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Abstract—A skyline query finds objects that are not 

dominated by another object from a given set of objects. Skyline 

queries help us to filter unnecessary information efficiently and 

provide us clues for various decision making tasks. In this paper, 

we consider skyline queries for location-based services and 

proposed a framework that can efficiently compute all non-

dominated paths in road networks. A path p is said to dominate 

another path q if p is not worse than q in any of the k dimensions 

and p is better than q in at least one of the k dimensions.  Our 

proposed skyline framework considers several features related to 

road networks and return all non-dominated paths from the road 

networks. In our work, we compute skylines considering two 

different perspectives: business perspective and individual user’s 

perspective. We have conducted several experiments to show the 

effectiveness of our method. From the experimental results, we 

can say that our system can perform efficient computation of 

skyline paths from road networks. 

Keywords—Skyline queries; trip planning; location-based 

services 

I. INTRODUCTION 

Given a k-dimensional database DB, a skyline query 
retrieves a set of skyline objects, each of which is not 
dominated by another object. An object p is said to dominate 
another object p` if p is not worse than p` in any of the k 
dimensions and p is better than p` in at least one of the k 
dimensions. Fig. 1 shows a typical example of skyline. The 
table in Fig. 1 is a list of five routes, each of which contains 
two numerical attributes–“Cost” and “Distance”. In the list, 
R2 and R5 are dominated by R3, while others are not 
dominated by any other routes. Therefore, the skyline of the 
list is {R1, R3, and R4}. Such skyline results are important for 
users to take effective decisions over complex data having 
many conflicting criteria. A number of efficient algorithms for 
computing skylines from the database have been demonstrated 
in the literature [1, 2, 3, 4, 5, 6]. 

Location-based services (LBSs) use positioning technology 
and traditional map information to furnish mobile users with 
new sorts of on-line services. 

Location-based services in road network are becoming 
more popular. With rapid growth of technology, skyline 
queries on road networks [14, 15, 16, 17] have attracted much 
attention now a days. 

Traffic jam refers to a long line of vehicles stuck in a jam. 
It is a common problem in the big cities and towns like Dhaka 
city of Bangladesh. Many factors such as less number of 
roads, lack of modern proper traffic management systems, 
narrowness of the roads, and increase of vehicles are the main 
causes of traffic jams in cities like Dhaka. These traffic jams 

are creating many problems such as not reaching in time at 
offices, ambulance carrying patients cannot reach at the 
hospitals in time etc. 

In such a scenario, a well-developed location-based service 
that focuses on the road conditions such as traffic jam, number 
of passengers and cost to the destination can give some 
comforts to the people by choosing skyline routes from which 
people can select their desired paths based on their 
preferences. 

Each road in a road network has multiple-path criteria such 
as the distance of the road, the travel time through that road, 
the number of travellers and the number of traffic. The last 
two factors vary according to time. Before starting a journey, a 
traveller may want to know about the conditions of the road 
taken on their destination at a specific point of time. He/she 
may also want to know trip cost and other conditions of the 
roads. 

In this paper, we apply skyline queries to support location-
based services for road networks. In our approach, at first, a 
user needs to choose his pick-up point and the destination 
point. Based on the choice of the source and the destination by 
a user, our system then finds all alternate routes from source to 
destination. Next, each route is represented with several 
features such as traffic conditions, travelling time, travelling 
costs, number of passengers available through that each routes 
etc. After representing each route with a number of features, 
we apply skyline queries to filter dominated routes and to 
return only useful routes for the users. From the return results, 
a user can select his desired path such as less cost path or less 
traffic path. 

The remainder of this paper is organized as follows: 
Section II provides a brief review of related work. We provide 
motivating examples at Section III. Section IV describes 
different concept related to the paper. We provide detail 
description of our proposed approach at Section V. In 
Section VI we present the experimental results. Finally, we 
conclude our paper at Section VII. 

 
(a) Roads    (b) Skyline 

Fig. 1. Skyline Example. 
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II. RELATED WORK 

Since the introduction of skyline queries in 2001, there are 
many works related to skyline queries considering different 
settings. 

