
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

309 | P a g e

www.ijacsa.thesai.org

Experimental Evaluation of the Virtual Environment

Efficiency for Distributed Software Development

Pavel Kolyasnikov
1

Russian Academy of Education,

Russia

Evgeny Nikulchev
2
, Iliy Silakov

3
, Dmitry Ilin

4

MIREA–Russian Technological University

Moscow, Russia

Alexander Gusev
5

Kuban State University

Krasnodar, Russia

Abstract—At every software design stage nowadays, there is

an acute need to solve the problem of effective choice of libraries,

development technologies, data exchange formats, virtual

environment systems, characteristics of virtual machines. Due to

the spread of various kinds of devices and the popularity of Web

platforms, lots of systems are developed not for the universal

installation on a device (box version), but for a specific

architecture with the subsequent provision of web services.

Under these conditions, the only way for estimating the efficiency

parameters at the design stage is to conduct various kinds of

experiments to evaluate the parameters of a particular solution.

Using the example of the Web platform of digital psychological

tools, the methods for experimental parameter evaluation were

developed in the article. The mechanisms and technologies for

improving the efficiency of the Vagrant and Docker cloud virtual

environment were also proposed in the paper. A set of basic

criteria for evaluating the effectiveness of the configuration of the

virtual development environment has been determined to be

rapid deployment; increase in the speed and decrease in the

volume of resources used; increase in the speed of data exchange

between the host machine and the virtual machine. The results of

experimental estimates of the parameters that define the

formulated efficiency criteria are given as: processor utilization

involved (percentage); the amount of RAM involved (GB);

initialization time of virtual machines (seconds); time to assemble

the component completely (Build) and to reassemble the

component (Watch) (seconds). To improve the efficiency, a file

system access driver based on the NFS protocol was studied in

the paper.

Keywords—Distributed software development; virtual

development environment; increase development efficiency; virtual

machines; vagrant; Docker; NFS; webpack

I. INTRODUCTION

Currently, the virtual cloud development environments are
widely used in the team disturbed development of large
projects [1]. This technology uses virtualization and virtual
machines configuration management tools [2] to apply the
necessary parameters and install the required components with
the automation of the synchronization process, configuration
and launch of the development environment.

The use of virtual development environments allows
developers to avoid differences between the local development

environments and the final platform, and greatly simplify the
installation and configuration of environments on new
machines.

The paper examined a system for the preparation of virtual
development environments in Vagrant [3], which allows
creating reproducible virtual development environments [4]
and reduces the number of difficulties that can arise for the
reason of the incompatibility of software and hardware used by
developers [5].

The use of a development management system facilitates
simultaneous distributed work on several components of the
developed software [6, 7] and also automates the process of
installing and configuring all the necessary components of the
development environment [8-10]. The processes of updating
and modifying the components used are also simplified [11],
since it suffices only to make changes to the configuration
files.

The paper contains the results of a study of increasing the
efficiency in virtual software development of a digital
psychological research platform [12]. At use of the virtual
machines structure close to real servers, following performance
problems were discovered [13]: low data exchange rate, as well
as instability of work.

The aim of the paper is the development of research
methodology and the development of mechanisms for
increasing the efficiency of the virtual development
environment in the distributed development of large software
systems.

The paper consists of seven sections: the 1st is the
Introduction, the 2nd is devoted to the formulation of the
problem of describing the initial version of the development
environment, the 3rd section contains the description of
research methods and parameters for evaluating the
effectiveness; the 4th section presents the results of
experimental evaluation of the initial version of the
development environment; the 5th section provides the
development of alternative options aimed at improving
efficiency; the 6th section contains the evaluation of the
effectiveness of the alternatives; the 7th section shows the
results.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

310 | P a g e

www.ijacsa.thesai.org

The paper defines a set of criteria, estimation methods and
suggests mechanisms for increasing the efficiency of the
virtual work environment in distributed software development.

II. SOURCE DATA

The structure of virtual machines, close to the structure of
servers involved in the project, is used as the original
development environment (Fig. 1). With this approach, each
component of the platform corresponds to a separate virtual
machine configuration.

