
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

517 | P a g e

www.ijacsa.thesai.org

Fast and Efficient In-Memory Big Data Processing

Babur Hayat Malik
1
, Maliha Maryam

2
, Myda Khalid

3
, Javaria Khlaid

4
, Najam Ur Rehman

5
, Syeda Iqra Sajjad

6

Tanveer Islam
7
, Umair Ahmed Butt

8
, Ali Raza

9
, M. Saad Nasr

10

Department of CS and IT, University of Lahore, Chenab Campus, Gujrat Pakistan

Abstract—With the passage of time, the data is growing

exponentially and the mostly endured areas are social media

networks, media hosting applications, and servers. They have

thousands of Tera-bytes of data and the efficient systems,

however, they are as yet confronting issue to oversee such volume

of information and its size is growing each day. Data systems

retrieve information with less time of In-memory. Instead of each

factor data systems are required to define good usage of cache

and fast memory access with help of optimization. The proposed

technique to solve this problem can be the optimal indexing

technique with better and efficient utilization of Cache and

having less overhead of DRAM with the goal that energy can also

be saved for the high-end servers.

Keywords—Big data processing; indexing techniques; R-tree;

B-tree; X-tree; hashing; inverted index; graph query tree

I. INTRODUCTION

A. Big Data

Big Data is large datasets whose scale, diverseness, and
complexity involve new strategic technologies for algorithmic
computer program, and analytics to manage it and excerpt
value and hidden knowledge from it. With the passage of time
the data is growing exponentially and the mostly domains that
hold thousands of Terabytes of data are social media
networks, media hosting applications, and servers [1]. Big
data is basically an umbrella term for data that are too large to
handle. Characteristics of data involve 4V’s.

1) Volume (Scale)

2) Varity (Complexity)

3) Velocity (Speed)

4) Veracity

Day by day data volume is increasing exponentially and it
needs to be processed fast. Due to increase in the volume of
data, it is also complex to handle because one application is
generating different types of data containing several formats,
types, and structures, text, numerical, images, audio, video,
sequences, time series, social media data, multi-dim arrays,
etc. [2]. The veracity of data is measured by checking its
accuracy and types of data structured and unstructured and it
is difficult to check the veracity of unstructured data.

Growth of data has become an issue for the past few
decades because it is not easy to manage that data and store it,
perform computation and extract any information from that
size of data. There are many solutions for that type of data
while managing it some says to classify it to make the
retrieval fast. Some says to store it in efficient manner in most
upgraded machines with High performance processors, Main
memory and also secondary memories. In Memory Systems

are better than other disk based systems because performance
of main memory is better than hard drive [3]. As field of
computing is very vast and progressing, each day is seen with
new inventions and innovations in every domain and sub-
domain, like the SSD. A secondary storage drive and PCM is
very fast than the old HDD. Number of Computations per
second in these No-Volatile memories is far greater than the
simple hard drive. It is very integrated in size and very
efficient access time [4]. Modern Servers in these days
normally have hundreds of gigabytes of DRAM and tens of
cores while the fastest of them have TB’s of DRAM and Peta-
bytes of secondary storage with hundreds of cores to process
the gigantic size of data [5]. In-memory systems have been
discussed in 1980s [6], and after that is has not been studied.
However, recent progress in the computing era has changed
the previous work entirely and developed an interest to host
the entire data in Main-memory to perform faster access data
analytics [7]. In-memory Data processing has been widely
used to support large-scale applications totally in DRAM.
Different aspects can be considered for optimizing in-memory
system such as indexing, data layouts, Parallelism, Fault-
tolerance, Data-overflow, concurrency control and query
processing [8], [9]. Indexing deals with cache utilization and
parallelism deals with data compression [10] and fast
processing means packing multiple values in single processor
word.

Parallelism is of two types scale-up and scale-out and both
of these optimize performance by partitioning data.
Concurrency Control is another aspect that has great impact
on the performance of data analysis [11]. Different mechanism
of concurrency control has different demerits like Heavy-
weight mechanism consists of too much locks/semaphores
which are the key ingredient of degrading the system
performance. Similarly, other mechanisms are Light-weight
Intent Lock (LIL) and very lightweight locking (VLL)
simplifies the data structure by compressing all the lock states
and some are based on time stamps [12], [13]. Other efficient
techniques are MVCC “Multi-Version Concurrency Control”
Search and Retrieval of this type of content has become a
challenging task now a-days because the data volume is very
high and it is not easy to manage such size of data and
performing computation on that type of data.

Using Distributed Environment is one of the solution so
that performance of computation on that data can be optimized
[14]. In memory data storage defines performance
improvement attribute because the latency of DRAM is much
less than that of permanent Storage and the data in RAM can
be retrieved fast because the processor can better access
DRAM than the hard drive. But this still needs some kind of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

518 | P a g e

www.ijacsa.thesai.org

optimization that can make this process space and time
efficient and can retrieve data optimally.