The Block-Nested Loops Algorithm (BNL) [4], which is 
the easiest skyline query method. Its objective is to build a 
candidate skyline set. This calculation investigates every data 
point with each other data point in the dataset. The BNL 
calculation requires each data point in the database be checked 
and tried for predominance; consequently, the time required 
for calculation increments with the volume of information. 

The DAC calculation [4] separates information into groups 
and at that point leads skyline query in each group. The results 
are consolidated to acquire a definitive result. 

The SaLS aalgorithm [2] utilizes an element acquired from 
the raw information as a threshold value with which to filter 
and dispose data points. 

The BBS algorithm [18] is at present the most well-known 
skyline query algorithm. The BNL and DAC algorithms 
require that a large portion of the data points be processed all 
together to complete the skyline query comparison. 
Conversely, BBS utilizes an index structure for the 
identification of skyline points, which diminishes the number 
of points that must be tested all together to process a query. 

Previous studies in which skyline queries were utilized to 
check road networks can be classified into those attempting to 
recognize skyline landmarks and those trying to distinguish 
skyline paths. 

Deng et al. [8] presented the idea of searching for skyline 
landmarks in street network. The skyline landmark query 
recognizes landmarks that coordinate user criteria when user is 
going on a road network. For instance, when a user travels on 
a road network, skyline landmark query encourages him/her 
those points that are adjacent. The algorithm in this work 
characterizes landmark attributes as static or dynamic. Static 
properties have fixed values. Dynamic properties have 
variable attributes. The algorithm initially distinguishes static 
skyline landmarks on their static attribute values. At that 
point, when users perform to check, the algorithm 
distinguishes all unique skyline landmarks dependent on their 
dynamic attribute values, and consolidates query points with 
the static skyline landmarks. At last, the algorithm can recover 
skyline landmarks that fit all characteristics. 

Huang and Jensen [13] proposed an alternate skyline 
landmark search concept from that of [8]. They contended that 
users' movement in road networks ought to be founded on a 
recently settled way. The algorithm in this work was like that 
proposed by Deng et al. [8], which utilized the ideas of static 
and dynamic attributes to identify skyline landmarks. The 
main contrast between the algorithms is the attribute 
calculation method. Deng et al. [8] considered the separation 
between the landmark and the inquiry area of the user, while 
the researchers of this work consider the separation between 
the landmark and the path preset by the user. 

Tian et al. [21] presented the idea of skyline paths. Their 
proposed algorithm would utilize the edge attributes of a road 

network to discover all skyline paths between the user-
specified starting vertex and goal. The algorithm would first 
decide a single skyline path between a starting vertex and goal 
whose summation of all attributes values is the most reduced 
among all ways. At that point, the algorithm would recognize 
other skyline paths by (1) a greedy algorithm to locate a relay 
vertex between starting vertex s and goal t. If skyline path 
domination was available after adding the two values, at that 
point a can‟t be a piece of a skyline path. In this instance, the 
algorithm again employs the greedy algorithm to identify 
other possible relay vertices or identify the next relay vertex 
following a. 

Kriegel et al. [15] utilized the greedy algorithm to 
distinguish a possible relay vertex among s and t. Kriegel et al. 
[15] utilized a reference vertex to help estimations. By 
utilizing such a technique, they proclaimed the strategy 
proposed in this work was quicker than that proposed in 
crafted by [21]. 

Many researchers have looked to broaden the works in [15] 
and [21]. Aljubayrin et al. [1] examined the issue of skyline 
trips on different POI classes. Hsu et al. [10] connected the 
possibility of a skyline path to the arranging of treks to beat 
the conventional problem of acquiring multicriteria answers. 
Yang et al. [23] consolidated GPS history information in their 
inquiries to enable the user to design their skyline route under 
time-varying vulnerability. Unfortunately, these works don't 
consider aggregate attributes in road networks, which make 
them inapplicable to the issues tended to in this examination. 

A new concept M-tree structure is described in [7]. A. 
Guttman al. [9] describes dynamic index structure called an R-
tree and W. Son al. [20] describes spatial skyline queries for 
dynamic environment. 