In the original development environment, the following
virtual machine parameters were chosen for the components:

 API Server: ОС ubuntu/xenial64, version 20180424.0.0,
1 CPU, 1024 MB RAM;

 Researcher Account: ОС ubuntu/xenial64, version
20180424.0.0, 2 CPU, 1024 MB RAM;

 Psychotest Player: ОС ubuntu/xenial64, version
20180424.0.0, 2 CPU, 512 MB RAM.

When developing using a similar structure of the working
environment, there is a need to simultaneously run several
virtual machines for simultaneous operation of several
interconnected components. During the practical use of the
developed structure of the virtual development environment on
the computers of developers, a significant reduction in
performance was noticed. Further observations revealed the
following problems of the development environment:

 high workload on the developers' working machines;

 low data exchange rate of virtual machines with the
main system;

 high component build time;

 work instability due to increasing loads;

 the need for manual execution of a large number of
operations when starting the environment.

During the development of large projects, the number of
components being developed increases. At use of such a
structure, it can lead to an even greater decrease in computer
performance and a decrease in the efficiency of developers
[14]. In addition, the development also requires the use of
additional software (development environment, web browser,

network data entry drivers [15]), which also leads to a
significant increase in the workload of the developers'
machines, a decrease in the stability of the system and an
increase in software execution time involved in the
development.

The low data exchange speed of the main system and the
virtual machine, observed in using the developed structure of
the virtual environment, may be due to two factors: a
significant increase in the load on the developer’s machine, but
also the driver used by the virtual machine to access the parent
file system.

It is also worth to highlight the problem of the need to
perform a large number of repetitive actions manually in the
development environment start. It also takes considerable time
due to the need to wait for the end of each virtual machine
before to start the rest of the components. Due to the increasing
load on the developer's work machine, this time can also
increase.

The problems described above have a significant impact on
the speed of software development due to high performance
losses and time consumption [16]. It is worth to note that with
the expansion of the overall structure of the project, parallel
development of several components becomes almost
impossible due to an even greater increase in resource
requirements.

Thus, it can be concluded that it is necessary to examine
approaches to create development environments for software
developers and improve their structure. Based on the problems
found during the observations, the main requirements for the
desired solution for the software development environment
were identified:

 rapid deployment;

 increasing the speed and lowering the resources used;

 increasing the speed of data exchange between the host
machine and the virtual machine.

It is necessary to evaluate alternative technologies and
develop a solution that meets the requirements described
above. In the study, it is also necessary to make an
experimental assessment of the used and alternative solutions,
and to evaluate the expediency of switching to an alternative
structure of the development environment.

Fig. 1. The Schema of the Original Development Environment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

311 | P a g e

www.ijacsa.thesai.org

III. RESEARCH METHODS

For the experiments described in this paper, measurements
of the following indicators were used:

 CPU resources usage (percent);

 the amount of RAM usage (GB);

 virtual machine startup time (seconds);

 component full build time (Build) (seconds);

 component rebuild time (Watch) (seconds).

All experiments were conducted on the same working
machine with the following configuration:

 motherboard: Dell 00TMJ3;

 processor: Intel Core i5-5250U;

 RAM: DDR3 12 GB, frequency 800 MHz;

 drive: Samsung SSD 860 EVO 500 GB;

 operating system: Windows 10.

For each component of the virtual development
environment, 10 experiments were conducted to measure each
of the indicators. To estimate the deviation of the obtained
values, Student's coefficient with confidential probability
P=0.95 was used.

To measure the processor and RAM resources used, a bash
script was developed that compared the figures before the
virtual development environment was launched with the
figures after the virtual machine started up completely. To get
data about the required indicators, the system command
“WMIC” was used in the script code. This command provides
the possibility of getting the necessary data through a
command interface.

All measurements of the indicators were carried out in the
waiting state of the virtual machine – after its complete launch
and during the work of key components (web server, database
server, etc.).

To estimate the virtual machines launch time, the system
utility “time” was used. This utility was launched with Vagrant
as a prefix in the start up command (“time vagrant up”) and
provides information on the time spent for execution after
completion. If it is necessary to launch several components of
the development environment, launching the necessary Vagrant
containers was carried out in parallel.

To estimate the execution time of build tasks (complete
“build” assembly and reassembly in “watch” mode), the data
provided after the task was completed with the tool for
building web applications (Webpack) was used.