Many Indexing techniques have been proposed such as
Hash-based, Tree-based but all of them have deficiencies of
any kind such as some of them have performance issues and
others are not time efficient. Few enhance cache by
performing huge computations while other fails to correctly
compute cache. So there should be an optimal solution that
can search huge data optimally. All the work about it involves
in improving the indexing technique which could be to make a
new and different algorithm that is best among the others
implemented before or it can be the combination of any two
best indexing techniques means.

B. Optimizing Big Data Processing

With the Increase of Data volume and size, it has become
difficult to manage and process it efficiently. Although many
techniques have been proposed in this era, as indexing,
parallelism, data layouts management, concurrency control
and fast query processing but it still needs optimization so that
its processing time can be decreased. As the project is about
In-memory big data processing so it should be reminded that
in this case, a copy of database should be kept in main-
memory which is DRAM all the time so that it should be
processed fast but it still needs an efficient indexing technique
to process more fast with less cost and time. The whole project
is about optimizing indexing technique of big data to make it
process fast and the end its energy should be measured
because all the work overhead depends upon DRAM that’s
why the energy should be kept in mind.

This paper is organized as follows: Section II presents the
comprehensive literature of previous work. Section III
presents a comparisons based on related literature. Finally,
Section IV concludes the paper and future work is also
discussed.

II. LITERATURE REVIEW

A. Research Paper Summaries

Author of paper [1] described that for data mining, creative
technologies, and analysis of data and prediction the word
“Big data” appears on most of the specialized meetings around
the world. Where the organization of huge sums of
information is toward the best real work this word is applied
in these zones. To characterize these zones, a constant rise of
information brooks in the administrative procedure, whether it
is an economy, savings, making, selling, broadcastings,
treatment, etc. The knowledge of huge information place
administration inside an equivalent treating of assets for best
technology background is mainly related. The training of in
memory knowledge application structures for large
information groups on heavy technology which is based on
SAP HANA knowledge’s used as information storage and
presented in this paper. SAP HANA Colum store method read
information fast and data compression methods efficiency rise.
The compacted information procedure lets decomposition
process resources cheaper. With a similar engineering of
possessions, the prices economy for large information saving
and dispensation with the practice of in-memory method
founded on SAP HANA let’s decrease bulks of information

stored in the main system information. Different to old-style
files shaped for hard disk connecting, the communication of
RAM and the processor is the initial aim of SAP HANA. A
method [1], like a column store is applied in that situation,
which moreover takes a quick action of data reading; open the
ways so that data compression mechanism is applied in a good
way. Deprived of outgoings wealth on the decompression
procedure, SAP HANA works with compacted information in
a direct way. IT facilities management that is incorporated into
the IT setup of an information founded boldness, now takings
residence with the service concerned with communal material
schemes usage.

Author of [2], described that the use of technology is
greatly improved by the installation of sensors. As time has
increased the requirements have also increased. In addition to
that, the number of problems has also increased which are
related to the equipment of an industry. Therefore, it is
required that new systems are introduced for obtaining the
best performance and storage of data. Industries use a large
number of sensors to monitor, process and storage of data. In
the past, the systems having particular needs were used in the
industries that could not have the capability to process the data
in a fast way and store it. For the storage of data in the middle
of working, fast processing and storing high volume the In-
memory technology is the most suitable one. In this paper [2]
the analysis of data at high speed and having high volume is
done by developing the prototype having in-memory at the
core. So, the time series data is stored continuously and
simultaneously analyze the data. The case is discussed in
which the memory is stored at the rate of 10000 data
points/sec. Also, the analytical collection is implemented for
IMDG and the data is updated in a continuous manner. The
data of 3 days is stored in memory in addition to duplication in
which the fault is tolerated. In this process, five terabyte of
Ram is consumed [2]. While this work was performed,
numerous challenges were faced like in which way the
performance can be maximized. In addition to the selected
data storage and processing capability, it is important to have
an additional memory so that overhead and processing tasks
are carried out. In the future work, it is proposed that the CEP
framework will be employed which has the capability to
process millions of data points/sec. Other methods like
Apache storm, Hadoop file systems, and other such techniques
will be implemented.

