
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

473 | P a g e

www.ijacsa.thesai.org

Intelligent Scheduling of Bag-of-Tasks Applications

in the Cloud

Preethi Sheba Hepsiba
1
, Grace Mary Kanaga E

2

Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
1, 2

Department of Computer Science and Engineering, CMR Institute of Technology, Bangalore, India
1

Abstract—The need of efficient provision resources in cloud

computing is imperative in meeting the performance

requirements. The design of any resource allocation algorithm is

dependent on the type of workload. BoT (Bag-of-Tasks) which is

made up of batches of independent tasks are predominant in

large scale distributed systems such as the cloud and efficiently

scheduling BoTs in heterogeneous resources is a known NP-

Complete problem. In this work, the intelligent agent uses

reinforcement learning to learn the best scheduling heuristic to

use in a state. The primary objective of BISA (BoT Intelligent

Scheduling Agent) is to minimize makespan. BISA is deployed as

an agent in a cloud testbed and synthetic workload and different

configurations of a private cloud are used to test the effectiveness

of BISA. The normalized makespan is compared against 15

batch mode and immediate mode scheduling heuristics. At its

best, BISA produces a 72% lower average normalized makespan

than the traditional heuristics and in most cases comparable to

the best traditional scheduling heuristic.

Keywords—Bag-of-tasks applications; intelligent agent;

reinforcement learning; scheduling

I. INTRODUCTION

A formidable challenge in cloud computing is the effective
allocation of resources. In traditional scheduling, the efficacy
of any scheduling heuristic largely depends on the
characteristics of the workload (tasks to be scheduled) and
resources. For a cloud service provider, maximum resource
utilization and minimum power consumption result in the most
profitability. For the customer, the scheduling of tasks in the
cloud is also affected by network latency and cost. In addition,
resource providers also strive to meet QoS (Quality of Service)
requirements [1] from the customer in addition to minimizing
energy consumption and maximizing resource utilization.
Several VMs are hosted in a multi-tenant architecture, migrated
to different hosts with different computing capacities in a
datacenter. The principles that aid in attaining these objectives
often result in a dynamically changing environment on the
available cloud resources. This inadvertently leads to
performance unpredictability. Andreadis et al [2] when
proposing a reference architecture for datacenter scheduling
pointed out that because of the complex nature of the
environment in a datacenter, comparing scheduling heuristics
and improving performance is challenging.

Self-learning systems [3] are the future of cloud computing.
Reinforcement learning has been used for energy-aware
resource scheduling [4] and results show that it can enhance
energy efficiency in data centers. Adaptive scheduling for
resource provisioning [5] also uses reinforcement learning.

This work differs from adaptive scheduling in that the
heuristics or meta-heuristics are not modified. However, by
incorporating reinforcement learning, the state is observed and
based on the information, the agent is trained to choose the best
heuristic from its repository.

The bag-of tasks applications are a popular type of
workload in the cloud and challenging to schedule in
heterogeneous machines as opposed to homogeneous
machines[6] for which an optimal schedule can be produced.
Once tasks are allotted to a private cloud or any set of
resources on a public cloud, there is a need for an intelligent
agent in scheduling that is adaptable to a dynamic environment
prevalent in the cloud. The hypothesis is that if an agent can
sense the environment, apply learned best scheduling heuristic
and simultaneously explore other options, over time the agent
will choose the best heuristic for a state. In this work, an
intelligent agent, BISA (BoT Intelligent Scheduling Agent) is
proposed that uses reinforcement learning to choose the best
scheduling heuristic in a state. BISA recognizes the current
state based on the characteristics of the BoT workload and the
available resources. It uses reinforcement learning to choose
the best-known scheduling heuristic for the given state. The
learning parameters in BISA, namely α and β control the
exploration vs. exploitation strategy of BISA.

In previous work [7], the BIS agent was presented and the
preliminary results from the training phase of BISA were
divulged and discussed. In this work, BoT workload is
generated synthetically. The testing is carried out rigorously for
different configurations, and comparison of the normalized
makespan over a series of runs of each cycle is presented for
various learning parameters.

The contributions for scheduling bag-of-tasks using agents
are:

 To develop BISA with an objective to minimize
makespan.

 To test and present the results of the BISA agent on
synthetic workload for different sets of learning
parameters

 To test the hypothesis that BISA works in a dynamic
environment. (simulated by changing configurations of
Hosts and VMs)

The rest of the paper is organized as follows. In Section II,
an overview of the BoT Workload and several heuristics in
literature and the agent-based paradigm is presented. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

474 | P a g e

www.ijacsa.thesai.org

framework of the intelligent agent is presented in Section III.
The results and discussion are elaborated in Section IV. The
conclusion and future work are described in Section V.