IV. ASSESSMENT OF THE ORIGINAL DEVELOPMENT

ENVIRONMENT

With the aim of estimating the performance and working
speed of the used environment, an experiment was conducted,
including measurements of the time taken to start up, as well as

an assessment of the CPU resources and RAM used. The
results of the experiment are presented in Table I.

According to the data obtained during the experiment, it is
concluded about the objectivity of the problems described
during the observations, which reinforces the need to find
alternative solutions.

TABLE I. RESULTS OF ASSESSING RESOURCE USAGE BY DEVELOPMENT

ENVIRONMENTS

Configuration
VM

count

Startu

p time,

sec

CPU

usage,

%

RAM

usage

, GB

Initial configuration (API Server) 2
289,4 ±
2,8

24,3% ±
6,7%

1,5 ±
0,1

Initial configuration (Researcher

Account)
1

118,5 ±

13

21,8% ±

6%

0,5 ±

0,08

Initial configuration (Psychotest

Player)
1

155,3 ±

19,1

16,1% ±

3%

0,7 ±

0,04

Initial configuration (API Server,

Researcher Account)
3

347,4 ±

4,4

35,4% ±

9,1%

2 ±

0,2

Initial configuration (API Server,

Psychotest Player)
3

290,1 ±

4,5

29% ±

5,3%

2 ±

0,06

Initial configuration (3
components)

4
404,8 ±
4,1

49% ±
5%

2,2 ±
0,18

V. DEVELOPMENT OF MECHANISMS FOR INCREASING THE

EFFICIENCY OF THE ENVIRONMENT

Due to the high load arising from the use of virtual
machines on the basis of Vagrant, it is advisable to consider
alternative technologies for the organizing development
environments. As an alternative, the Docker technology [17]
was considered, which can also be used to organize
synchronized development environments [18].

The Docker system is based on the use of abstraction with
the help of the built-in Linux kernel virtualization capabilities
for isolating various components used within the stand-alone
containers with separate environments [19].

Originally, this approach was aimed at delivering the
developed software solutions to the server, but later the
platform also began to be used for replacing virtual
development environments. At the same time, Docker can act
as an independent solution [20], or work as the basis of a
Vagrant-based solution, thereby replacing the use of virtual
machines.

To estimate Docker as an alternative to Vagrant, a number
of criteria were identified for comparing these technologies.
The results of comparing are shown in Table II.

It can be concluded that both technologies provide
comparable advantages for different approaches for similar
tasks execution. Using Docker to synchronize and quickly set
up the virtual development environment can potentially be a
valid solution due to the advantages of containerization and the
solutions used within the Docker implementation. However,
this approach also obliges to develop a new structure of
components using Docker containers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

312 | P a g e

www.ijacsa.thesai.org

TABLE II. COMPARING VAGRANT AND DOCKER

Criterion Vagrant Docker

License MIT Apache 2.0

Developer Hashi Corp. Docker, Inc.

Platform supported
Linux, Windows,

MacOS

Linux, Windows,

MacOS

Purpose
Virtual development
environment

Containerization of
applications and

automation of tasks,
components delivery to

the server

Ease of use

Starting the

environment with the
use of one command

An understanding of the

container system and

dependencies is

necessary; launching the

environment with one

command in
combination with

Vagrant

Ease of configuration
Configuration file
written on Ruby

Native format of
configuration file

Container structure

The container includes

all the dependencies
specified in the

configuration. The

container is only the
runtime environment

Each component and its

dependencies are
separate containers

In the context of the developed platform, an important task
was to maintain maximum proximity to the work systems
environment on remote servers. In this case, changing the
structure of components for use in the form of Docker
containers inevitably causes a discrepancy between the
developer’s environment and the server system environment,
and also makes it difficult to support an existing solution in the
context of the developed platform. Therefore, the use of
containerization technology becomes impractical.

Another possible solution in this case may save Vagrant as
the basis of the chosen solution, but using a single virtual
machine to run all the components.

As an alternative solution, it is worth to consider a
configuration based on a single virtual environment in Vagrant.
In this case, each component runs within one virtual machine,
using also a single modular Vagrant configuration (Fig. 2).

