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Abstract—The need of efficient provision resources in cloud 

computing is imperative in meeting the performance 

requirements.  The design of any resource allocation algorithm is 

dependent on the type of workload.  BoT (Bag-of-Tasks) which is 

made up of batches of independent tasks are predominant in 

large scale distributed systems such as the cloud and efficiently 

scheduling BoTs in heterogeneous resources is a known NP-

Complete problem.  In this work, the intelligent agent uses 

reinforcement learning to learn the best scheduling heuristic to 

use in a state.  The primary objective of BISA (BoT Intelligent 

Scheduling Agent) is to minimize makespan.  BISA is deployed as 

an agent in a cloud testbed and synthetic workload and different 

configurations of a private cloud are used to test the effectiveness 

of BISA.  The normalized makespan is compared against 15 

batch mode and immediate mode scheduling heuristics.  At its 

best, BISA produces a 72% lower average normalized makespan 

than the traditional heuristics and in most cases comparable to 

the best traditional scheduling heuristic. 
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I. INTRODUCTION 

A formidable challenge in cloud computing is the effective 
allocation of resources.  In traditional scheduling, the efficacy 
of any scheduling heuristic largely depends on the 
characteristics of the workload (tasks to be scheduled) and 
resources.  For a cloud service provider, maximum resource 
utilization and minimum power consumption result in the most 
profitability.  For the customer, the scheduling of tasks in the 
cloud is also affected by network latency and cost.  In addition, 
resource providers also strive to meet QoS (Quality of Service) 
requirements [1] from the customer in addition to minimizing 
energy consumption and maximizing resource utilization. 
Several VMs are hosted in a multi-tenant architecture, migrated 
to different hosts with different computing capacities in a 
datacenter.  The principles that aid in attaining these objectives 
often result in a dynamically changing environment on the 
available cloud resources.  This inadvertently leads to 
performance unpredictability.  Andreadis et al [2] when 
proposing a reference architecture for datacenter scheduling 
pointed out that because of the complex nature of the 
environment in a datacenter, comparing scheduling heuristics 
and improving performance is challenging. 

Self-learning systems [3] are the future of cloud computing. 
Reinforcement learning has been used for energy-aware 
resource scheduling [4] and results show that it can enhance 
energy efficiency in data centers.  Adaptive scheduling for 
resource provisioning [5] also uses reinforcement learning. 

This work differs from adaptive scheduling in that the 
heuristics or meta-heuristics are not modified.  However, by 
incorporating reinforcement learning, the state is observed and 
based on the information, the agent is trained to choose the best 
heuristic from its repository. 

The bag-of tasks applications are a popular type of 
workload in the cloud and challenging to schedule in 
heterogeneous machines as opposed to homogeneous 
machines[6] for which an optimal schedule can be produced.  
Once tasks are allotted to a private cloud or any set of 
resources on a public cloud, there is a need for an intelligent 
agent in scheduling that is adaptable to a dynamic environment 
prevalent in the cloud.  The hypothesis is that if an agent can 
sense the environment, apply learned best scheduling heuristic 
and simultaneously explore other options, over time the agent 
will choose the best heuristic for a state.    In this work, an 
intelligent agent, BISA (BoT Intelligent Scheduling Agent) is 
proposed that uses reinforcement learning to choose the best 
scheduling heuristic in a state.  BISA recognizes the current 
state based on the characteristics of the BoT workload and the 
available resources.  It uses reinforcement learning to choose 
the best-known scheduling heuristic for the given state.  The 
learning parameters in BISA, namely α and β control the 
exploration vs. exploitation strategy of BISA. 

In previous work [7], the BIS agent was presented and the 
preliminary results from the training phase of BISA were 
divulged and discussed.  In this work, BoT workload is 
generated synthetically. The testing is carried out rigorously for 
different configurations, and comparison of the normalized 
makespan over a series of runs of each cycle is presented for 
various learning parameters. 

