUDA (MOC) to achieve massive parallelism. The
primary purpose of this model was to achieve all levels of
parallelism including coarse grain, fine grain and finer
granularity in the system during the execution of any
benchmarking application over a large cluster system. Therefore,
the proposed MOC model was implemented on different HPC
systems and evaluated the performance as well as power
consumption. The MOC model reduced the system’s power
consumption by 20 MW overall by enhancing the performance
by 20 PFLOPS in HPC systems.

III. PROPOSED HYBRID PARALLEL PROGRAMMING MODEL

In this section, we present the proposed dual-level parallel
programming model for the high-end computing system. The
proposed approach is a hybrid of MVAPICH-2 and CUDA, named
the Hybrid MVAPICH-2+CUDA (HMC) Model.

A. Selected Model for Enhancement

Indeed, as more and more compute cores become available
on a single node, the expectation is that communication of the
local node will play an increasingly important role in the overall
performance of parallel applications such as MPI applications.
Therefore, it is crucial to optimize intra-node communication

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

174 | P a g e

www.ijacsa.thesai.org

paths utilized by MPI libraries. As much communication of data
between processors as it will consume more power, so by
reducing that communications overhead between processors we
can increase that performance and limit that power consumption
through intra-node communication. We have decided that
MPI+CUDA is the best hybrid model. The main reason for that
is that it has less communication overhead; other reasons are
described in detail in Section IV. This is done by conducting an
empirical study and analysis for all the parallel programming
model that shown in Table I and Table II.

Many versions of MPI can deliver the best performance. One
way is to use MVAPICH-2, an open source implementation of
the Message Passing Interface that can deliver the best
scalability, performance and fault tolerance for high-end
computing systems and servers using InfiniBand, which is used
for interconnect communication and was first popular in high
performance computing environments, Internet Wide Area
RDMA Protocol (IWARP) and RDMA Over Converged
Ethernet (ROCE) networking technologies. It facilitates the task
of porting MPI applications to run on clusters with NVIDIA
GPUs by supporting standard MPI calls from GPU device
memory. Furthermore, it optimizes the data movement between
host and device and between GPUs in the best way possible
while requiring no effort from the application developer.

Random Direct Memory Access (RDMA) is hardware
architecture we used to implement our hybrid model. It is
especially useful in massively parallel computer clusters. After
the initialization of MPI, a global communicator will contain all
processors on that library. Therefore, unprecedented scalability,
resiliency, and overhead limitations will be on MPI application.
However, MVAPICH-2 has more directives that can decrease
power consumption and deliver the best performance. This
library will have MPI Sessions- a fundamental change in how we
address and organize MPI processes that remove the known
scalability barriers by no longer requiring the inclusion of all
possible communication peers on the global communicator.

TABLE I. EXECUTION TIME (PERFORMANCE)

Matrix

Size

MPI +

OMP

OMP +

CUDA

MPI +

Open ACC

MPI +

CUDA

MPI + OMP+

CUDA

1000^2 4.5 3.22 3.79 3.01 5.01

2000^2 14.55 8.55 5.99 4.81 10.81

3000^2 45.99 37.83 38.21 34.2 32.2

4000^2 107.06 85.18 60.86 52.29 46.29

5000^2 202.39 145.62 91.39 88.74 70.74

6000^2 341.56 189.59 128.22 109.94 107

TABLE II. POWER CONSUMPTION

Matrix

Size

MPI +

OMP

OMP +

CUDA

MPI +

Open ACC

MPI +

CUDA

MPI + OMP+

CUDA

1000^2 311 187.7 198.92 195.4 235.67

2000^2 334.7 200 207.07 205.13 248.91

3000^2 329.6 207 226.58 213.05 256.34

4000^2 332 245.82 243.41 233.21 263.56

5000^2 323 263.26 262 255.84 268.29

6000^2 326 271.44 279.52 271.72 273.603

Session facilitates these efforts with two key contributions:

 A scalable representation of communication groups.

 A tighter integration of MPI applications with the
underlying runtime system.