II. RELATED WORK AND MOTIVATION

In cloud computing which from an architectural point of
view is a large-scale distributed system, traditional scheduling
algorithms are not enough to schedule tasks efficiently. The
type of workload also affects the design of a scheduling
algorithm.

The bag-of-tasks workload is examined and the motivation
for generating a synthetic workload is presented. Traditional
heuristics and meta-heuristics that have been used to solve the
resource allocation problem is presented followed by the
motivation for the agent-based approach.

A. BoT Workload

A type of workload prevalent in large scale distributed
systems such as the grid or cloud is the bag-of-tasks (BoT)
workload. BoT workload comprises of independent tasks
typically submitted as part of a larger application by the same
user. The scheduling of independent tasks (bag-of-tasks) in
heterogeneous systems is known to be an NP-Complete
problem[8]. The following rules were used to identify BoTs
from a trace [9]:

 BoT Size ranges from 2 to 64 parallel tasks.

 There are no serial jobs

 The run times are not extremely small and range from a
few minutes to a day.

A synthetic workload [10] can also be generated based on
the characteristics of a BoT. The model used was developed to
test the performance of BoT workload in large scale distributed
systems[11]. A synthetic workload offers more control in
varying parameters. In this work, a synthetic BoT workload is
generated, and the parameters used for the distribution are
elaborated in Section III.

B. Traditional Heuristics

Schedulers typically use either an immediate mode or batch
mode heuristic[8], [12] to schedule tasks in the cloud. The
immediate mode heuristics described are (i) MCT (Minimum
Completion Time), (ii) MET (Minimum Execution Time),
(iii) Switching Algorithm, (iv) K-percent best,
(v) Opportunistic Load Balancing. The Batch Mode Heuristics
described are Min-Min, Max-Min Heuristic, and Sufferage.
Some of these heuristics are based on concepts described in
prior research work [8]. Enhanced versions of the Fastest
Processor to Largest Task First (FPLTF) and sufferage are also
described in [13].

An extensive list of 14 heuristics derived from 3 types of
ordering of tasks within the BoT (Uniform, Large to Small and
Small to Large) and the mapping of the task (Random
Mapping, Maximum Expected Remaining Allocation Time
Mapping, Maximum Current Remaining Allocation Time
Mapping, Minimum Expected Remaining Allocation Time
Mapping and Minimum Current Remaining Allocation Time
Mapping) is presented by Garcia & Sim [14].

In many schedulers used in datacenters, traditional
scheduling heuristics are used, but the pitfall is that none of the
traditional heuristics are optimal in a heterogeneous system
such as the cloud.

C. Meta-Heuristics

Several metaheuristics have also been applied to resource
scheduling in the cloud to reduce the makespan and increase
the throughput. These heuristics aim to produce optimal
schedules for a multi-objective scheduling problem.

Tabu Search (TS) and Simulated Annealing (SA) were
compared against Fastest Processor Largest Task (FPLT) [9]
and the results show that Tabu Search and Simulated
Annealing performed consistently better than FPLT even as
BoT sizes increased. SA and TS had an 8% to 9% smaller
makespan as compared to FPLT for globally arriving BoTs.
The only shortcoming is the performance overhead incurred by
TS and SA. A variation of SA, Thermodynamic Simulated
Annealing (TSA) [9] is presented that also performs
considerably better than SA.

A parallel Genetic algorithm [15] has been used in cloud
scheduling which also tries to improve the VM utilization rate
instead of just concentrating on a good resource scheduling
algorithm. An IGA (Improved Genetic Algorithm) [16] to
improve the utilization rate of VM’s has also been proposed
and the results show that the performance of IGA is twice that
of TGA (Traditional Genetic Algorithm). A hybrid algorithm
that used Genetic Algorithm, round-robin scheduling in deep
neural learning works effectively in minimizing the makespan
and other parameters in a cloud workflow. A software
framework was developed for rapid prototyping of hybrid
meta-heuristic schemes [17] as hybrid meta-heuristic
techniques have proved to be more effective and adaptable.

A common disadvantage of most metaheuristics is the
complexity but for a large-scale scheduling problem, the
performance overhead is compensated with improvement in
performance.