In [3] with the increase of technology, the usage of
computers as well as the computation is increased. Moreover,
the computation speed at higher rate is also required. For this
purpose, either the approach of utilizing the memory
processing or the disk-based approach is used. The main
demerit of disk-based approach is that the performance is
sacrificed. This paper presents a novel approach in which the
scaling of graphs into sub graphs is made by RAM-Disk
approach. The graphs are divided into sub graphs which are
suitable for RAM. So, there is no modification in algorithm
and the approach deals with small memory to large memory
machines. The approach of processing in terms of out of core
is identical to that of paging. However, it is applied to the sub
graph which can also be thought as logical partitions. The
logical partitions are formed so that they are fit in the main

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

519 | P a g e

www.ijacsa.thesai.org

memory and then combined with asynchronous push model.
For the implementation of algorithms, the use of graph-
processing engine has been made. It is helpful in executing the
algorithms by which accessible resources can be utilized for
quick as well as scalable processing of graphs. For the
implementation, STAPL frame work is used. The algorithms
of STAP GL are also used without any modification. The
running time on various platforms having different processing
capabilities is illustrated in the form of diagram in the paper.
Therefore, the selected platforms include a 2-core tablet
having only 1 GB Ram, another PC having 4-core with the
memory of 8 GB and supercomputer of CRAY XE6. The
running times for various graph mining as well as the graph
analytics on PCs having memories of 4 GB and 8 GB RAM
are also shown in the paper. This helps in extending the
approach to the machines that are based on distributed
memory.

In [4], the Big Data figuring is one of the problem areas of
the web of things and distributed computing, whose
exploration substance are securing, administration, handling,
appear, thus on of monstrous information. In the handling join,
how to process effectively on the Big Data is the key to
enhancing execution. By methods for dispersed registering or
memory figuring, numerous organizations and foundations
give a few advancements and produce. The Hadoop
innovation is run of the mill illustrative of disseminated
registering. In Hadoop, MapReduce is a circulated
programming system proposed by Google. It is a framework
for parallel handling of extensive informational collections. In
MapReduce, the undertaking can be part into subtask and the
disseminated parallel registering can be acknowledged
effortlessly. In memory processing, the Big Data are circulated
stacked in various PCs as indicated by some standard. The
SAP HANA database can possibly give execution
enhancements to existing SAP applications. The circulating
memory is registered in which the Hadoop innovation and
memory registering innovation mix together. The PC amount
of group isn’t constrained, so we can stretch out group vastly
to store substantial information. Yet, they are invalid in the
scene in which there are continuous requests in the low-
arrange group. To manage the issue, this paper gives a
conveyed registering and memory processing based viable
arrangement (Objectification Parallel Computing, OPC). The
OPCA is made out of Client Proxy, Protest Manage Server
and Object Server. There are three programming in the OPC:
Object Manage Server Soft (OMSS), Object Server Soft
(OSS), what’s more, Client Proxy Soft (CPS). In the
arrangement, the information can be organized into protest. At
that point, the items are conveyed put away in the PC
recollections and parallel process to finish assignments. The
OPC is connected to the Electric Asset Quality Supervision
Oversee System (EAQSMS) of State Grid of China, the
outcome demonstrates that with PCs the framework is
proficiently accessible, solid, furthermore, adaptably
expansible. There are a few inquiries to investigate and settle,
for instance, information pressure, checking the bunch, hot
backup, et cetera. These issues require additionally look into.
At present, innovation advancement changes rapidly. We
require constantly center around new innovation to unravel the
issue.

In [5], it is mentioned that in these days, the capacity of
information and the administration of interconnected gadgets
has turned into an incredible test. In this way, putting away
such a lot of information and its calculation requires a unique
record system known as MapReduce display which stores,
process, oversees and executes the information. Apache Spark
is one of the computational frameworks and its apparatuses
and related systems are accessible as an open source permit.
Several different associations of the world have made a
utilization of Hadoop document framework. These
computations are very fast in nature. But the main factor
which may cause a failure is the storage or memory.
Therefore, tuning of memory can be done by the Spark. For
this purpose, the excessive knowledge is required. In this
paper, the memory selection methods to which the first step is
taken is discussed. In this way, the failure of memory and the
execution which is 25 percent is decreased. The load of work
to be selected is 20 gigabytes of data. The experiment is
performed by the use of one thousand and four thousand on 15
gigabytes and 2 gigabytes of memory. This paper deals with
the detection as well as the automation [5]. Various graphical
representations are shown in the paper such as execution time
against the caching strategies, a sort of algorithm which
represents the selection process of cache and its configuration.
Various kinds of caching modifications have been observed
and are experimentally assessed. In this way, the footprints, as
well as the working performance, are improved. However, the
Spark’s strategy for caching is observed to be inefficient in
such cases where the data is not adjustable in memory.
Therefore, various strategies discussed will result in some
tradeoffs. Because of the reduction of footprints, a collection
of garbage and its frequency is reduced.