The contributions for scheduling bag-of-tasks using agents 
are: 

 To develop BISA with an objective to minimize 
makespan. 

 To test and present the results of the BISA agent on 
synthetic workload for different sets of learning 
parameters 

 To test the hypothesis that BISA works in a dynamic 
environment. (simulated by changing configurations of 
Hosts and VMs) 

The rest of the paper is organized as follows. In Section II, 
an overview of the BoT Workload and several heuristics in 
literature and the agent-based paradigm is presented. The 
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framework of the intelligent agent is presented in Section III. 
The results and discussion are elaborated in Section IV.  The 
conclusion and future work are described in Section V. 

II. RELATED WORK AND MOTIVATION 

In cloud computing which from an architectural point of 
view is a large-scale distributed system, traditional scheduling 
algorithms are not enough to schedule tasks efficiently. The 
type of workload also affects the design of a scheduling 
algorithm. 

The bag-of-tasks workload is examined and the motivation 
for generating a synthetic workload is presented.  Traditional 
heuristics and meta-heuristics that have been used to solve the 
resource allocation problem is presented followed by the 
motivation for the agent-based approach. 

A. BoT Workload 

A type of workload prevalent in large scale distributed 
systems such as the grid or cloud is the bag-of-tasks (BoT) 
workload. BoT workload comprises of independent tasks 
typically submitted as part of a larger application by the same 
user.  The scheduling of independent tasks (bag-of-tasks) in 
heterogeneous systems is known to be an NP-Complete 
problem[8]. The following rules were used to identify BoTs 
from a trace [9]: 

 BoT Size ranges from 2 to 64 parallel tasks. 

 There are no serial jobs 

 The run times are not extremely small and range from a 
few minutes to a day. 

A synthetic workload [10] can also be generated based on 
the characteristics of a BoT. The model used was developed to 
test the performance of BoT workload in large scale distributed 
systems[11]. A synthetic workload offers more control in 
varying parameters. In this work, a synthetic BoT workload is 
generated, and the parameters used for the distribution are 
elaborated in Section III. 

B. Traditional Heuristics 

Schedulers typically use either an immediate mode or batch 
mode heuristic[8], [12] to schedule tasks in the cloud.  The 
immediate mode heuristics described are (i) MCT (Minimum 
Completion Time), (ii) MET (Minimum Execution Time), 
(iii) Switching Algorithm, (iv) K-percent best, 
(v) Opportunistic Load Balancing. The Batch Mode Heuristics 
described are Min-Min, Max-Min Heuristic, and Sufferage.  
Some of these heuristics are based on concepts described in 
prior research work [8].  Enhanced versions of the Fastest 
Processor to Largest Task First (FPLTF) and sufferage are also 
described in [13]. 

An extensive list of 14 heuristics derived from 3 types of 
ordering of tasks within the BoT (Uniform, Large to Small and 
Small to Large) and the mapping of the task (Random 
Mapping, Maximum Expected Remaining Allocation Time 
Mapping, Maximum Current Remaining Allocation Time 
Mapping, Minimum Expected Remaining Allocation Time 
Mapping and Minimum Current Remaining Allocation Time 
Mapping) is presented by Garcia & Sim [14]. 

In many schedulers used in datacenters, traditional 
scheduling heuristics are used, but the pitfall is that none of the 
traditional heuristics are optimal in a heterogeneous system 
such as the cloud. 

C. Meta-Heuristics 

Several metaheuristics have also been applied to resource 
scheduling in the cloud to reduce the makespan and increase 
the throughput. These heuristics aim to produce optimal 
schedules for a multi-objective scheduling problem. 