In [11], they focus on processing the continuous skyline 
query in road networks. They design a grid index to 
effectively manage the information of data objects. They 
proposed several algorithms combined with the grid index to 
answer the skyline queries. 

In [12], they overcome the specific assumptions that each 
object is static in road networks.  They focus on processing 
the CKNSQ over moving objects with uncertain dimensional 
values in Euclidean space and the velocity of each object 
(including the query object) varies within a known range. 

Sheng et al. [19] present external memory algorithms for 
solving the skyline problem its variants in a worst-case 
efficient manner. They proved that the running time can be 
improved if some dimensions have small domains. 

In [22], they bring out novel information by analyzing 
bulky databases to consolidate users experience to find place 
of interest. They use Apriori algorithm for identifying hidden 
association among item sets from large databases of user 
checking in data and to construct the route analogous to the 
key terms provided by user. 

III. MOTIVATING EXAMPLES 

Consider the graph of Fig. 2 that represents a road network 
where L1 is considered as a source location and L2 is a 
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destination location. Each vertex in Fig. 2 represents a 
junction i.e. dropping and/or pickup point and each edge 
represents a connection between two vertices. There are four 
values associated with each edge those are travel time, cost, 
distance and passengers, respectively. For example, edge (L1, 
l1) has values (3.18, 0.35, 0.7, 4), which indicates that the 
required time to reach from L1 to l1 is 3.18, cost of is 0.35, the 
distance between L1 and l1 is 0.7 and number of available 
passengers in is 4. In Fig. 2 if we use the route <L1, l5, l6, l2, 
l8,l9,l4, L2> to reach from L1 to L2, we need total time 3.18 + 
5 + 2.27 + 3.18 + 4.54 +4.09 + 1.81 = 24.07 and cost is 0.35 + 
0.55 + 0.25 + 0.35 + 0.5 + 0.45 + 0.2 = 2.65. Here, total 
distance is 0.7 + 1.1 + 0.5 + 0.7 + 1 + 0.9+0.4 = 5.3 and the 
number of available passengers in this route is 4 + 5+ 7 + 6 + 
8 + 10 + 10 = 50. 

In this paper, we have considered two different scenarios. 
One is for business purpose and another is for individual 
user‟s perspective. These scenarios are explained below. 

A. Business Perspective 

In applications such as Pathao and Uber, one trip can only 
be allotted to one passenger request at a specific time. In 
contrast, microbuses and cars have the capacity to carry five to 
eight passengers, respectively. Let us assume that a service 
provider has a microbus, which is a 10-seater vehicle. Suppose 
this person plans a trip from location L1 to L2. Before starting 
the journey, by utilizing our method this person can find 
shorter route as well as a faster route. Our method also 
suggests a route having a large number of passengers, whereas 
for a fast route this method provides a route with a shorter 
distance and lesser traffic. Here, the passengers are those 
whose destination location is the same as that of the service 
provider and the start location belongs to the list of suggested 
routes. Thereby, the service provider can choose its preferable 
route and accept the passenger request for the same. 

Table I shows the distance information on all routes and 
Fig. 3 presents the traffic and passenger conditions of two 
alternate routes. In Fig. 3, the graph lines are represented by 
three colours: green represents light traffic, orange represents 
medium traffic, and red indicates high traffic. 

Hence, compared to multiple routes, it is necessary to find a 
desired route that is not dominated by any other route. In 
detail, a route is preferable to visitors if it is not dominated by 
any other route. The information on routes is given below. 
This information is collected from Google Map API. 

 

Fig. 2. Example of a Graph Representing a Road Network. 