Author of [6], addresses the problem of performing
operations on bulk data is quite a time consuming and had bad
impact on system performance too. There are three reasons
due to which operations on bulk data reduces its latency,
bandwidth and effect the system performance and energy
efficiency. First, present systems perform bulk data operations
on byte/line at a time due to which system has to face
performance issues due to high latency. Second, these tasks
require a substantial amount of information to be exchanged
over the memory channel. Henceforth, they are in a
roundabout way that influenced the execution of
simultaneously running applications over the memory data
transmission. Third, the information transfer across the
memory channel speaks to a significant portion of the vitality
required to perform operations on bulk data.

In this paper basic goal is too focused on optimizing two
classes of bandwidth-intensive memory operations one is bulk
data copy which means transferring of data in physical
memory, the second is bulk data initialization to reduces the
latency, bandwidth, and energy consumed by bulk data
operations. Row clone is basically a simple technique to
perform operations on bulk data within DRAM. This
methodology takes out the need to exchange information over
the memory channel to play out a bulk information activity,
and subsequently can possibly moderate the related inactivity,
data transfer capacity and vitality issues.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

520 | P a g e

www.ijacsa.thesai.org

Author of [7] tells us the blast of computerized
information and the regularly developing requirement for big
data investigation has made in-memory big data processing
progressively imperative. Due to fast-growing data, processing
large graphs in main memory is still a problem. Because of
memory bandwidth restrictions, it is difficult to build systems
whose performance increases relatively with the increase in
graphs. To accomplish a target processing-in-memory (PIM)
can be a practical solution. With the end goal to take
advantage of another innovation to empower memory –
capacity-proportional performance Tesseract is designed for a
large scale graph processing. It is made up of a new
architecture that completely uses the memory bandwidth. It is
a proficient strategy for correspondence between various
memory partitions. It also includes two hardware pre-fetcher
which works based on hints. By using this strategy author
demonstrated that Tesseract works well in both performance
and energy effectiveness. Tesseract accomplishes memory
capacity proportional performance, which is the main
objective in dealing with a large amount of data. This new
plan can be a proficient and useful substrate to execute
emerging data-intensive applications with memory bandwidth
requests.

In [8], it is described as balanced Binary Trees (B Trees)
are not optimal for indexing on modern hardware because they
cannot better utilize the Cache. These shortcomings have been
improved in Adaptive Radix Tress that is also a space
efficient. Its lookup performance is very time efficient and
supports optimal insertions and deletions as well as deals with
the worst-case space consumption, which plagues most radix
trees, by adaptively choosing compact and efficient data
structures for internal nodes. Even though Adaptive Radix
Trees performance is almost similar in time to hash tables but
it stores the data in the sorted form, which requires additional
computations like range finding and making it in order. But
still, ART has performance issue due to a lot of computations.
Later on, more work can be done like synchronizing
simultaneous updates.

Author of [9] discuss that the development of unstructured
information in social media gives an open challenge to cloud
database network. In this era, the way we deal with big data
processing becomes a serious issue. MapReduce is one of the
techniques used for big data analytics. There is a number of
indexing techniques like Hadoop++, HAIL, LIAH, and
Adaptive Indexing. These techniques are still not efficient or
an optimized way to process big data. To solve this problem
author proposes a solution that is basically HDFS indexing
techniques named as Low-Index and High-Index. The goal of
these new approaches is to provide a platform to index in
Hadoop Distributed File System and MapReduce frameworks
without changing the current Hadoop structure. Low-index
gives an index that contains text and it tells the Hadoop to
filter only those which contain the related terms. Low-Index
likewise upgrades the throughput (limits reaction time) and
defeats the problem of long inactive time for list creation. This
new approach is better in performance than the Lucene but not
efficient in response time. To overcome this problem, High-
Index is proposed which is found better than Low-Index in
computation and response time. We compare the execution

time of both Lucene and new suggested approaches Low-
Index and High-Index. In the beginning, these two took more
time for creating an index but after that, they perform better
the Lucene approach. In future, we can improve these
approaches by working on composite queries in a huge cluster
setup.

In [10], the author discusses that for big data top-k queries
are a big challenge. Top-k systems depend on positioning
functions with the end goal to decide a general score for every
one of the items over all the relevant attributes being
examined. This positioning capacity is given by the client at
query time. Bit-sliced indices (BSI) were proposed to answer
these queries proficiently. MapReduce and key-values stores
are strategies for investigating huge information; we set up to
assess the execution of BSI. Indexing is implemented over
Apache Spark for both row and column stores and appeared to
beat Hive when running on Map-decrease, and Tez for top-k
queries. This methodology is strong and useful for high
dimensional information. Top queries are executed over a
dataset with 8,000 dimensions. In performing experiments,
when expanding the quantity of CPU from 24 to 48 query time
reduced by around half while diminishing the number of bit-
slices per measurement, the index size and the query time is
also reduced. On the bases of this result, we concluded that
proposed techniques performed better over Hadoop
MapReduce and Hive over tez. For future work, the author
intends to explore the correct measure of information
rearranging done by different vertical and horizontal partition
sizes and how this influences the query time. This can help on
deciding the ideal number of bit-slices that ought to be
gathered together during map-reduce aggregation.
Additionally, it can also be a plan to research more impacts of
the BSI attribute section size.