Tabu Search (TS) and Simulated Annealing (SA) were 
compared against Fastest Processor Largest Task (FPLT) [9] 
and the results show that Tabu Search and Simulated 
Annealing performed consistently better than FPLT even as 
BoT sizes increased. SA and TS had an 8% to 9% smaller 
makespan as compared to FPLT for globally arriving BoTs.  
The only shortcoming is the performance overhead incurred by 
TS and SA. A variation of SA, Thermodynamic Simulated 
Annealing (TSA) [9] is presented that also performs 
considerably better than SA. 

A parallel Genetic algorithm [15] has been used in cloud 
scheduling which also tries to improve the VM utilization rate 
instead of just concentrating on a good resource scheduling 
algorithm. An IGA (Improved Genetic Algorithm) [16] to 
improve the utilization rate of VM’s has also been proposed 
and the results show that the performance of IGA is twice that 
of TGA (Traditional Genetic Algorithm). A hybrid algorithm 
that used Genetic Algorithm, round-robin scheduling in deep 
neural learning works effectively in minimizing the makespan 
and other parameters in a cloud workflow. A software 
framework was developed for rapid prototyping of hybrid 
meta-heuristic schemes [17] as hybrid meta-heuristic 
techniques have proved to be more effective and adaptable. 

A common disadvantage of most metaheuristics is the 
complexity but for a large-scale scheduling problem, the 
performance overhead is compensated with improvement in 
performance. 

D. Agent-Based Approach 

In a large-scale system like the cloud, accurate system 
requirement is difficult to obtain. An estimate of the execution 
time of the task will not be available. Meta-heuristics may 
sometimes provide near-optimal schedules but the time 
complexity for producing the schedule may be extremely high 
when the magnitude of the system increases which is the case 
in cloud. 

A concise set of challenges that result from these heuristics 
are that: 

 Heuristics that solve this problem require accurate 
information about the environment. 

 The execution time of each task should be known a 
priori. 

 The complexity (although polynomial) may be 
unacceptably high [13] when there are many tasks or 
resources. 
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A vital observation based on applying 14 scheduling 
heuristics  based on ordering of tasks within a BoT and the 
choice of mapping [14] is that due to the NP-complete nature 
of the scheduling problem, there was not a dominant 
scheduling heuristic from among the proposed heuristics or the 
benchmark scheduling heuristics  .  In a configuration where 
there are some powerful virtual machines (VMs) that are free, a 
batch mode heuristic that sorts a set of tasks, largest to smallest 
(LtoS) and assigns the largest tasks to a machine that is more 
powerful first would reduce the makespan. In a different 
configuration where all the powerful machines are already 
overloaded, assigning tasks sorted smallest to largest (StoL) 
and assigning the smallest tasks to the overloaded powerful 
machines and the larger tasks to a less powerful machine 
would result in a reduction in makespan. 

E. The Model of BISA 

The BISA (BoT Intelligent Scheduler Agent) is an 
intelligent agent [18] that senses the environment and based on 
the current state chooses a scheduling policy, calculates the 
utility of that scheduling policy using a reward function and 
chooses to execute the schedule produced or choose another 
scheduling policy that gives a better utility.  The result of the 
BIS agent is a schedule for the set of tasks in a BoT on a set of 
resources with a goal to minimize the makespan. Fig. 1 shows 
the abstract working of BISA and the context it works in a 
hybrid cloud environment.  BISA works within a cloud (private 
or public) to effectively schedule the BoTs. 

The following variables are be used to describe the working 
of the BIS agent. 

Let S be the set of states that the agent has come across 
where 

S = {s1, s2… sl} 

Let BoTt be a BoT submitted at time t. 

Let U be the set of users who submit BoTs where U 
={u1,u2,…. un} 

Let Nt denote the number of tasks in a BoTt submitted at 
time t. 

Let It be the ideal makespan a BoT submitted at time t. 

Let M (BoTt,) be the makespan of BoT submitted at time t 
after it has finished execution. 

Let STt be the submission time of BoTt. 

Let sti,t be the execution start time of taski in BoTt where 
i=1,…Nt. 