TABLE I. INFORMATION ON ROUTES 

Route Starting Ending Distance Locations 

Route 1 L1 L2 5.3  Km L1,l5,l6,l2,l8,l9,l4,L2 

Route 2 L1 L2 4.8 Km L1,l1,l2,l3,l4,L2 

Route 3 L1 L2 5.6 Km L1,l5,l6,l2,l3,l4,L2 

Route 4 L1 L2 4.5 Km L1,l1,l2,l8,l9,l4,L2 

The traffic and passenger conditions of two routes are 
graphically represented in Fig. 3. The route line colour 
changes with time. From this figure, we can say that there is a 
light traffic for Road 1 from 8.00 a.m. to 12 p.m., and Road 2 
will be free after 2 p.m. It is also observed that there is heavy 
traffic for Road 1 from 3 p.m. and for Road 2 from 11 a.m. to 
2 p.m. This graph is also helpful in tracing a medium traffic 
condition. Road 1 has medium traffic from 12 p.m. to 3 p.m. 
and Road 2 from 8 a.m. to 11 a.m. We can also calculate our 
travel cost from route distance. 

Table II represents the traffic and passenger conditions of 
every location for Route 1 and 2. Each row in the table 
represents traffic and passenger conditions. For measuring 
passenger we use normalize value. These are helpful in 
identifying the most interesting and preferable route. 

Another graphical representation is given below. Fig. 4, 
represents the passenger condition with traffic. In this figure, 
blue colour Route 1 and green Road 2. 

From Table II we find skyline points H3, H4. 

 

Fig. 3. Traffic Condition of Two Routes with Respect to Time. 

TABLE II. ROAD CONDITIONS FOR DIFFERENT TIME INTERVALS 

ID Route Travel Time Passenger Traffic 
Distance 

(Km) 

H1 Route 1 8.00 am 50 Low 5.3 

H2 Route 1 2.00 pm 40 High 5.3 

H3 Route 2 8.00 am 41 High 4.8 

H4 Route 2 9.00 pm 35 Medium 4.8 
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Fig. 4. Traffic and Passenger Conditions. 

B. Individual Perspective 

Suppose a visitor wishes to travel from Location L1 to L2. 
Before starting their journey, he/she wishes to know about the 
route and traffic conditions as well as the cost of travel. Then, 
this method will provide him/her with traffic information 
using Google Map Traffic API and calculate the cost by 
calculating the fuel cost per litre, the mileage of their vehicle 
and the distance between their start and end locations. From 
the resulted dataset a user can easily filter routes according to 
choice. 

Table III represents road condition for specific interval. 
Each row in the table represents traffic and cost, which are 
helpful to identify the most interesting and preferable route. 

From Table III, we find that cost is changing with user. 
Moreover, cost depends on user vehicle‟s fuel cost and 
mileage. 

In this paper, we compute a method that can help service 
providers to choose their desired route from our resulted 
skyline routes. Our location-based computation method can 
significantly find the appropriate route, based on the dataset. 
By this way, our method is useful for individual trip planning 
and transport service business planning. 

TABLE III. TRAVEL COST 

ID User 
Start 

point 

End 

point 
Route 

Distance 
(Km) 

Traffic Cost 

H1 
user 

1 
L1 L2 

Route 

1 
5.3 High 2.65 

H2 
user 

1 
L1 L2 

Route 

2 
4.8 Low 2.4 

H3 
user 

1 
L1 L2 

Route 

3 
5.6 High 2.5 

H4 
user 

1 
L1 L2 

Route 

4 
4.5 High 2.25 

H5 
user 

2 
L1 L2 

Route 

1 
5.3 High 3.65 

H6 
user 

2 
L1 L2 

Route 

2 
4.8 High 3.4 

H7 
user 

2 
L1 L2 

Route 

3 
5.6 Low 3.5 

H8 
user 

2 
L1 L2 

Route 

4 
4.5 Low 3.35 

IV. PRELIMINARIES 

Consider a database DB with N attributes and k objects. Let 
a1, a2,...,aN be the N attributes of DB. We consider that 
smaller values in each attribute are better and that each 
attribute has positive values. 

A. Skyline Queries 

Skyline query is a decision-supporting mechanism that 
highlights the best options among vast data. 

An example is given below: 

In Fig. 5, we have some points in a two-dimensional space, 
as shown above, then we define a point p that will dominate 
point q provided its coordinates are larger than that of q. In 
this example, there is a point p that dominates several other 
points. So what is the skyline point? Skyline points are points 
that are not dominated by any other points present in the 
dataset. They are also called maximal points. If you connect 
these with horizontal and vertical lines, then you will get 
skyline points. 