In [11], author tell us that using old strategies like storage
of data on disk is now become one of the problems due to
growth in data. They don’t scale smoothly to address the
issues of huge scale Web applications, and disk space limit
have far exceeded enhancements in access latency and data
transfer capacity. This paper contends for another way to deal
with data center capacity called RAM Cloud, where data is
kept totally in DRAM. We trust that RAM Clouds can give
long-lasting and available storage with 100-1000x the
throughput of disk-based systems. RAM Clouds use different
techniques like storing the copy of data in DRAM for the fast
retrieval of data and to provide durability for data. The two
important points in this approach are that they have low
latency and they have the ability to combine the resources of a
large number of commodity servers. RAM Clouds also have
some drawbacks like high cost and high use of energy. Later
on, both innovation patterns and application necessities will
manage that a bigger and bigger portion of online information
is kept in DRAM.

In [12], the author described that Due to the increase in
data recently we are facing emerging security and protection
challenges. Huge information, since it can dig new learning
for monetary development and specialized advancement. New
mined data will be unconvincing; while if security isn’t all
around tended to, individuals might be hesitant to share their
information. Since, security has been explored as another

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

521 | P a g e

www.ijacsa.thesai.org

measurement, “veracity,” is enormous information. In this
article, commit our consideration toward privacy in the big
data era. First, formalize the general design of enormous
information investigation, distinguish the relating protection
prerequisites, and present a productive and security saving
cosine computing protocols as an example in response to
privacy requirements. There are different existing privacy-
preserving techniques. One is privacy-preserving aggregation,
second is operations over encrypted data and third is de-
identification techniques. To evaluate the proposed PCSC
protocol it is compared with direct cosine similarity
computation and the HE-based protocol. Based on JAVA
language, both used to evaluate results with the same output
on the PC with Intel Pentium CPU B980 running at 2.40 GHz,
and with 6 Gbytes of RAM. The experiment results show that
the proposed PCSC protocol is also efficient along with
privacy preserving. Further research can be done by
addressing unique privacy issues in big data analytics.

In [13], author addresses because of different difficulties
and significant issues it is difficult to manage big data. Map
Reduce is the technique for handling the huge amount of
information. In this 3-layer traffic, aware clustering algorithm
is proposed as the best solution for traffic aware partition and
aggregate to minimize the cost of network traffic. One
problem that is faced in network traffic is difficult to process
data in a given time. The basic goal is to reduce network
traffic cost. As a result of applying this technique helps in
reducing response time and simulation experiment result
revealed that this proposal can reduce the network traffic.

Author in [14] is investigating a lot of healthcare
information is as yet a challenge because of the absence of
sufficient information management techniques that empower
responsive information investigation and examination. A
single patient record consists of multiple attributes. Doctor
keeps this record for the future prediction about the patient. To
resolve this, issue the author compares two in-memory New
SQL database technologies Mem SQL and VoltDB. For doing
this author uses Medicare claims synthetic data. The goal is to
explore data faster and to enable real time predictions. This
proposed solutions shoes that most of the queries reply back
within 10 seconds. Further, it is planned to continue this
research by using different new SQL databases like SQL Fire
and to develop a new tool for real-time analysis of data using
in-memory database system.

In [15], author address a problem that due to the increase
in data it is difficult to use a DRAM for big data processing.
As DRAM is facing capacity issues and become a reason of
main power drain in modern computers. In this paper, the
author proposed an effective page management technique for
vast scale NVDIMM memory and gives an effective
management technique by keeping in mind both TLB
performances and page fault rates. Page fault rates become
small with the increase in NVDIMM capacity. NVDIMM-
based memory models are getting huge importance due to
shifting of the desktop to cloud environment. The goal of this
technique is, to be helpful in designing new applications for
big data.

In [16], the author mentioned a problem of the large
performance gap between processor computation and memory
access. To solve the memory wall problem 3D stacked
technology is proposed. It is combined with NVM. The
proposed solution has some advantages like big capacity low
cost and non-volatility. In future NVM materials can be
studied along with 3D memory systems.

In [17], the author tells us that because of less expensive
and faster processing in DRAM in-memory data management
systems have gained a lot of attention. The author proposed an
innovative in-memory data management system named as
MemepiC. It brings together both online data queries and data
analytics functionality permitting low-latency and proficient
in-situ information analytics. For conveying message inside
the MemepiC RDMA-based communication protocol is
designed. Different experiments are performed by to show
how efficient MemphiC is, in terms of both storage and data
analytics services.