Let wti,t be the waiting time of taski in BoTt where i=1,…Nt. 

Let fti,t be the finish time of taski in BoTt where i=1,…Nt. 

Let size_mii,t be the size of task i in BoTt where i=1,…Nt  in 
Million Instructions(MI). 

Let H be the set of hosts in a cloud where H= {h1, h2… hn}. 

Let VM be the set of virtual machine’s in a cloud where VM 
= {vm1,1, vm1,2,…vmr,p} where vmr,p denotes a VM p assigned to 
host r. 

Let HNr be the number of VMs assigned to host r. 

Let mipsr,p denotes the MIPS rating of a VM p assigned to 
host r. 

Let A be the set of actions that is available to the agent.  A 
= {a1, a2…. am}.  Table I shows the ordering and mapping 
policy that are used to produce the 15 possible heuristics as in 
[14].  Each action is produced by combining a task ordering 
with the task mapping policy. CT and ET are interpreted based 
on definitions in [12]. 

Let Qprivate and Qpublic denote the set of tasks that are 
assigned to the private or public Queue. 

Let rl,j,k be the reward for the k
th

 time an action j applied on 
state l. 

Let Ql,j,k be the average of the first k rewards on action j in 
state l. 

The working of the BIS intelligent agent is based on 
reinforcement learning [19] and the various stages are outlined 
below: 

 

Fig. 1. The BISA Agent in Hybrid Cloud. 

TABLE I.  ORDERING AND MAPPING POLICY OF THE HEURISTICS 

Ordering 

Unordered (U) Random ordering of tasks within each BoT. 

LtoS Tasks are ordered Large-to-Small within the BoT. 

StoL Tasks are ordered Small-to-Large within the BoT. 

Mapping Policy 

CT: Expected completion Time on a machine after completing all the tasks 

the machine that was previously allotted. 

ET: Expected completion time on a machine when no load is assigned to it. 

MinCT Allocate task to the machine with minimum CT 

MaxCT Allocate task to a machine with maximum CT 

MinET Allocate task to a machine with minimum ET 

MaxET Allocate task to a machine with maximum ET 

Random (R) Allocate task to a random machine 
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1) Recognize the state: The size ratio of a BoT and the VM 

utilization for each classification of VMs form a state. 

Let   𝑜 𝑚  𝑛( 𝑜  )  (∏      𝑚    
  
   )

    
 be the 

geometric mean of BOTt. 

Let #small_tasks (BoTt) be the count number of tasks in 
BoTt whose size_mii,t is lesser than   𝑜 𝑚  𝑛( 𝑜  ) 

Let #large_tasks (BoTt) be the count number of tasks in 
BoTt whose size_mii,t is greater than   𝑜 𝑚  𝑛( 𝑜  ) 

Let size_ratio(BoTt) be the size ratio of BoT submitted at 
time t calculated in Equation (1) 

     𝑟 𝑡 𝑜( 𝑜  )  
              (    ) 

             (    )
                                  (1) 

The size ratio is calculated as the number of small tasks 
divided by the number of large tasks.  It determines whether 
the BoT is left normally distributed (a greater number of small 
tasks) or right normally distributed (a greater number of large 
tasks) or an equal number of large and small tasks.  The size 
ratio is essential when the agent runs in a real-time 
environment where the parameters for the normal distribution 
that are typically used in a simulation are not known a priori. 

In order to calculate VM utilization, VMs are first 
classified into three categories based on MIPS following which 
the average percentage of computing utilization in each of the 
three categories are obtained. 

Let C= {LG, ST, SM} denote the classifications of VMs. 
Large VMs (LG) having processing capacity of MIPS > 80000, 
Standard VMs (ST) having MIPS between 40,000 and 80,000 
and Small VMs (SM) having MIPS below 40,000. 