D. Agent-Based Approach

In a large-scale system like the cloud, accurate system
requirement is difficult to obtain. An estimate of the execution
time of the task will not be available. Meta-heuristics may
sometimes provide near-optimal schedules but the time
complexity for producing the schedule may be extremely high
when the magnitude of the system increases which is the case
in cloud.

A concise set of challenges that result from these heuristics
are that:

 Heuristics that solve this problem require accurate
information about the environment.

 The execution time of each task should be known a
priori.

 The complexity (although polynomial) may be
unacceptably high [13] when there are many tasks or
resources.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

475 | P a g e

www.ijacsa.thesai.org

A vital observation based on applying 14 scheduling
heuristics based on ordering of tasks within a BoT and the
choice of mapping [14] is that due to the NP-complete nature
of the scheduling problem, there was not a dominant
scheduling heuristic from among the proposed heuristics or the
benchmark scheduling heuristics . In a configuration where
there are some powerful virtual machines (VMs) that are free, a
batch mode heuristic that sorts a set of tasks, largest to smallest
(LtoS) and assigns the largest tasks to a machine that is more
powerful first would reduce the makespan. In a different
configuration where all the powerful machines are already
overloaded, assigning tasks sorted smallest to largest (StoL)
and assigning the smallest tasks to the overloaded powerful
machines and the larger tasks to a less powerful machine
would result in a reduction in makespan.

E. The Model of BISA

The BISA (BoT Intelligent Scheduler Agent) is an
intelligent agent [18] that senses the environment and based on
the current state chooses a scheduling policy, calculates the
utility of that scheduling policy using a reward function and
chooses to execute the schedule produced or choose another
scheduling policy that gives a better utility. The result of the
BIS agent is a schedule for the set of tasks in a BoT on a set of
resources with a goal to minimize the makespan. Fig. 1 shows
the abstract working of BISA and the context it works in a
hybrid cloud environment. BISA works within a cloud (private
or public) to effectively schedule the BoTs.

The following variables are be used to describe the working
of the BIS agent.

Let S be the set of states that the agent has come across
where

S = {s1, s2… sl}

Let BoTt be a BoT submitted at time t.

Let U be the set of users who submit BoTs where U
={u1,u2,…. un}

Let Nt denote the number of tasks in a BoTt submitted at
time t.

Let It be the ideal makespan a BoT submitted at time t.

Let M (BoTt,) be the makespan of BoT submitted at time t
after it has finished execution.

Let STt be the submission time of BoTt.

Let sti,t be the execution start time of taski in BoTt where
i=1,…Nt.

Let wti,t be the waiting time of taski in BoTt where i=1,…Nt.

Let fti,t be the finish time of taski in BoTt where i=1,…Nt.

Let size_mii,t be the size of task i in BoTt where i=1,…Nt in
Million Instructions(MI).

Let H be the set of hosts in a cloud where H= {h1, h2… hn}.

Let VM be the set of virtual machine’s in a cloud where VM
= {vm1,1, vm1,2,…vmr,p} where vmr,p denotes a VM p assigned to
host r.

Let HNr be the number of VMs assigned to host r.

Let mipsr,p denotes the MIPS rating of a VM p assigned to
host r.

Let A be the set of actions that is available to the agent. A
= {a1, a2…. am}. Table I shows the ordering and mapping
policy that are used to produce the 15 possible heuristics as in
[14]. Each action is produced by combining a task ordering
with the task mapping policy. CT and ET are interpreted based
on definitions in [12].

Let Qprivate and Qpublic denote the set of tasks that are
assigned to the private or public Queue.

Let rl,j,k be the reward for the k
th

 time an action j applied on
state l.

Let Ql,j,k be the average of the first k rewards on action j in
state l.

The working of the BIS intelligent agent is based on
reinforcement learning [19] and the various stages are outlined
below:

Fig. 1. The BISA Agent in Hybrid Cloud.

TABLE I. ORDERING AND MAPPING POLICY OF THE HEURISTICS

Ordering

Unordered (U) Random ordering of tasks within each BoT.

LtoS Tasks are ordered Large-to-Small within the BoT.

StoL Tasks are ordered Small-to-Large within the BoT.

Mapping Policy

CT: Expected completion Time on a machine after completing all the tasks

the machine that was previously allotted.

ET: Expected completion time on a machine when no load is assigned to it.

MinCT Allocate task to the machine with minimum CT

MaxCT Allocate task to a machine with maximum CT

MinET Allocate task to a machine with minimum ET

MaxET Allocate task to a machine with maximum ET

Random (R) Allocate task to a random machine

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

476 | P a g e

www.ijacsa.thesai.org

1) Recognize the state: The size ratio of a BoT and the VM

utilization for each classification of VMs form a state.