B. HYBRID MVAPICH-2+CUDA (HMC) Model

As shown in Fig. 1 below, MPI initializes by creating a
session with a specific run time and get the session name.
Therefore, any named set of processes that are exposed by that
session can be converted into a group 'MPI group' and define the
ranks. These groups will communicate through a parent
communicator" which is used by MPI to orchestrate (matching)
the communication needed to create a new communicator".
Thereafter, it will initialize the data to be computed and every
processor will retrieve with a rank number. If the rank does not
master the processor these data distributed over processors
otherwise, its release and exit. So here will call for the CUDA
kernel which means it will parallelize the data from the host
(CPU) to device (GPU) cores for actual execution of DMM.

In CUDA, the GPU block dispatcher will schedule the grid
by assigning each thread to one of computational core and these
threads will be synchronized by self-cooperation. Each block has
its own shared memory so that the thread will process the data
using this shared memory within the block then return the result
to the scheduler .Therefore, this processed data will be on GPU
global memory that is visible to the host or CPU memory so it
will copy the processed data from Device to the host memory.
Finally, if the rank is a master processor, it will receive the
processed data from all ranks then it will finalize and print the
result.

Fig. 1. HMC Architecture.

IV. EXPERIMENTAL RESULTS

This section present the results of experiments conducted for
the proposed study. All the experiments were performed on HPC
Xeon Phi with GPU 1070-ti. To quantify the primary factors
(including performance and power consumption) in the proposed
HMC model, we firstly carried out an empirical study in which
we computed the different datasets of matrix multiplication and
Implemented multiple parallel programming models, including
single [24], dual [22], [25] and tri-hybrid [23]. Then we executed
the same datasets on HMC model. Leading to quantification
factors, we measured the system’s performance by quantifying

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

175 | P a g e

www.ijacsa.thesai.org

execution time against each matrix size. By contrast, the second
factor of power consumption was measured using the
TechpowerUp GPU-z 2.6.0 software. A running screen of
TechpowerUp GPU-z is shown in Fig. 2.

According to existing state-of-the-art models and strategies,
single level parallel programming models are not individually
applicable for emerging HPC systems. Therefore, it must be in
hybrid to achieve massive parallelism through a cluster system
with multiple nodes. However, we excluded single level models
from our comparative analysis, and followed dual- and Tri-
hybrid parallel programming models. Leading to dual-level
models, we compared the results with HMC in matrix
multiplication with different size executions in the range of
1000x1000 to 6000x6000 matrix size, as shown in Fig. 3.

As per Fig. 3, we noticed that at an initial execution 1000 and
2000 matrix sizes, no big difference was seen in all executions,
through a tremendous change was seen when matrix size was
increased. We can see a major difference in execution time at
matrix size 4000x4000 where heterogeneous Computation over
cluster system outperformed the homogeneous/single computing
system. From this position, the graph changed gradually onward,
where the peak reading was noted for the hybrid of MPI+OMP
with 342 number of seconds for 6000 matrix size execution. By
contrast, the heterogeneous model on single node executed in
less time, as OMP+CUDA took 190 seconds .We noticed that
other heterogeneous models with the hybrid of MPI+ Open ACC
and MPI+CUDA executed the same matrix size in 125 and 110
seconds, respectively, as MPI version 3 improved in terms of
enhancing performance under power consumption limitations.
Therefore, we integrated MPI-3 (MVAPICH-2) with CUDA
which is the proposed model of current study and executed all
these datasets in similar way. We discovered a drastic
improvement in performance which was 80 second execution
time against 6000x6000 matrix size. This is because on MPI-3 it

has more directives, like sessions and groups, and it will be
scalable. These directives facilitate an improvement in the
performance of our HMC model.

According to [23], the proposed MOC model was considered
promising for emerging HPC systems to attain a massive
performance. Also, the MOC model introduced three level of
parallelism, including coarse grain, fine grain and finer grain.
Therefore, we also executed the similar matrix multiplication
dataset on MOC and compared it with the proposed HMC model
as shown in Fig. 4.

It was observed that HMC outperformed throughout the
execution as compared to MOC in all datasets. We observed a
20-second difference in the execution for a large dataset, which
is the improved performance in HMC.

Further, to quantify the second objective of study, we
observed the power consumption in all the selected models and
compared it to proposed HMC model. The analysis mechanisms
were similar to those used for execution time. We firstly
evaluated dual-level homogeneous and heterogeneous models
and compared them to HMC with respect to power consumption,
as shown in Fig. 5.