Fig. 2. Alternative Structure of Development Environment.

Use of such a structure should reduce the load on the
computer by use of only one virtual machine. At the same time,
the use of a modular configuration based on the original
solution should simplify support and minimize discrepancies
with the server environment.

To compare the original and alternative structures of the
development environment, an experimental assessment of the
resources consumed was carried out (Table III). As a virtual
machine configuration, the alternative solution was based on
ubuntu/xenial64 OS, version 20180424.0.0 with 2 CPUs, 2048
MB RAM.

With the aim of increasing the efficiency, it is also worth to
examine alternative driver of data exchange with parent system
based of NFS protocol [18], since such a solution can
significantly increase the speed of working with the file system
and the tasks execution [21].

An additional driver is necessary to use NFS on the
machines with Windows OS management [22]. In addition, it
is necessary to involve bindfs [23] extension that allows to
transfer the access rights from parent system.

Due to the architectural feature of the NFS protocol, which
does not provide an implementation of system signals in file
changes tracking [24], it is also necessary to modify the
configuration of the Webpack software [25] used to build web
components. The following changes were made:

 to ensure compatibility with NFS, the
“watchOptions.poll” option was installed,
implementing a workaround of monitored files at a
specified time interval;

 to exclude unchangeable library files from the build, the
“watchOptions.ignore” option was used.

Additional measurements were taken for the time spent to
build a component after configuration changes (Table IV).

TABLE III. MEASUREMENTS RESULTS OF THE DEVELOPMENT

ENVIRONMENTS PERFORMANCE

Configuration
VM

count

Startup

time,

sec

CPU

usage, %

RAM

usage,

GB

Initial configuration (3

components)
4

404,8 ±

4,1
49% ± 5%

2,2 ±

0,18

Alternative configuration (3

components)
1

210,3 ±

4,6

23,8% ±

7,7%

1,3 ±

0,13

TABLE IV. RESULTS OF COMPONENT BUILDING TIME (SEC)

Configuration

Researcher

Account

Psychotest

Player

Build
Watc

h
Build

Watc

h

Initial configuration (3 components)
120,4 ±
2,7

5 ±
0,4

131 ±
3,1

4,4 ±
0,1

Alternative configuration (3

components)

100,7 ±

2,5

3,6 ±

0,3

82,4 ±

2,4

3,3 ±

0,1

Improved alternative configuration

(3 components)

90,1 ±

2,4

1,2 ±

0,3

79 ±

1,3

1,1 ±

0,2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

313 | P a g e

www.ijacsa.thesai.org

Such configuration changes are also caused an start time
increase (from 210.3 to 227.7 seconds in average), associated
with the addition of the waiting time for NFS driver starting
and the mounting the directory in virtual machine, and also
used CPU resources increase (from 24% to 29% in average).
However, indicators of resources consumed still remain
significantly lower compared with the full launch of all
components in original development environment. In this case,
a decrease in the time spent on the components build
operations was observed in using the proposed improvements.

VI. RESULTS OF THE EXPERIMENTS

Experiments were conducted to estimate the launch time
and the load on the computer for various configurations of the
virtual development environment. The results of the
experiments are given in Table V.

The results of experiments on evaluating the execution time
of the complete component assembly (Build) and component
reassembly (Watch) for the Platform components of the
Researcher Account and Psychotest Player are presented in
Table VI.

From the results of the experiments it can be seen that the
proposed alternative configuration exerts a significantly lower
load on the CPU (Fig. 3). An improved alternative
configuration uses slightly more processor resources, which is
associated with the use of additional driver, but even in this
case, the load is much lower than with the full launch of the
original development environment.

Similar changes are also noticeable in the used RAM
comparing (Fig. 4).