Let VM_utilc, = {H, M, L} denote the average computing 
utilization of all the cloudlets/tasks running on the VM where c 
= {LG, ST, SM}.  H denotes high CPU utilization (>80%).  M 
denotes medium CPU utilization (40% to 80%).  L denotes low 
CPU utilization (<40%). 

2) Decide on the action that is matching with the goal: In 

this stage, the agent will choose the appropriate scheduling 

heuristic that minimizes the makespan of the BoT.  The policy 

is chosen using a roulette wheel selector where all the 

probabilities for a set of actions in each state is on the scale of 

one. The values chosen for   and   allow us to control the 

tradeoff between exploration vs. exploitation.  Exploration 

allows the agent to choose a new scheduling heuristic whereas 

exploitation acts like a greedy heuristic that choose the 

scheduling policy known to perform well. 

3) Execute action: Schedule the BoT according to the 

scheduling policy decided upon in the previous step. 

4) Assess chosen action:  After the state is recognized, the 

ideal makespan is calculated for the given BoT. The ideal 

makespan,     is taken as the time taken for the largest task in a 

BoT to execute on the fastest available machine.  It gives the 

agent a reference value to calculate the reward. 

The reward is calculated by how well a policy performs 
with respect to the ideal makespan.  The ideal makespan is 
calculated using Equation (2) which is the time is taken for the 
largest task i.e. the task with the longest instruction length (MI) 
to execute in the fastest machine (the VM with the largest 
MIPS rating). 

   
   ∑ (          )

  
   

   ∑ ∑        
   
   

 
   

                                                        (2) 

The makespan of a BoTt on action aj is calculated using 
Equation (3) which is the difference between the maximum 
finish time of a task in BoTt and the submission time BoTt. 

𝑀( 𝑜  )  𝑚 𝑥 ∑ (𝑓𝑡   )
  
   − 𝑆                                        (3) 

This value of the makespan divided by the ideal makespan 
will be the reward, rl,j,k at the k

th
 time the policy aj was used on 

a given state l using Equation (4).  Initially, the reward, rl,j,0 is 
0. 

𝑟      ln (1 ( 𝑀( 𝑜     ) −   )                                           (4) 

An incremental implementation is used to calculate the 
cumulative reward at step k+1 in Equation (5) and this value is 
updated in the table of rewards. 

𝑄        𝑄     +
 

      
[𝑟       − 𝑄     ]                              (5) 

In order to decide which action to choose at k
th
 time to 

schedule BoTt in state l, the probability of choosing each action 
or policy is calculated.  This probability is calculated by 
looking up a table of preferences for each action based on the 
reference reward. 

Let     (  ) be the probability of choosing action aj at play 

  for state l, i.e. the t
th
 time the state l is encountered. 

Let 𝑃   (  ) be the preference of an action selected at play   
of state l. The preference for an action determines the 
likelihood of an action being selected for a state. The initial 
action preferences to 0. The initial reference reward, �̅�    for 

every state l where play   is 0 is set to 0.1 meaning if the 
makespan of the scheduling policy is more than 10% as 
efficient as the ideal makespan, the reward is incremented and 
the preference for that action is set to a positive value. The 
reference reward following the first run, �̅�      is calculated as 

in Equation (6) where     1. 

�̅�      �̅�   +  [𝑟   − �̅�   ]                                                     (6) 

During the first run, all the scheduling policies will have an 
equal probability of being chosen.  Once a scheduling policy is 
chosen in play   in state l, the preference for that action is 
updated. The preference is the difference between the reward 
𝑟    and the reference reward  �̅�  as given in Equation (7).  The 

initial action preferences are set to 0. 

𝑃     (  )   𝑃   (  ) + 𝛽[𝑟   − �̅�   ]                                    (7) 
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The constant 𝛽 is a positive step size parameter. A high 
reward will increase the probability of reselecting the action 
and a low reward should decrease the probability. 

The probability     (  ) of selecting an action j at play   in 

state l is calculated using Equation (8). 