Let L denote a set of all locations. Each location has an ID 
and a spatial coordinate l = (xy). Let us suppose A is a 
category attribute. In our research work, passenger and traffic 
are category attributes. So, we denote the coordinates of 
location L by l. L; l.a represents the value of attribute A. 

Definition 1 (Dominance Relationship): Given two objects 
a and a’ exist, then object a is said to dominate a’ if a < a’ for 
all the attributes. 

Definition 2 (Skyline Query): Skyline query is the set of 
objects that cannot be dominated by any other object. Given 
point p, r ∈ D. If p < r, then p belongs to the skyline set. 

B. Multi-Attribute Network Graph (MAG) 

Graph G (V, E, W) is a multi-attribute network graph, where 
V denotes a set of vertices, E a set of edges, and W weight 
vector. In Fig. 6, nodes define profiles of activity, roles and 
actors etc.  Edges define the relationship among those nodes 
or entities and weight defines the behaviour of the edges. 

 

Fig. 5. Skyline Points. 

 

Fig. 6. Multi-Attribute Network Graph (MAG). 
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V. METHODOLOGY 

Our method comprises two modules: the first module 
delves into the business perspective and the second into the 
individual perspective. Fig. 7 describes the proposed 
framework. In each module, the user can provide the source 
and destination addresses while prioritising a specific 
destination based on his/her choice. 

The business perspective and individual perspective 
operates in three processes or modules: processing module, 
query execution module and output module. Our functional 
algorithm, which parses the dataset and the filters, is known as 
the processing module. In terms of both perspectives, it works 
in five steps: first, it measures the geolocations of the start and 
end locations. Upon completion, an iteration process continues 
to measure all alternate routes from the source location to the 
destination location. Thereafter, it calculates traffic, trip cost 
or passengers based on the dataset. Thereafter, the process 
migrates into the query execution module, where a resulted 
dataset is generated imposing skyline queries. Through these 
processes, we get the dominant paths that are filtered later on 
the system output, which shows the result of these potential 
paths. 

The most naïve approach to locating skyline paths in a road 
network is to identify all of the paths between the origin and 
destination in the network, calculate attributes of the paths, 
and perform a dominance check of all the attributes. The 
process of estimating traffic, cost and passenger are given in 
below. 

A. Traffic Estimation 

Fig. 8 describes the traffic condition at a specific time. 
Suppose we wish to assess the traffic conditions in all 
alternate routes from L1 to L2 at 2 pm. In this framework, car 
has been used as a transport mode.  We get four routes from 
the given graph: Route 1 comprises L1, l5, l6, l2, l8, l9, l4, L2 
and Route 2 comprises L1, l1, l3, l4, L2. Similarly  Route 3 
contains L1, l5, l6, l2, l3, l4, L2 and Route 4 contains L1, l1, 
l2, l8, l9,l4,L2. For assessing the traffic conditions at a specific 
time, Google Map Traffic API is used. For example, if 
someone wants to assess the traffic condition from L1 to L2 at 
2 pm, then the system counts all alternate routes that he/she 
can take to reach the destination. Thereafter, it uses the 
latitude and longitude of a distance at every 0.5 km interval 
and checks the location at each iteration. Whenever a new 
location returns, we measure the traffic condition at those 
points by employing Google Map Traffic API. It provides the 
standard time and the time required to reach one‟s destination, 
and then it stores all the data on the latter for every 0.5 km 
interval. In this way, we can obtain all the data on the time 
taken for all alternate routes. In this figure, the blue-coloured 
text represents the standard time (in minutes) taken to travel 
from one location to another. Another colour represents the 
time required to travel from one location to another. In this 
figure, three different colours are used: orange is used to 
represent medium traffic, green to indicate low traffic and red 
for heavy traffic. When the standard time is equal to the 
required time, the given time interval contains medium traffic. 
If the required time is low, it indicates the presence low 
traffic. Otherwise, the presence of heavy traffic is indicated. 

By this way, we gather data for our dataset. Tables IV, V, VI 
and VII represent the required time for Route 1, Route 2, 
Route 3 and Route 4 respectively. 