TABLE V. THE RESULTS OF THE EVALUATION OF DEVELOPMENT

ENVIRONMENT START UP TIME AND PERFORMANCE

Configuration
VM

count

Startu

p time,

sec

CPU

usage,

%

RAM

usage

, GB

Initial configuration (API Server) 2
289,4 ±

2,8

24,3% ±

6,7%

1,5 ±

0,1

Initial configuration (Researcher

Account)
1

118,5 ±

13

21,8% ±

6%

0,5 ±

0,08

Initial configuration (Psychotest

Player)
1

155,3 ±

19,1

16,1% ±

3%

0,7 ±

0,04

Initial configuration (API Server,
Researcher Account)

3
347,4 ±
4,4

35,4% ±
9,1%

2 ±
0,2

Initial configuration (API Server,

Psychotest Player)
3

290,1 ±

4,5

29% ±

5,3%

2 ±

0,06

Initial configuration (3
components)

4
404,8 ±
4,1

49% ±
5%

2,2 ±
0,18

Alternative configuration (3

components)
1

210,3 ±

4,6

23,8% ±

7,7%

1,3 ±

0,13

Improved alternative

configuration (3 components)
1

227,7 ±

3,4

28,7% ±

5,4%

1,2 ±

0,09

TABLE VI. THE RESULTS OF THE EVALUATION OF THE COMPONENT

BUILD TIME

Configuration

Researcher

Account

Psychotest

Player

Build
Watc

h
Build

Watc

h

Initial configuration (API Server)
101,9 ±

2,9

3 ±

0,4

86,1 ±

2,1

3,1 ±

0,1

Initial configuration (Researcher

Account)

100,6 ±

2,5

2,7 ±

0,4

91,8 ±

2,4

3,7 ±

0,1

Initial configuration (Psychotest

Player)

99 ±

2,4

3,6 ±

0,4

89,3 ±

3

3,7 ±

0,1

Initial configuration (API Server,

Researcher Account)

98,7 ±

2,2

3,7 ±

0,5

119,2 ±

2,4

4 ±

0,2

Initial configuration (API Server,
Psychotest Player)

94,6 ±
2,7

4,1 ±
0,4

137,7 ±
3,6

4 ±
0,2

Initial configuration (3 components)
120,4 ±
2,7

5 ±
0,4

131 ±
3,1

4,4 ±
0,1

Alternative configuration (3

components)

100,7 ±

2,5

3,6 ±

0,3

82,4 ±

2,4

3,3 ±

0,1

Improved alternative configuration

(3 components)

90,1 ±

2,4

1,2 ±

0,3

79 ±

1,3

1,1 ±

0,2

Fig. 3. Average CPU Load, in Percent.

Fig. 4. Average RAM used, GB.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

314 | P a g e

www.ijacsa.thesai.org

Reducing the CPU load and the number of used virtual
machines led to a significant decrease in the average time
required to start the virtual development environment (Fig. 5).
The improved alternative configuration is lower that alternative
configuration without additional modifications, like in case
with the load on the processor. This may also be due to the use
of an additional driver and the need to wait for its initialization.

However, improved alternative configuration leads in
performance in components build (Fig. 6), and also shows
significantly better performance indicators in rebuild (Fig. 7).
Such improvements are a direct consequence of using the NFS
driver, which increases the speed of data exchange with the
host machine. It significantly reduces the time required to build
components.

Therefore, the acquired improved alternative configuration
of the development environment for Vagrant shows a
significant reduction in the load on the processor and RAM in
comparison with the full launch of the original development
environment. It also shows a significant acceleration of the
component building process, which reduces the waiting time
on the part of the developers and thereby increases their
efficiency.

Fig. 5. Average Startup Time, Sec.

Fig. 6. Average Execution Time for the Complete Assembly of the

Components for the Researcher Account and the Psychotest Player (Build),
Sec.

Fig. 7. Average Execution Time for the Reassembly of the Components for

the Researcher Account and the Psychotest Player (Watch), Sec.

VII. DISCUSSION

In the process of research and development of mechanisms
to improve the effectiveness of the original software
development environment, it was found that the alternative
configuration of Vagrant based on a single virtual machine for
all existing platform components provides a significant
reduction in both the startup time and computer load.

Both Vagrant and Docker can be used to organize a
software development environment. It is reasonable to select
between them with respect to the technologies used at the
server in order to ensure that the development and the
deployment environments are as identical as possible.

Additional research may be conducted to measure the
increase in the number of components of the platform and
compare the performance of the original and alternative
Vagrant configurations. A separate study can provide a more
detailed consideration of the Docker container technology as a
solution for the organization of the software development
environment.