Let 𝑜 𝑚 𝑛(𝑜) (∏ 𝑚

)

 be the

geometric mean of BOTt.

Let #small_tasks (BoTt) be the count number of tasks in
BoTt whose size_mii,t is lesser than 𝑜 𝑚 𝑛(𝑜)

Let #large_tasks (BoTt) be the count number of tasks in
BoTt whose size_mii,t is greater than 𝑜 𝑚 𝑛(𝑜)

Let size_ratio(BoTt) be the size ratio of BoT submitted at
time t calculated in Equation (1)

 𝑟 𝑡 𝑜(𝑜)
 ()

 ()
 (1)

The size ratio is calculated as the number of small tasks
divided by the number of large tasks. It determines whether
the BoT is left normally distributed (a greater number of small
tasks) or right normally distributed (a greater number of large
tasks) or an equal number of large and small tasks. The size
ratio is essential when the agent runs in a real-time
environment where the parameters for the normal distribution
that are typically used in a simulation are not known a priori.

In order to calculate VM utilization, VMs are first
classified into three categories based on MIPS following which
the average percentage of computing utilization in each of the
three categories are obtained.

Let C= {LG, ST, SM} denote the classifications of VMs.
Large VMs (LG) having processing capacity of MIPS > 80000,
Standard VMs (ST) having MIPS between 40,000 and 80,000
and Small VMs (SM) having MIPS below 40,000.

Let VM_utilc, = {H, M, L} denote the average computing
utilization of all the cloudlets/tasks running on the VM where c
= {LG, ST, SM}. H denotes high CPU utilization (>80%). M
denotes medium CPU utilization (40% to 80%). L denotes low
CPU utilization (<40%).

2) Decide on the action that is matching with the goal: In

this stage, the agent will choose the appropriate scheduling

heuristic that minimizes the makespan of the BoT. The policy

is chosen using a roulette wheel selector where all the

probabilities for a set of actions in each state is on the scale of

one. The values chosen for and allow us to control the

tradeoff between exploration vs. exploitation. Exploration

allows the agent to choose a new scheduling heuristic whereas

exploitation acts like a greedy heuristic that choose the

scheduling policy known to perform well.

3) Execute action: Schedule the BoT according to the

scheduling policy decided upon in the previous step.

4) Assess chosen action: After the state is recognized, the

ideal makespan is calculated for the given BoT. The ideal

makespan, is taken as the time taken for the largest task in a

BoT to execute on the fastest available machine. It gives the

agent a reference value to calculate the reward.

The reward is calculated by how well a policy performs
with respect to the ideal makespan. The ideal makespan is
calculated using Equation (2) which is the time is taken for the
largest task i.e. the task with the longest instruction length (MI)
to execute in the fastest machine (the VM with the largest
MIPS rating).

 ∑ ()

 ∑ ∑

 (2)

The makespan of a BoTt on action aj is calculated using
Equation (3) which is the difference between the maximum
finish time of a task in BoTt and the submission time BoTt.

𝑀(𝑜) 𝑚 𝑥 ∑ (𝑓𝑡)

 − 𝑆 (3)

This value of the makespan divided by the ideal makespan
will be the reward, rl,j,k at the k

th
 time the policy aj was used on

a given state l using Equation (4). Initially, the reward, rl,j,0 is
0.

𝑟 ln (1 (𝑀(𝑜) −) (4)

An incremental implementation is used to calculate the
cumulative reward at step k+1 in Equation (5) and this value is
updated in the table of rewards.

𝑄 𝑄 +

[𝑟 − 𝑄] (5)

In order to decide which action to choose at k
th
 time to

schedule BoTt in state l, the probability of choosing each action
or policy is calculated. This probability is calculated by
looking up a table of preferences for each action based on the
reference reward.

Let () be the probability of choosing action aj at play

 for state l, i.e. the t
th
 time the state l is encountered.

Let 𝑃 () be the preference of an action selected at play
of state l. The preference for an action determines the
likelihood of an action being selected for a state. The initial
action preferences to 0. The initial reference reward, �̅� for

every state l where play is 0 is set to 0.1 meaning if the
makespan of the scheduling policy is more than 10% as
efficient as the ideal makespan, the reward is incremented and
the preference for that action is set to a positive value. The
reference reward following the first run, �̅� is calculated as

in Equation (6) where 1.