Now, we calculate the total required time for each route. 
From above dataset we find Route 1, Route 2, Route 3 and 
Route 4 require  24.07, 21.79, 25.43 and 20.43 minutes 
respectively. 

B. Cost Estimation 

Table III represents user wise cost for each route. Here, we 
represent how cost is changing with distance, mileage and fuel 
consumption. In our method, cost measures by using the 
following formula. 

Cost = (mileage/per ltr fuel cost) * Distance            (1) 

 

Fig. 7. System Architecture. 
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TABLE IV. REQUIRED TIME AND DISTANCE FOR ROUTE 1 

Source Destination Required Time 

(min) 
Distance (Km) 

L1 l5 3.18 0.7 

l5 l6 5 1.1 

l6 l2 2.27 0.5 

l2 l8 3.18 0.7 

l8 l9 4.54 1 

l9 l4 4.09 0.9 

l4 L2 1.81 0.4 

TABLE V. REQUIRED TIME AND DISTANCE FOR ROUTE 2 

Source Destination 
Required 

Time (min) 

Distance 

(Km) 

L1 l1 4.54  1 

l1 l2 2.27  0.5 

l2 l3 6.81  1.5 

l3 l4 6.36   1.4 

l4 L2 1.81  0.4 

TABLE VI. REQUIRED TIME AND DISTANCE FOR ROUTE 3 

Source Destination Required 

Time (min) 
Distance (Km) 

L1 l5 3.18 0.7 

l5 l6 5 1.1 

l6 l2 2.27 0.5 

l2 l3 6.81 1.5 

l3 l4 6.36 1.4 

l4 L2 1.81 0.4 

TABLE VII. REQUIRED TIME AND DISTANCE FOR ROUTE 4 

Source Destination 
Required 

Time (min) 

Distance 

(Km) 

L1 l1 4.54 1 

l1 l2 2.27 0.5 

l2 l8 3.18 0.7 

l8 l9 4.54 1 

l9 l4 4.09 0.9 

l4 l2 1.81 0.4 

C. Passenger Estimation 

Fig. 9 describes the condition of passenger at specific time; 
suppose, we need to assess the condition of passenger of all 
alternate routes from location L1 to L2. The passenger 
condition for specific time for each location can be assessed 
through passenger request. Fig. 8 shows the passenger 
condition. From this Fig. 8, we have found four alternate 
routes: Route 1 comprises L1, l5, l6, l2, l8, l9, l4, L2 and 
Route 2 comprises L1, l1, l3, l4, L2. Similarly  Route 3 
contains L1, l5, l6, l2, l3, l4, L2 and Route 4 contains L1, l1, 

l2, l8, l9,l4,L2. For example, we want to measure number of 
passengers for Route 1.At first, we count passengers of all 
location of Route 1, whose destination location is L2. Now get 
the maximum value from these locations. Suppose the value is 
P. We use the following formula to normalize location wise 
passengers. 

Pi=P + 1 - Pi                                                    (2) 

Tables VIII, IX, X and XI represent the condition of 
passengers for Route 1, Route 2, Route 3 and Route 4, 
respectively. 

Now, calculate the condition of passenger for each route. 
Route 1, Route 2, Route 3 and Route 4 has 50, 41, 40 and 51 
passengers, respectively. 

 

Fig. 8. Traffic Condition and the Distance of all Alternate Routes from L1 to 

L2. 
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TABLE VIII. PASSENGER CONDITION FOR ROUTE 1 

Source Destination Number of Passengers 

L1 l5 4 

l5 l6 5 

l6 l2 7 

l2 l8 6 

l8 l9 8 

l9 l4 10 

l4 L2 10 

TABLE IX. PASSENGER CONDITION FOR ROUTE 2 

Source Destination Number of Passengers 

L1 l1 9 

l1 l2 8 

l2 l3 9 

l3 l4 5 

l4 L2 10 

 

Fig. 9. Passenger Condition from L1 to L2. 