When choosing technologies and preparing the software
development environment, it is necessary to consider the whole
architecture of the application being developed and the
particular features of its operation. It makes sense to choose
Vagrant when using virtual machines and the Docker in the
case of the container technologies. It should also be borne in
mind that the hybrid design can be implemented with both the
technologies used. Although, one shouldn't exclude the use of
other technologies and configurations. In this regard, to assess
the performance of the software development environment, it is
necessary to conduct separate experiments and develop one's
own testing methodology, which can be completely different
from that presented in this article.

Switching from several virtual machines to the single one
may not be allowed when configuring certain development
environments. For example, if it is imperative to isolate a
particular component of the system. In this case, the increase in
the productivity of the software development environment
might not be achieved and the developer will have to look for
alternative approaches to solve this problem.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

315 | P a g e

www.ijacsa.thesai.org

VIII. CONCLUSIONS

Due to the increase of web projects development
complexity and working environments setting up, there is a
need to use virtual development environments.

At use of virtual development environment, which structure
contains an autonomous virtual machine for each component,
some problems with high resource consumption and a
reduction in the performance of the developers' working
machines were noticed, which made it necessary to consider
alternative solutions.

The paper described an analysis of the reasons of
performance reduction at use of development environments
based on virtualization. The main technologies used for the
development of virtual development environments are
considered, and an improved structure is proposed. In addition,
an experimental assessment of the original and alternative
solutions was made.

The assessment of the configuration of the original
software development environment showed that using a
separate virtual machine for each of the components of the
psychological platform to get as close as possible to the server
structure was not an effective approach. At the developers'
computers, there was a significant drop in performance, a low
data exchange rate with the VM and a high component
assembly time.

In the search for a solution, the containerization technology
based on Docker and the alternative configuration of Vagrant
using a single virtual machine for all existing components were
considered. However, using Docker requires developing a
completely new component structure and will cause the
developer's environment to differ from the server environment.
Therefore, the alternative configuration of Vagrant is the most
preferred option within the framework of the developed
platform. The measurements showed that the use of the
alternative configuration significantly reduced the startup time
and reduced the load on the computer.

As an efficiency enhancement, a driver based on the NFS
protocol was applied and the configuration of the Webpack
system was modified. The measurements showed that the use
of the NFS entailed a slight increase in the time for launching
the virtual machine but reduced the time for assembling the
components of the platform.

It was shown that in the case of the open digital platform
for mass psychological research the application of the
alternative Vagrant configuration with the NFS driver and the
Webpack optimization provided a significant performance
boost compared to the original configuration.

The implemented alternative solution based on a single
development environment showed significantly lower resource
consumption, as well as a reduction in the tasks building time
with the help of the driver for accessing file system based of
the NFS protocol.

Therefore, the use of a virtual development environment
based on a single virtual machine using the NFS driver can
significantly reduce the workload of the developers' computers.

This increases rapidity and reduce time consumption, which
improves the developers’ efficiency.

Conducted studies, including the stages of parameter
estimation, the introduced characteristics and criteria, can be
the basis for the formation of a methodology for the
experimental evaluation of the software development
environment configurations, which would allow choosing
effective solutions at the design stage.

ACKNOWLEDGMENT

The work was financed by the Ministry of Science and
Higher Education of Russia, project 25.13253.2018 / 12.1
"Development of the technological concept of the Data Center
for Interdisciplinary Research in Education".

REFERENCES

[1] Caballer M., Blanquer I., Moltó G., de Alfonso C. (2015) Dynamic
management of virtual infrastructures, Journal of Grid Computing,
13(1), 53-70. doi: 10.1007/s10723-014-9296-5

[2] Giannakopoulos I., Konstantinou I., Tsoumakos D., Koziris N. (201)
Cloud application deployment with transient failure recovery, Journal of
Cloud Computing, 7(1), 11. doi: 10.1186/s13677-018-0112-9

[3] Vagrant, 2019. Available at: https://www.vagrantup.com/ (accessed
27.03.2019).

[4] Spanaki P., Sklavos N. (2018) Cloud Computing: Security Issues and
Establishing Virtual Cloud Environment via Vagrant to Secure Cloud
Hosts. In Computer and Network Security Essentials. Springer, pp. 539-
553. doi: 10.1007/978-3-319-58424-9_31

[5] Hashimoto M. (2013) Vagrant: Up and Running: Create and Manage
Virtualized Development Environments. O'Reilly Media Inc, 2013.