MVAPICH-2 introduced the new directives, which are used
to optimize the communication cost among the processors.
Consequently, it causes a reduction in the system’s power
consumption during execution. Based on these improvements,
we observed that HMC decreased the power consumption
throughout the executions. For small computations, up to 50
watts’ power consumption was observed that was reduced in
HMC by comparing the consumed power measured in the best
model MPI+CUDA from existing state-of-the-art mechanisms.
As shown in Fig. 6, the power consumption was evaluated in the
MOC model to conduct a comparative analysis with HMC
model.

Fig. 2. TechpowerUp GPU-z Running.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

176 | P a g e

www.ijacsa.thesai.org

Fig. 3. (Performance) Execution Time for Matrix Multiplication in Dual

Level Models vs HMC.

Fig. 4. (Performance) Execution Time for Matrix Multiplication in MOC

Model vs HMC.

Fig. 5. (Power consumption) Dual Level Models vs HMC.

Fig. 6. (Power Consumption) MOC Tri-Hybrid vs HMC Model.

This time we observed a vital difference in power
consumption throughout the executions. For small dataset, the
observed power consumption was up to 80 watts, which is big
difference and an achievement in terms of study’s second
objective. The same ratio was discovered for all other
executions. Finally, HMC consumed 240 watts for 6000x6000
matrix size. We critically noted that this level of power
consumption was observed in 2000x2000 for the MOC model,
which was computed in a very small time. However, a drastic
change in both objectives was achieved in proposed HMC
model, which is a big achievement with respect to satisfying the
requirements of emerging HPC systems.

V. DISCUSSION

The proposed study was primarily concerned with emerging
High-Performance Computing and its perspectives objectives,
which are majorly concerned to enhancing performance under
the power consumption limitations. These concerns are vital
challenges now a day for current and future ICT. According to
research communities, there are two solutions to these primary
challenges, increasing number of cores in the system to achieve
massive performance in the system. This approach is not
feasible, as it will increase the power consumption in the system,
there another solution is required which is achieving massive
parallelism in the system to reduce the execution time that will
eventually decrease the power consumption in the system.
Leading to the second option, this study proposed a new parallel
programming model called Hybrid MVAPICH-2 and CUDA
(HMC).

HMC is fundamentally an extension of the dual level model
of MPI and CUDA. The issue in a hybrid of MPI+CUDA was
similar that it could not fulfill the demand of HPC systems. MPI-
3 (MVAPIC2) it has more directives like sessions and groups
and it will be scalable. We observed that the quantified execution
in HMC was 10% less as compare the other parallel
programming models. Further, we also noted that the power
consumption was much consumed in dual and tri-level hybrid
models but HMC consume 50 to 60 WATTs less comparatively.

VI. CONCLUSIONS

Emerging HPC technologies are experiencing more priority
and demand in all scientific fields. It has been anticipated that
Exascale HPC systems will be introduced at the end of 2020.
According to current state-of-the-art technologies, Exascale
systems face two vital challenges, including Power consumption
when increasing system performance to achieve Exa-flops level
of calculations. Various research communities have taken
initiatives to address these challenges. With respect to these
objectives, the current study proposed a new model named
Hybrid MVAPICH-2+CUDA (HMC) to address such
challenges. The HMC model implemented in matrix
multiplication benchmarking application and compared the
quantified performance and power consumption with existing
dual- and tri-hybrid parallel programming models. We observed
that the HMC model outperformed in all cases when we
compared it to other dual- and tri-level parallel programming
models. HMC reduced the power consumption up to 80 watts
with the same dataset execution within 70 sec less time,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

177 | P a g e

www.ijacsa.thesai.org

comparatively. These improvements can serve as the foundation
of an initiative to consider HMC as a leading model in the era of
HPC systems.

From future perspectives, HMC is required to implement a
large cluster system through which we can quantify the said
attributes on different platforms. Moreover, we must implement
HMC on different benchmarking applications to observe the
behavior of the proposed model when we change the benchmark.

REFERENCES

[1] Perarnau, Swann, Rinku Gupta, and Pete Beckman. "Argo: An Exascale
Operating System and Runtime." (2015).

[2] Carretero, Jesus, et al. "Energy-efficient Algorithms for Ultrascale
Systems.”Supercomputing frontiers and innovations 2.2 (2015): 77-104.