�̅� �̅� + [𝑟 − �̅�] (6)

During the first run, all the scheduling policies will have an
equal probability of being chosen. Once a scheduling policy is
chosen in play in state l, the preference for that action is
updated. The preference is the difference between the reward
𝑟 and the reference reward �̅� as given in Equation (7). The

initial action preferences are set to 0.

𝑃 () 𝑃 () + 𝛽[𝑟 − �̅�] (7)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

477 | P a g e

www.ijacsa.thesai.org

The constant 𝛽 is a positive step size parameter. A high
reward will increase the probability of reselecting the action
and a low reward should decrease the probability.

The probability () of selecting an action j at play in

state l is calculated using Equation (8).

 ()

 ()

∑
 ()

 (8)

The performance metrics used to assess BISA are presented
below:

 Overall makespan:

The overall makespan of each run is calculated by first
calculating the makespan of individual BoTs and then taking
the sum of the makespan. The individual makespan is
calculated as shown in Eq (2) and the overall makespan is
computed according to Equation (9).

𝑂𝑣 𝑟 𝑙𝑙 𝑀 𝑘 𝑝 𝑛 ∑ 𝑀(𝑜)

 (9)

 Normalized makespan:

The overall makespan can be a misleading metric because
during each run of the simulation the load varies. The
normalized makespan is based on the overall Makespan for all
the BoTs generated within each run (48 intervals) calculated
from Equation (9), the total runtime that denotes the actual
runtime in the allotted VM of each task in a BoT during
simulation and the number of tasks are those generated during
each run (48 intervals). The normalized makespan is
calculated by taking the sum of the tasks in all the BoTs
generated during each run as shown in Equation (10).

𝑁𝑜𝑟𝑚 𝑙 𝑑 𝑀 𝑘 𝑝 𝑛

 (10)

III. EXPERIMENTAL SETUP

The framework provided by cloudsim [20] to simulate the
cloud and incorporate the intelligent agent as a thread. The
VM’s in the cloud run on the assigned host in the datacenter
the allocation policy is time-shared. Each VM runs on a
Processing Element (PE) which is 1 core of the host machine.

To test the reinforcement learning agent, 7 Virtual
Machines (VMs) are set up in various configurations.
Configuration 1 & 2 are given in Table II. In configuration 1,
the ratio of LG:ST:SM is 1:3:3 with a total capacity of 30,
7000 MIPS. In configuration 2, the ratio of LG:ST:SM is 3:2:2
with a total capacity of 39, 6000 MIPS.

The Bag-of-tasks workload is generated synthetically based
on characteristics outlined in [11]. Table III gives the
parameters used to generate a synthetic workload. In each run
of the simulation, a daily cycle of 48 intervals is simulated.
The user submitting the BoT is generated using a Zipf
distribution. The inter-arrival time between each BoT in a
given interval is modeled using a Weibull Distribution. The
size of BoTs is assigned to be powers of 2 between 4 to 512
also modeled using a Weibull Distribution. The average task
runtime within a BoT is given using a Normal distribution and
the task runtime variability of the tasks is given using a
Weibull Distribution. The runtime is specified in MI (Million

Instructions. The arrival rate is used to control the system load,
and for this simulation, it is set to 1 The VMs operate on a
time-shared basis on the hosts. The tasks (cloudlets) allotted to
the VMs are also time-shared and hence, context switching
takes place when multiple tasks take turns in using the
processing element.

TABLE II. CONFIGURATION OF THE CLOUD

Configuration 1 Configuration 2

 MIPS MIPS

VM #0 82000 VM #0 82000

VM #1 49000 VM #1 82000

VM #2 49000 VM #2 82000

VM #3 49000 VM #3 49000

VM #4 26000 VM #4 49000

VM #5 26000 VM #5 26000

VM #6 26000 VM #6 26000

Total Capacity 307000 Total Capacity 396000

LG:ST:SM = 1:3:3 LG:ST:SM = 3:2:2

TABLE III. WORKLOAD CHARACTERISTICS OF BOT WORKLOAD

Number of Intervals in each Run 48

User (Zipf Distribution) (368,1.31)

Interarrival Time (IAT) Weibull

Distribution
(4.25,7.86)

Size of BoT (Weibull Distribution) pow ((1.76,2.11),2)

Class of Bots {4, 8, 16, 32, 64, 128, 256, 512}

Average Task Runtime within BoT (Normal

Distribution)
(2.73,6.1)