[6] Xuan N. P. N., Lim S., Jung S. (2017) Centralized management solution
for vagrant in development environment, In Proceedings of the 11th
International Conference on Ubiquitous Information Management and
Communication. ACM,. art. no. 37. doi: 10.1145/3022227.3022263

[7] Thompson C. (2015) Vagrant virtual development environment
cookbook. Packt Publishing Ltd.

[8] Mouat A. (2016) Using Docker: Developing and Deploying Software
with Containers. O'Reilly Media Inc.

[9] Sammons G. (22016) Learning Vagrant: Fast programming guide.
CreateSpace Independent Publishing Platform.

[10] Peacock, M. (2015) Creating Development Environments with Vagrant.
Packt Publishing Ltd.

[11] Iuhasz G., Pop D., Dragan I. (2016) Architecture of a scalable platform
for monitoring multiple big data frameworks, Scalable Computing:
Practice and Experience, 17(4), 313-321. doi: 10.12694/scpe.v17i4.1203

[12] Nikulchev E., Ilin D., Kolyasnikov P., Belov V., Zakharov I., Malykh S.
(2018) Programming Technologies for the Development of Web-Based
Platform for Digital Psychological Tools, International Journal of
Advanced Computer Science And Applications, 9(8), 34-45. doi:
10.14569/IJACSA.2018.090806

[13] Kashyap S., Min C., Kim T. (2016) Opportunistic spinlocks: Achieving
virtual machine scalability in the clouds, ACM SIGOPS Operating
Systems Review, 50(1), 9-16. doi: 10.1145/2903267.2903271

[14] Saikrishna P. S., Pasumarthy R., Bhatt N. P. (2017) Identification and
multivariable gain-scheduling control for cloud computing systems,
IEEE Transactions on Control Systems Technology, 25(3), 792-807.
doi: 10.1109/TCST.2016.2580659

[15] Li J., Xue S., Zhang W., Qi Z. (2017) When i/o interrupt becomes
system bottleneck: Efficiency and scalability enhancement for sr-iov
network virtualization, IEEE Transactions on Cloud Computing, Early
Access. Doi: 10.1109/TCC.2017.2712686

[16] Basok B.M., Zakharov V.N., Frenkel S.L. (2017) Iterative approach to
increasing quality of programs testing, Russian Technological Journal,
5(4), 43-12.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

316 | P a g e

www.ijacsa.thesai.org

[17] Docker, 2019. Available at: https://www.docker.com/ (accessed
27.03.2019).

[18] Chen M., Bangera G. B., Hildebrand D., Jalia F., Kuenning G., Nelson
H., Zadok E. (2017) vNFS: maximizing NFS performance with
compounds and vectorized I/O, ACM Transactions on Storage. 13(3),
21. doi: 10.1145 / 3116213

[19] Kane S.P., Matthias K. (2018) Docker: Up & Running: Shipping
Reliable Containers in Production. O'Reilly Media Inc, 2018.

[20] Peinl R., Holzschuher F., Pfitzer F. (2016) Docker cluster management
for the cloud-survey results and own solution, Journal of Grid
Computing, 14(2), 265-282. doi: 10.1007/s10723-016-9366-y

[21] Krieger, M. T., Torreno, O., Trelles, O., & Kranzlmüller, D. Krieger M.
T. et al. (2017) Building an open source cloud environment with auto-
scaling resources for executing bioinformatics and biomedical
workflows, Future Generation Computer Systems, 67, 329-340.
doi:10.1016/j.future.2016.02.008

[22] Vagrant WinNFSd–GitHub, 2019. Available at: https://github.com/
winnfsd/vagrant-winnfsd (accessed 27.03.2019).

[23] Vagrant bindfs – GitHub, 2019. Available at: https://github.com/gael-
ian/vagrant-bindfs (accessed 28.03.2019).

[24] Dani S. A. (2017) JavaScript by Example. Packt Publishing.

[25] Webpack, 2019. Available at: https://webpack.js.org/ (accessed
28.03.2019).