In [18], author tells us that nowadays storing and
managing a big data is not only a challenge but also extracting
a useful information from that data. The main purpose of this
paper is to analyze unstructured data. There are many
techniques to solve this problem. MapReduce in connection
with the HDFS and HBase database as part of the Apache
Hadoop project is a modern approach to evaluate unstructured
data. Hadoop methods are used for handling big data and can
be enhanced with the right approach.

Author in [19], addresses the problem of gathering a large
amount of data. The organizations have to face issues of big
data efficient performance and the raised infrastructure cost
with the data processing. The new architecture is shifted from
centralized to distributed architecture and with the help of
these changes organizations are able to defeat with the
problem of getting related information from a large amount of
data. Apache Hadoop is a proposed technique to solve this
problem. The basic goal is to facilitate user and provide them
a useful information in less time with least effort.

In [20], while studying big data there are two problems
that occurs one is storage of a large amount of data and second
is processing speed. To solve these issues in Grid Technology
is used. The Main advantages of using this are capacity
abilities and the handling power. The Oracle/Cloudera
approach is a successful combination of Cloudera’s software
tool and the Oracle built frameworks intended to give high
performance and adaptable information handling for Big Data.

In [21], author said that B-tree or B + -tree is the most
famous index structure in disk-based relational database
systems, the T- tree has been broadly used as the good
approach of index structure for in-memory databases where
the entire database resides in the main memory. However, the
research work on T-tree doesn’t take into account the
concurrency control that is a drawback one can say. Similar to
B-tree index is B-link tree outperforms the T-tree if
concurrency control is reduced. This is because the
concurrency control over a T-tree demands more locking than
that of a B-link tree, and the overhead of locking and
unlocking is high which results in the performance
degradation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

522 | P a g e

www.ijacsa.thesai.org

In [22], author describe that the data is not big in terms of
their volume but also include the queries that are performed to
access that data. There are many strategies through which we
can search data using different keywords. In this paper new
technique is introduced named as ADAM which allows a
Boolean retrieval of data for structural and unstructured data.
Using this technique queries are made in in the style
MapReduce. Signature-based indexing strategy is supported
and minimizes the access time. The accuracy and efficiency of
this are measured by performing an experiment and form
ImageNet 14 million images are retrieved. In the future, it can
be tested on more large-scale data consist of multimedia. The
author proposed indexing technique which is called hash. This
technique takes the bulk of images and gives images that are
same as a result.

In [23], STR (Sort-Title-Recursive) algorithm is modified
for indexing technique R-trees. It will take spatial data as a
data type. After the implementation of this, it is compared
with the previous techniques. It is evaluated in terms of space
storing index strategy. To improve STR two methods are
presented. One is to collect sorted spatial objects and combine
them in each axis in the form of slices. In the second strategy,
each object has its own axis and then for every object connects
them into suboptimum space filling. This improved STR
performed well the previous methods. In future Revised R* -
the tree can be implemented.

In [24], the author described that as we all know that it is
difficult to handle spatial data. In memory, the database needs
a method with the use of which we can easily retrieve data and
then update. To fulfill this need author proposed new indexing
technique named as R-tree. It is an algorithm that helps in
updating and searching for data. This algorithm is
implemented in Different experiments are performed in the
result of which it is concluded that it is useful for spatial data.

In [25], the author presented an Inverted indexing
technique to tackle the problem of processing the growing
spatial data. This technique is the partition of inverted and grid
indexes. This method is implemented with MapReduce many
experiments are done to check the scalability of the technique.
This technique is constructing time of index is very much less
as compared to the other trees.it is three times faster when
compared with Voronoi-based query processing.

III. COMPARATIVE STUDY OF RELATED LITERATURE

After critically analyzing all the literature, his section
present the all techniques discussed. There are two types of
indexing techniques. One is Artificial Intelligence Approach
[23] and second is Non Artificial Approach. Non Artificial
Approach is further divided into three categories [20], [21].
One is Tree Based Indexing, second is Inverted Indexing and
third is Hashing [24]. Tree is further divided into more
categories. Three are shown in Fig. 1, B-tree-tree and X-tree.

Different Indexing technique use different type of data for
processing [25]. Every technique has different ways to
perform query. All of these factors affect the complexity of
indexing technique. The technical summary of indexing
technique is given in Table I.

There are many factors that affect the hashing and tree
indexing technique. Table II discusses these factors. A
comparison of different indexing techniques is shown in
Table III and also the analysis of indexing techniques on the
basis of big data characteristics is given in Table IV.
Furthermore, on comparing all the indexing techniques from
Section II, the advantages and disadvantages of these
techniques are analyzed and given in Table V.