Task Runtime Variability (Weibull

Distribution)
(2.05,12.05)

Arrival rate 1

Runtime factor 1000,000

IV. RESULTS AND DISCUSSION

The private cloud is set up in cloudsim and the BIS agent
runs like a thread. BISA recognizes the state, decides on the
action and updates the rewards and number of plays on a state.
Fig. 2 shows a sample set of states observed after 10 runs
comprising of a daily cycle of 48 cycles per run. The size ratio,
along with the utilization of processing capacity in the various
categories of VMs forms a state. State 30 with size_ratio as 1
and all the categories of VM utilization being “High” has the
highest number of plays followed by State 1 and 18 that also
have size ratio as 1 but with varying VM utilization.

Fig. 3 presents the normalized makespan after every run for
a succession of 10 runs with different values for α and β. Each
run consists of 48 intervals with BoTs generated using
characteristics in Table II. Every marker represents the
normalized makespan after a run. The normalized makespan is
plotted against the number of tasks executed after ever run
rather than run 1 to 10 so that the trend can be observed
accurately.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

478 | P a g e

www.ijacsa.thesai.org

Fig. 2. The Number of Plays, on Various States at the end of 10 Runs (Daily Cycle of 48 Intervals Each).

Fig. 3. Normalized Makespan Over 10 Runs for 6 Sets of Learning Parameters (Configuration 1-Tasks Time-Shared in VM).

For all learning parameters, a logarithmic decrease in the
makespan can be observed. In some cases, the decrease is
steeper. For α=0.3 and β=0.5 the likelihood that the agent will
rely on a previously learned policy that produces a better
schedule is slightly more than its behavior to explore other
possibilities. The normalized makespan fluctuates with every
run and even after 33720 tasks at the end of the 10

th
 run. If a

high value is set for both the exploration and exploitation
parameters at α=0.8 and β=0.8, this results in the slightly
higher normalized makespan in most runs. If an exploration
value is comparatively much higher than exploitation value in
the case of α=0.8 and β=0.2, this prevents the agent from
getting stuck in any local optima and ensures all possibilities
are explored. It can be observed that there is a steep learning
curve in the initial 3 runs, but because of the high exploration
value, the agent keeps choosing different heuristics and the
makespan could not be reduced further. The agent produces
surprisingly good results for a comparatively high exploitation
value as compared to exploration value with α=0.2 and β=0.8.
The normalized makespan in the first run itself is 23% better
than the lowest recorded value when α=0.3 and β=0.3.
Likewise, the learning curve is also steepest among all the sets.
The lowest recorded makespan is 7 times lower than all other
normalized makespan produced for any other set. Lastly, a
very high exploitation value was set with α=0.12 and β=0.98.
The agent stabilized after 4 runs at a suboptimal normalized
makespan but produces the largest recorded value for
normalized makespan in the second run.

The average normalized makespan of the last 5 runs in a
total of 10 runs on BISA with the different set of learning
parameters is presented in Fig. 4. The average of the last 5
runs is taken as the agent is expected to stabilize. It can be
observed that BISA with α=0.2 and β=0.8 produced the best
results. All other sets of learning parameters produce
suboptimal results. For this configuration, U_MinCT produces
the best results among the 15 scheduling heuristics. BISA with
α=0.2 and β=0.8 has an average normalized makespan that is
72% smaller than U_MinCT.

BISA with α=0.8 and β=0.8 which has the largest average
normalized makespan has an average normalized makespan
which is 1.8 times larger than U_MinCT and performs better
than 9 out of the 15 scheduling heuristics.

BISA was also tested in a second configuration as outlined
in Table II. As can be seen in Fig. 5, the steepest learning curve
is observed for α=0.2 and β=0.8. The best scheduling heuristic
is U_MinCT and BISA (α=0.3 and β=0.5) produces a 39%
larger average normalized makespan as compared to
U_MinCT. On average, BISA produces suboptimal results and
results in average normalized makespan that is less than 50%
higher than the best (Fig. 6).

To test the hypothesis that BISA will be able to adapt to
dynamic changes to the resources, BISA is run with the best
performance learned from configuration 1 (α=0.2 and β=0.8) to
configuration 2 (Fig. 7).