    (  )  
 
    (  )

∑  
    (  ) 

   

                                                           (8) 

The performance metrics used to assess BISA are presented 
below: 

 Overall makespan: 

The overall makespan of each run is calculated by first 
calculating the makespan of individual BoTs and then taking 
the sum of the makespan.  The individual makespan is 
calculated as shown in Eq (2) and the overall makespan is 
computed according to Equation (9). 

𝑂𝑣 𝑟 𝑙𝑙 𝑀 𝑘  𝑝 𝑛   ∑ 𝑀( 𝑜  )
   
              (9) 

 Normalized makespan: 

The overall makespan can be a misleading metric because 
during each run of the simulation the load varies.  The 
normalized makespan is based on the overall Makespan for all 
the BoTs generated within each run (48 intervals) calculated 
from Equation (9), the total runtime that denotes the actual 
runtime in the allotted VM of each task in a BoT during 
simulation and the number of tasks are those generated during 
each run (48 intervals).  The normalized makespan is 
calculated by taking the sum of the tasks in all the BoTs 
generated during each run as shown in Equation (10). 

𝑁𝑜𝑟𝑚 𝑙   𝑑 𝑀 𝑘  𝑝 𝑛  
                

                             
  (10) 

III. EXPERIMENTAL SETUP 

The framework provided by cloudsim [20] to simulate the 
cloud and incorporate the intelligent agent as a thread. The 
VM’s in the cloud run on the assigned host in the datacenter 
the allocation policy is time-shared. Each VM runs on a 
Processing Element (PE) which is 1 core of the host machine. 

To test the reinforcement learning agent, 7 Virtual 
Machines (VMs) are set up in various configurations.  
Configuration 1 & 2 are given in Table II. In configuration 1, 
the ratio of LG:ST:SM is 1:3:3 with a total capacity of 30, 
7000 MIPS.  In configuration 2, the ratio of LG:ST:SM is 3:2:2 
with a total capacity of 39, 6000 MIPS. 

The Bag-of-tasks workload is generated synthetically based 
on characteristics outlined in [11]. Table III gives the 
parameters used to generate a synthetic workload. In each run 
of the simulation, a daily cycle of 48 intervals is simulated.  
The user submitting the BoT is generated using a Zipf 
distribution.  The inter-arrival time between each BoT in a 
given interval is modeled using a Weibull Distribution. The 
size of BoTs is assigned to be powers of 2 between 4 to 512 
also modeled using a Weibull Distribution.  The average task 
runtime within a BoT is given using a Normal distribution and 
the task runtime variability of the tasks is given using a 
Weibull Distribution. The runtime is specified in MI (Million 

Instructions. The arrival rate is used to control the system load, 
and for this simulation, it is set to 1 The VMs operate on a 
time-shared basis on the hosts. The tasks (cloudlets) allotted to 
the VMs are also time-shared and hence, context switching 
takes place when multiple tasks take turns in using the 
processing element. 

TABLE II.  CONFIGURATION OF THE CLOUD 

Configuration 1 Configuration 2 

 MIPS  MIPS 

VM #0 82000 VM #0 82000 

VM #1 49000 VM #1 82000 

VM #2 49000 VM #2 82000 

VM #3 49000 VM #3 49000 

VM #4 26000 VM #4 49000 

VM #5 26000 VM #5 26000 

VM #6 26000 VM #6 26000 

Total Capacity 307000 Total Capacity 396000 

LG:ST:SM = 1:3:3 LG:ST:SM = 3:2:2 

TABLE III.  WORKLOAD CHARACTERISTICS OF BOT WORKLOAD 

Number of Intervals in each Run 48 

User (Zipf Distribution)  (368,1.31) 

Interarrival Time (IAT) Weibull 

Distribution 
(4.25,7.86) 

Size of BoT (Weibull Distribution) pow ((1.76,2.11),2) 