TABLE X. PASSENGER CONDITION FOR ROUTE 1 

Source Destination Number of Passengers 

L1 l5 4 

l5 l6 5 

l6 l2 7 

l2 l3 9 

l3 l4 5 

l4 L2 10 

TABLE XI. PASSENGER CONDITION FOR ROUTE 2 

Source Destination Number of Passengers 

L1 l1 9 

l1 l2 8 

l2 l8 6 

l8 l9 8 

l9 l4 10 

l4 L2 10 

D. Computing Skyline 

Here, we generate a dataset that measure attributes such as 
traffic, passenger, cost and distance. 

Let‟s consider a scenario. Suppose source is S and 
destination is D. There are ten alternate routes from S to D. 
We denote traffic condition as low, medium and high and 
define them as 1, 2, and 3 respectively. Table XII represents 
the route condition for a specific time. 

From this dataset we need desire routes. By using BBS [18] 
algorithm we get our skyline routes. Fig 10 describes the BBS 
algorithm. 

Using BBS algorithm, we get our skyline routes as R1, R2, 
R3 and R4. From this method, a user can easily find his/her 
desire route in proficient and appropriate way.  If one wants a 
large passenger, low traffic and low cost route, then he/she can 
get the desired routes from the resulted routes. 

TABLE XII. ROAD CONDITION FOR A SPECIFIC TIME 

Route Traffic Cost Passenger Distance (Km) 

R1 1 55 20 20 

R2 3 60 9 10 

R3 2 50 10 15 

R4 1 45 8 30 

R5 3 100 20 50 

R6 2 120 30 60 

R7 2 110 50 70 

R8 2 130 40 50 

R10 2 150 50 30 

R11 3 140 60 40 
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Fig. 10. BBS Algorithm for Skyline Computation (Adapted from [18]). 

VI. EXPERIMENTS 

We have implemented our proposed system in .Net 
Framework. We have performed the experiment in a 
simulation environment of a PC running on windows OS 
having an Intel(R) Core i7, 1.73 GHz CPU and 4 GB main 
memory. Due to the lack of real data, we evaluate our 
proposed algorithm using synthetic datasets only. 

Fig. 11 shows the results when we consider Route 1, Route 
2, Route 3 and Route 4. We observe that with the increases of 
distance, number of passengers varies. 

Fig. 12 shows that with the increase of distance, number of 
routes also increases. 

In Fig. 13, when we consider two (2D), three (3D), four 
(4D), and five (5D) features. We observe that with the 
increases of routes, there is very slight increase in computation 
time. This is because during the computation process, time 
increases with the increase of number of routes. We can also 
observe that computation time gradually increases if the 
number of features increases. 

 

Fig. 11. Passenger Varies with Distance. 

 

Fig. 12. Number of Routes Varies with the Distance. 

 

Fig. 13. Time Varies with Number of Routes. 

 

Fig. 14. Skyline Points Varies with Number of Routes. 

Simultaneously, it is also observed that skyline points 
increase with the number of routes and number of features. 
Fig. 14 represents how skyline points increase with the 
number of routes. 

Algorithm 1: BBS 

Input: A dataset D (r-tree). 

Output: The Set of skyline points of dataset D. 

1. S=∅ // list of skyline points 

2. insert all entries of the root R in the heap 

3. while heap not empty 

4. remove top entry e 

5. if e is dominated by some point in S discard e 

6. else // e is not dominated 

7. if e is an intermediate entry 

8. for each child ei of e 

9. if ei is not dominated by some point in S 

10. insert ei into heap 

11. else // e is a data point 

12. insert ei into S 

13. end while 

14. end  
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VII. CONCLUSION 

With the rapid growth of civilization, traffic is seen to 
increase day by day. Therefore, collecting traffic information, 
passenger condition and cost calculation has become a popular 
method. Our experimental results demonstrate that the 
proposed algorithm is scalable enough to compute the skyline 
path for a specific time. The proposed approach can easily 
expand for recommendation. In this work, we performed 
different analyses on synthetic data. In future, we aim to 
expand large passenger route methodology in more efficient 
way and find desire route based on user preference. So that we 
can get skyline points in more proper ways. We also want to 
trace the vehicle movement and position in a more efficient 
and effective way. 
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