1
2

6

2
2

 4
4

2
5

8
 2
3

1
0

6

2

2

1
 3

0

4
4

6
 1
0

 4
0

9
8

2
5

1

1

6
4

5
0

1

1
 1
4

6
 2

9

2

3
 2

5

2
7

8

L L L L L L L L L L L L L L L M M M M M M M M M M M M H H H

L L L L L L L L L L L M M M M H H H H H H H H H H H H H H H

L L L L L L L L L L L L L L L H H H H H H H H H H H H H H H

1.00 3.00 1.67 1.29 1.13 0.60 0.33 1.46 0.88 2.20 1.33 1.67 1.00 0.33 0.60 0.60 1.67 1.00 0.68 1.29 3.00 4.33 0.94 0.33 1.06 0.78 0.45 2.20 0.33 1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
u

m
b

er
 o

f
p

la
y

s,
 𝜏

State

cpu_utilLG

cpu_utilST

cpu_utilSM

size_ratio

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

479 | P a g e

www.ijacsa.thesai.org

Fig. 4. Comparison of Average Normalized Makespan of Last 5 Runs (Configuration 1–Tasks Time-Shared in VM).

Fig. 5. Normalized Makespan Over 10 Runs for 6 Sets of Learning Parameters (Configuration 2-Tasks Time-Shared in VM).

Fig. 6. Comparison of Average Normalized Makespan of Last 5 Runs (Configuration 2-Tasks Time-Shared in VM).

Fig. 7. Comparison of Normalized Makespan of the First Run of BISA Run aFresh on Configuration 2 (C2) with Learned Rewards and Preferences from

Configuration 1(C1) (α=0.2 and β=0.8) on Configuration 2.

0
0.0000005
0.000001

0.0000015
0.000002

0.0000025
0.000003

A
v
er

a
g

e
N

o
rm

a
li

ze
d

M
a

k
es

p
a

n
 (

la
st

 5
 r

u
n

s)

Scheduling Heuristic

0

0.0000001

0.0000002

0.0000003

0.0000004

0.0000005

0.0000006

BISA C2 α= 0.2,

β= 0.8

BISA C2 α= 0.3,

β= 0.5

BISA C2 α= 0.8,

β= 0.2

BISA C2 α= 0.8,

β= 0.8

BISA C2 α=

0.12, β= 0.98

BISA C2 α= 0.3,

β= 0.7

N
o
rm

al
iz

ed
 M

ak
es

p
an

C2 BISA from C1(α= 0.2, β= 0.8)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

480 | P a g e

www.ijacsa.thesai.org

The first normalized makespan learned afresh in
configuration 2 is compared with the first normalized
makespan in configuration 2 learned from configuration 1 on
α=0.2, β=0.8. The normalized makespan for the set (α=0.3 and
β=0.5) operating on learned heuristics is half of the first
normalized makespan when BISA is run on Configuration 2
afresh. The other sets do not show a comparable difference. It
can also be observed that when using the same learning
parameters α=0.2, β=0.8 when transitioning from configuration
1 to configuration 2 a negative result of increased makespan is
observed. This indicates the state variables used in this
simulation is not enough to differentiate. Hence in further
work, states will be defined in further details so that learned
best heuristics on a configuration can seamlessly be applied to
other underlying configurations.

V. CONCLUSIONS AND FUTURE WORK

An intelligent agent, BISA (BoT Intelligent Scheduling
Agent) is proposed that learns the best scheduling heuristic to
use in a state. The goal of BISA is to schedule each BoT such
that the makespan is minimal. It is tested in two underlying
configurations of cloud by allotting both tasks to VMs in a
time-shared manner. It produces sub-optimal results
comparable to the best scheduling heuristic for a given
configuration. It can adapt to different underlying
configurations and re-learn the best heuristic to use in a
configuration. In configuration 1, for one set of learning
parameter (α=0.2 and β=0.8) BISA outperforms all the
traditional scheduling heuristics. In configuration 2 all the sets
of learning parameters result in sub-optimal results with the
best results on the set (α=0.3 and β=0.5). A 50% decrease in
normalized makespan can be observed when transitioning from
the best run on configuration 1 to configuration 2 on (α=0.3
and β=0.5) as compared to running BISA afresh in
configuration 2.

It can be inferred that the choice of learning parameters
determines the effectiveness of BISA. A good tradeoff
between exploration and exploitation produces a lower
makespan and converges to a near-best heuristic for a state
rapidly. With BISA there is always the possibility of agents
settling for a sub-optimal heuristic and it is crucial to choose
learning parameters to minimize this occurrence.

BISA could be improved by re-examining the parameters
that comprise the state and specifying them in a fine-grained
manner. Additional objectives of minimizing cost, latency, and
energy consumption, if factored into the reward obtained in
BISA, solves a multi-objective problem. BISA trained to learn
the best learning parameters that result in optimal results would
also improve the performance of BISA in converging to and
choosing the optimal scheduling heuristic in a state.