Class of Bots  {4, 8, 16, 32, 64, 128, 256, 512} 

Average Task Runtime within BoT (Normal 

Distribution) 
(2.73,6.1) 

Task Runtime Variability (Weibull 

Distribution) 
(2.05,12.05) 

Arrival rate  1 

Runtime factor 1000,000 

IV. RESULTS AND DISCUSSION 

The private cloud is set up in cloudsim and the BIS agent 
runs like a thread.  BISA recognizes the state, decides on the 
action and updates the rewards and number of plays on a state. 
Fig. 2 shows a sample set of states observed after 10 runs 
comprising of a daily cycle of 48 cycles per run. The size ratio, 
along with the utilization of processing capacity in the various 
categories of VMs forms a state. State 30 with size_ratio as 1 
and all the categories of VM utilization being “High” has the 
highest number of plays followed by State 1 and 18 that also 
have size ratio as 1 but with varying VM utilization. 

Fig. 3 presents the normalized makespan after every run for 
a succession of 10 runs with different values for α and β.  Each 
run consists of 48 intervals with BoTs generated using 
characteristics in Table II. Every marker represents the 
normalized makespan after a run.  The normalized makespan is 
plotted against the number of tasks executed after ever run 
rather than run 1 to 10 so that the trend can be observed 
accurately. 
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Fig. 2. The Number of Plays,   on Various States at the end of 10 Runs (Daily Cycle of 48 Intervals Each). 

 

Fig. 3. Normalized Makespan Over 10 Runs for 6 Sets of Learning Parameters (Configuration 1-Tasks Time-Shared in VM). 

For all learning parameters, a logarithmic decrease in the 
makespan can be observed. In some cases, the decrease is 
steeper.  For α=0.3 and β=0.5 the likelihood that the agent will 
rely on a previously learned policy that produces a better 
schedule is slightly more than its behavior to explore other 
possibilities. The normalized makespan fluctuates with every 
run and even after 33720 tasks at the end of the 10

th
 run. If a 

high value is set for both the exploration and exploitation 
parameters at α=0.8 and β=0.8, this results in the slightly 
higher normalized makespan in most runs.  If an exploration 
value is comparatively much higher than exploitation value in 
the case of α=0.8 and β=0.2, this prevents the agent from 
getting stuck in any local optima and ensures all possibilities 
are explored.  It can be observed that there is a steep learning 
curve in the initial 3 runs, but because of the high exploration 
value, the agent keeps choosing different heuristics and the 
makespan could not be reduced further.  The agent produces 
surprisingly good results for a comparatively high exploitation 
value as compared to exploration value with α=0.2 and β=0.8. 
The normalized makespan in the first run itself is 23% better 
than the lowest recorded value when α=0.3 and β=0.3. 
Likewise, the learning curve is also steepest among all the sets. 
The lowest recorded makespan is 7 times lower than all other 
normalized makespan produced for any other set.  Lastly, a 
very high exploitation value was set with α=0.12 and β=0.98. 
The agent stabilized after 4 runs at a suboptimal normalized 
makespan but produces the largest recorded value for 
normalized makespan in the second run. 

The average normalized makespan of the last 5 runs in a 
total of 10 runs on BISA with the different set of learning 
parameters is presented in Fig. 4.  The average of the last 5 
runs is taken as the agent is expected to stabilize.  It can be 
observed that BISA with α=0.2 and β=0.8 produced the best 
results. All other sets of learning parameters produce 
suboptimal results. For this configuration, U_MinCT produces 
the best results among the 15 scheduling heuristics.  BISA with 
α=0.2 and β=0.8 has an average normalized makespan that is 
72% smaller than U_MinCT. 

BISA with α=0.8 and β=0.8 which has the largest average 
normalized makespan has an average normalized makespan 
which is 1.8 times larger than U_MinCT and performs better 
than 9 out of the 15 scheduling heuristics. 