Fig. 1. Flow Chart.

TABLE I. TECHNICAL SUMMARY

Technique Concerns Related Work

Indexing

Space Efficiency Graph Query Tree

Time Efficiency X-Tree

Better Use of Cache B-Tree

 R-Tree

 Hashing

 Inverted Indexing

TABLE II. FACTOR EFFECTING TECHNIQUES

Factors Hashing Tree Indexing

Access Latency Reduce Access Time Minimum Access Time

Space
Efficient in Space
Handling

High Space Consumption

Indexing Efficiency

Efficient in Balancing

Access and Tuning

Time

Not Powerful

Miscellaneous N/A Good for Random Access

Time
Hashing Function

Reduce Stunning Time
Minimal

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

523 | P a g e

www.ijacsa.thesai.org

TABLE III. COMPARISON OF INDEXING TECHNIQUES

Indexing

Techniques
Data Type Query Type Complexity

R-Tree

Multimedia

and Spatial
Data

2 to 3-dimensional
Access Method

Worst Time

Complexity and
Inefficient usage of

Time

B-Tree
Multimedia

and Log Data

1-Dimensional

Access and Range
Queries

O(logn)

X-Tree Spatial Data

Multi-Dimensional

Access and Range

Queries

Linear and

Time Complexity

O(n)

Hashing
Multimedia
and Log Data

Point Query N/A

Inverted
Index Tree

Multimedia

Data and
Documents

Keyword Queries

N/A

Graph

Query Tree
Graph N/A N/A

TABLE IV. ANALYSIS BASED ON BIG DATA CHARACTERISTICS

Indexing

Techniques
Volume Velocity Variety Veracity

R-Tree Yes N/A No N/A

B-Tree Yes N/A N/A N/A

X-Tree Yes N/A N/A N/A

Hashing Yes No Yes No

Inverted Index Tree Yes N/A No N/A

Graph Query Tree Yes Yes N/A N/A

TABLE V. TECHNICAL ADVANTAGES AND DISADVANTAGES

Indexing

Techniques
Advantages Disadvantages

R-Tree
 Less query processing cost.

 Query response time depends on

buffer size

 Index takes more
space

B-Tree

 Faster Construction

 Fast query response

 Less Updating Cost

 Index takes less time

 Data increase
cause increase in

construction cost

Hashing
 Efficient query response for large

dataset

 More initial

setup time

Inverted
Index Tree

 Index takes less space

 Fast query response

 Manageable query processing cost

 Require more
time to load in

memory

Graph Query

Tree

 Less processing query cost

 Index takes less space

 Fast index construction

 Fast query response

 Less update cost and scalable for

large data

 More
Computational

cost for large

network

IV. CONCLUSION AND FUTURE WORK

As the main memory is used as disk, In-memory data
management has become interesting for industries. Shifting
the data towards main-memory has improved the access time
and throughput at a very great extent. Shifting of data has also
developed the interest in different aspects to perform
optimized results while performing computation on that size
of data. Modern Systems has reduced the problem of
management of that volume of data by using efficient memory
and performance with cache sensitive indexing techniques to
better utilize the cache and perform faster Calculations.

As big-data is very vast area of technology, the
shortcomings and problems in that field are also at a large
scale and all that is in case of management and processing of
this size of data. Space efficiency is a factor that should be
considered for hash-based indexing techniques. Hashed tree
approach can be further improved by working on binary codes
to save space and also creating a unique index for each
component of data.

REFERENCES

[1] M. Brusakov and G. Botvin, “In-memory technology integration
features for work with big data on high-tech enterprises”, in Soft
Computing and Measurements (SCM), 2017 XX IEEE International
Conference on, IEEE, 2017, pp. 697– 698.

[2] J. W. Williams, K. S. Aggour, J. Interrante, J. McHugh, and E. Pool,
“Bridging high velocity and high volume industrial big data through
distributed inmemory storage & analytics”, in Big Data (Big Data), 2014
IEEE International Conference on, IEEE, 2014, pp. 932–941.

[3] N. M. Amato, L. Rauchweger, et al., “Processing big data graphs on
memoryrestricted systems”, in Proceedings of the 23rd international
conference on Parallel architectures and compilation, ACM, 2014, pp.
517–518.

[4] Z. Yang, C. Zhang, M. Hu, and F. Lin, “Opc: A distributed computing
and memory computing-based effective solution of big data”, in Smart
City/SocialCom/SustainCom (SmartCity), 2015 IEEE International
Conference on, IEEE, 2015, pp. 50–53.