REFERENCES

[1] R. Buyya, S. K. Garg, and R. N. Calheiros, “SLA-oriented resource
provisioning for cloud computing: Challenges, architecture, and
solutions,” Proc. - 2011 Int. Conf. Cloud Serv. Comput. CSC 2011, no.
Figure 1, pp. 1–10, 2011.

[2] G. Andreadis, L. Versluis, F. Mastenbroek, and A. Iosup, “A Reference
Architecture for Datacenter Scheduling: Design, Validation, and
Experiments,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, 2018, p.
37.

[3] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Futur. Gener. Comput. Syst., vol. 79, pp.
849–861, 2018.

[4] T. Thein, M. M. Myo, S. Parvin, and A. Gawanmeh, “Reinforcement
learning based methodology for energy-efficient resource allocation in
cloud data centers,” J. King Saud Univ. - Comput. Inf. Sci., 2018.

[5] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Futur. Gener. Comput. Syst., vol. 27, no. 6, pp. 871–879, 2011.

[6] A. Benoit, L. Marchal, J. F. Pineau, Y. Robert, and F. Vivien,
“Scheduling concurrent bag-of-tasks applications on heterogeneous
platforms,” IEEE Trans. Comput., vol. 59, no. 2, pp. 202–217, 2010.

[7] P. S. H. Darius and E. G. M. Kanaga, “Bag-of-Tasks Intelligent
Scheduling Agent (BISA) in Cloud Computing,” Adv. Comput.
Commun. Paradig., pp. 239–246, 2018.

[8] O. H. Ibarra and C. E. Kim, “Heuristic Algorithms for Scheduling
Independent Tasks on Nonidentical Processors,” J. ACM, vol. 24, no. 2,
pp. 280–289, 1977.

[9] I. A. Moschakis and H. D. Karatza, “A meta-heuristic optimization
approach to the scheduling of bag-of-tasks applications on
heterogeneous clouds with multi-level arrivals and critical jobs,” Simul.
Model. Pract. Theory, vol. 57, pp. 1–25, 2015.

[10] R. N. Calheiros and R. Buyya, “Energy-efficient scheduling of urgent
bag-of-tasks applications in clouds through DVFS,” Proc. Int. Conf.
Cloud Comput. Technol. Sci. CloudCom, vol. 2015-Febru, no. February,
pp. 342–349, 2015.

[11] A. Iosup, O. Ozan Sonmez, S. Anoep, and D. Epema, “The performance
of bags-of-tasks in large-scale distributed systems,” in
Telecommunications Policy - TELECOMMUN POLICY, 2008, pp. 97–
108.

[12] M. Maheswaran, A. Shoukat, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic Matching and Scheduling of a Class of Independent
Tasks Onto Heterogeneous Computing Systems,” in Proceedings of the
Eighth Heterogeneous Computing Workshop, IEEE Computer Society,
1999, p. 30.

[13] W. Cirne, D. Paranhos, F. Brasileiro, L. Fabrício, and W. Góes, “On the
Efficacy, Efficiency and Emergent Behavior of Task Replication,” Large
Distrib. Syst. Parallel Comput., vol. 33, no. 3, pp. 213–234, 2007.

[14] J. O. Gutierrez-Garcia and K. M. Sim, “A family of heuristics for agent-
based elastic Cloud bag-of-tasks concurrent scheduling,” Futur. Gener.
Comput. Syst., vol. 29, no. 7, pp. 1682–1699, 2013.

[15] Z. Zheng, R. Wang, H. Zhong, and X. Zhang, “An approach for cloud
resource scheduling based on parallel genetic algorithm,” ICCRD2011 -
2011 3rd Int. Conf. Comput. Res. Dev., vol. 2, pp. 444–447, 2011.

[16] H. Zhong, K. Tao, and X. Zhang, “An approach to optimized resource
scheduling algorithm for open-source cloud systems,” Proc. - 5th Annu.
ChinaGrid Conf. ChinaGrid 2010, pp. 124–129, 2010.

[17] H. C. Lau, W. C. Wan, S. Halim, and K. Toh, “A software framework
for fast prototyping of meta-heuristics hybridization,” Int. Trans. Oper.
Res., vol. 14, no. 2, pp. 123–141, 2007.

[18] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[19] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[20] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms,” Softw. Pr. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011.