BISA was also tested in a second configuration as outlined 
in Table II. As can be seen in Fig. 5, the steepest learning curve 
is observed for α=0.2 and β=0.8.  The best scheduling heuristic 
is U_MinCT and BISA (α=0.3 and β=0.5) produces a 39% 
larger average normalized makespan as compared to 
U_MinCT.  On average, BISA produces suboptimal results and 
results in average normalized makespan that is less than 50% 
higher than the best (Fig. 6). 

To test the hypothesis that BISA will be able to adapt to 
dynamic changes to the resources, BISA is run with the best 
performance learned from configuration 1 (α=0.2 and β=0.8) to 
configuration 2 (Fig. 7). 
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Fig. 4. Comparison of Average Normalized Makespan of Last 5 Runs (Configuration 1–Tasks Time-Shared in VM). 

 

Fig. 5. Normalized Makespan Over 10 Runs for 6 Sets of Learning Parameters (Configuration 2-Tasks Time-Shared in VM). 

 

Fig. 6. Comparison of Average Normalized Makespan of Last 5 Runs (Configuration 2-Tasks Time-Shared in VM). 

 

Fig. 7. Comparison of Normalized Makespan of the First Run of BISA Run aFresh on Configuration 2 (C2) with Learned Rewards and Preferences from 

Configuration 1(C1) (α=0.2 and β=0.8) on Configuration 2. 
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The first normalized makespan learned afresh in 
configuration 2 is compared with the first normalized 
makespan in configuration 2 learned from configuration 1 on 
α=0.2, β=0.8.  The normalized makespan for the set (α=0.3 and 
β=0.5) operating on learned heuristics is half of the first 
normalized makespan when BISA is run on Configuration 2 
afresh.  The other sets do not show a comparable difference. It 
can also be observed that when using the same learning 
parameters α=0.2, β=0.8 when transitioning from configuration 
1 to configuration 2 a negative result of increased makespan is 
observed.  This indicates the state variables used in this 
simulation is not enough to differentiate. Hence in further 
work, states will be defined in further details so that learned 
best heuristics on a configuration can seamlessly be applied to 
other underlying configurations. 

V. CONCLUSIONS AND FUTURE WORK 

An intelligent agent, BISA (BoT Intelligent Scheduling 
Agent) is proposed that learns the best scheduling heuristic to 
use in a state.  The goal of BISA is to schedule each BoT such 
that the makespan is minimal.  It is tested in two underlying 
configurations of cloud by allotting both tasks to VMs in a 
time-shared manner. It produces sub-optimal results 
comparable to the best scheduling heuristic for a given 
configuration. It can adapt to different underlying 
configurations and re-learn the best heuristic to use in a 
configuration.  In configuration 1, for one set of learning 
parameter (α=0.2 and β=0.8) BISA outperforms all the 
traditional scheduling heuristics.  In configuration 2 all the sets 
of learning parameters result in sub-optimal results with the 
best results on the set (α=0.3 and β=0.5).  A 50% decrease in 
normalized makespan can be observed when transitioning from 
the best run on configuration 1 to configuration 2 on (α=0.3 
and β=0.5) as compared to running BISA afresh in 
configuration 2. 

It can be inferred that the choice of learning parameters 
determines the effectiveness of BISA.  A good tradeoff 
between exploration and exploitation produces a lower 
makespan and converges to a near-best heuristic for a state 
rapidly.  With BISA there is always the possibility of agents 
settling for a sub-optimal heuristic and it is crucial to choose 
learning parameters to minimize this occurrence. 

BISA could be improved by re-examining the parameters 
that comprise the state and specifying them in a fine-grained 
manner.  Additional objectives of minimizing cost, latency, and 
energy consumption, if factored into the reward obtained in 
BISA, solves a multi-objective problem. BISA trained to learn 
the best learning parameters that result in optimal results would 
also improve the performance of BISA in converging to and 
choosing the optimal scheduling heuristic in a state. 
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