[5] A. Koliopoulos, P. Yiapanis, T. Tekiner, G. Nenadic, and J. Keane,
“Towards automatic memory tuning for in-memory big data analytics in
clusters”, 2016.

[6] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G.
Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, et al.,
“Rowclone: Fast and energy-efficient in-dram bulk data copy and
initialization”, in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ACM, 2013, pp. 185–
197.

[7] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
inmemory accelerator for parallel graph processing”, ACM SIGARCH
Computer Architecture News, vol. 43, no. 3, pp. 105–117, 2016.

[8] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases”, in 2013 IEEE 29th International
Conference on Data Engineering (ICDE), IEEE, 2013, pp. 38–49.

[9] A. B. Mathew, P. Pattnaik, and S. M. Kumar, “Efficient information
retrieval using lucene, lindex and hindex in hadoop”, in Computer
Systems and Applications (AICCSA), 2014 IEEE/ACS 11th
International Conference on, IEEE, 2014, pp. 333–340.

[10] G. Guzun, J. E. Tosado, and G. Canahuate, “Scalable preference queries
for high-dimensional data using map-reduce”, in Big Data (Big Data),
2015 IEEE International Conference on, IEEE, 2015, pp. 2243–2252.

[11] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D.
Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, et al.,
“The case for ramclouds: Scalable high-performance storage entirely in
dram”, ACM SIGOPS Operating Systems Review, vol. 43, no. 4, pp.
92–105, 2010.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

524 | P a g e

www.ijacsa.thesai.org

[12] R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao, “Toward efficient and
privacypreserving computing in big data era”, IEEE Network, vol. 28,
no. 4, pp. 46–50, 2014.

[13] G. Venkatesh and K. Arunesh, “Map reduce for big data processing
based on traffic aware partition and aggregation”, Cluster Computing,
pp. 1–7, 2018.

[14] M. Mian, A. Teredesai, D. Hazel, S. Pokuri, and K. Uppala, “Work in
progressin-memory analysis for healthcare big data”, in Big Data
(BigData Congress), 2014 IEEE International Congress on, IEEE, 2014,
pp. 778–779.

[15] S. M. Kwon and H. Bahn, “Efficient memory page management for
nvdimmbased big data processing environments”, in Information
Science and Control Engineering (ICISCE), 2017 4th International
Conference on, IEEE, 2017, pp. 283– 287.

[16] C. Qian, L. Huang, P. Xie, N. Xiao, and Z. Wang, “Efficient data
management on 3d stacked memory for big data applications”, in Design
& Test Symposium (IDT), 2015 10th International, IEEE, 2015, pp. 84–
89.

[17] Q. Cai, H. Zhang, W. Guo, G. Chen, B. C. Ooi, K.-L. Tan, and W. F.
Wong, “Memepic: Towards a unified in-memory big data management
system”, IEEE Transactions on Big Data, 2018.

[18] K. Bakshi, “Considerations for big data: Architecture and approach”, in
Aerospace Conference, 2012 IEEE, IEEE, 2012, pp. 1–7.

[19] J. Nandimath, E. Banerjee, A. Patil, P. Kakade, S. Vaidya, and D.
Chaturvedi, “Big data analysis using apache hadoop”, in Information
Reuse and Integration (IRI), 2013 IEEE 14th International Conference
on, IEEE, 2013, pp. 700–703.

[20] D. Garlasu, V. Sandulescu, I. Halcu, G. Neculoiu, O. Grigoriu, M.
Marinescu, and V. Marinescu, “A big data implementation based on grid
computing”, in Roedunet International Conference (RoEduNet), 2013
11th, IEEE, 2013, pp. 1–4.

[21] H. Lu, Y. Y. Ng, and Z. Tian, “T-tree or b-tree: Main memory database
index structure revisited”, in adc, IEEE, 2000, p. 65.

[22] I. Giangreco, I. Al Kabary, and H. Schuldt, “Adam-a database and
information retrieval system for big multimedia collections”, in Big Data
(BigData Congress), 2014 IEEE International Congress on, IEEE, 2014,
pp. 406–413.

[23] B. C. Giao and D. T. Anh, “Improving sort-tile-recusive algorithm for r-
tree packing in indexing time series”, in Computing & Communication
TechnologiesResearch, Innovation, and Vision for the Future (RIVF),
2015 IEEE RIVF International Conference on, IEEE, 2015, pp. 117–
122.

[24] A. Guttman, R-trees: A dynamic index structure for spatial searching, 2.
ACM, 1984, vol. 14.

[25] C. Ji, T. Dong, Y. Li, Y. Shen, K. Li, W. Qiu, W. Qu, and M. Guo,
“Inverted grid-based knn query processing with mapreduce”, in 2012
Seventh chinaGrid annual conference, IEEE, 2012, pp. 25–32.