[3] Shalf, John, Sudip Dosanjh, and John Morrison. "Exascale computing
technology challenges." High-Performance Computing for
Computational Science–VECPAR 2010. Springer Berlin Heidelberg,
2010. 1-25.

[4] Abraham, Erika, et al. "Challenges and Recommendations for Preparing
HPC Applications for Exascale." arXiv preprint arXiv:1503.06974
(2015).

[5] Hall, Mary, et al. "ASCR Programming Challenges for Exascale
Computing." (2011).

[6] Tolentino, Matthew, and Kirk W. Cameron. "The optimist, the
pessimist, and the global race to exascale in 20 megawatts." Computer
45.1 (2012): 0095-97.

[7] Diaz, Javier, Camelia Munoz-Caro, and Alfonso Nino. "A survey of
parallel programming models and tools in the multi and many-core era."
Parallel and Distributed Systems, IEEE Transactions on 23.8 (2012):
1369-1386.

[8] Rajamony, Ramakrishnan, and Alan L. Cox. "Parallel programming
tools." Wiley Encyclopedia of Electrical and Electronics Engineering
(1998).

[9] W. Hwu, K. Keutzer, and T.G. Mattson, “The concurrency challenge,”
IEEE Design and Test of Computers, vol. 25, no. 4, pp. 312-320, July
2008.

[10] Macedonia, Michael. "The GPU enters computing's mainstream."
Computer 36.10 (2003): 106-108.

[11] Geer, David. "Chipmakers turn to multicore processors." Computer 38.5
(2005): 11-13.

[12] Satish, Nadathur, Mark Harris, and Michael Garland. "Designing
efficient sorting algorithms for manycore GPUs." Parallel & Distributed

Processing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009.

[13] Nakajima, Kengo. "Hybrid vs. flat mpi on the earth simulator: Parallel
iterative solvers for finite-element method." Applied Numerical
Mathematics 54.2 (2005): 237-255.

[14] Geist, Al, and Robert Lucas. "Major computer science challenges at
exascale." The International Journal of High- Performance Computing
Applications 23.4 (2009): 427- 436.

[15] Bergman, Keren, et al. "Exascale computing study: Technology
challenges in achieving exascale systems." Defense Advanced Research
Projects Agency Information Processing Techniques Office (DARPA
IPTO), Tech. Rep 15 (2008).

[16] Reed, Daniel A., and Jack Dongarra. "Exascale computing and big data."
Communications of the ACM 58.7 (2015): 56-68.

[17] Bergman, Keren, et al. "Exascale computing study: Technology
challenges in achieving exascale systems peter kogge, editor & study
lead." (2008).

[18] Maglione, Stephen C., and Edward Stanley Suffern. "Power control of
servers using advanced configuration and power interface (ACPI)
states." U.S. Patent No. 8,250,382. 21 Aug. 2012.

[19] Feng, Xixhou, Rong Ge, and Kirk W. Cameron. "Power and energy
profiling of scientific applications on distributed systems." Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE
International. IEEE, 2005.

[20] Marathe, Aniruddha, et al. "A run-time system for power- constrained
HPC applications." International conference on high-performance
computing. Springer, Cham, 2015.

[21] Geist, Al, and Daniel A. Reed. "A survey of high- performance
computing scaling challenges." The International Journal of High-
Performance Computing Applications 31.1 (2017): 104-113.

[22] Ashraf, M. Usman, Fathy Alboraei Eassa, and Aiiad Ahmad Albeshri.
"High-performance 2-D Laplace equation solver through massive hybrid
parallelism." 2017 8th International Conference on Information
Technology (ICIT). IEEE, 2017.

[23] Ashraf, M. Usman, et al. "Performance and power efficient massive
parallel computational model for HPC heterogeneous Exascale systems."
IEEE Access 6 (2018): 23095-23107.

[24] Ashraf, Muhammad Usman, Fadi Fouz, and Fathy Alboraei Eassa.
"Empirical Analysis of HPC Using Different Programming Models."
International Journal of Modern Education & Computer Science 8.6
(2016).

[25] Ashraf, Muhammad Usman, and Fathy Elbouraey Eassa. "Hybrid
model-based testing tool architecture for an exascale computing system."
International Journal of Computer Science and Security (IJCSS) 9.5
(2015): 245.

