
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

525 | P a g e

www.ijacsa.thesai.org

Comparing Hybrid Tool for Static and Dynamic

Object-Oriented Metrics

Babur Hayat Malik
1
, Javaria Khalid

 2
, Hafsa Arif

3
, Ayesha Sadiqa

4
 ,Amara Tanveer

5
, Asia mumtaz

6

 Zartashiya Afzal
7
, Samreen Azhar

8
, Muhammad Numan Ali

9

Department of Computer Science and Information Technology

University of Lahore, Chenab Campus, Gujrat Pakistan

Abstract—Software metrics are created and used by the

distinctive programming associations intended for assessing,

guaranteeing program excellence, activity, and software

recovery. Software metrics have turned into a basic part of

programming growth and are utilized in each period of the

product development life cycle. Software metrics essentially

measure programming items like plan source code and help us in

taking technical and administrative choices. The desire of this

examination is to play out the relative investigation of static and

dynamic metrics. In any case, software quality characteristics,

for example, performance, execution time and dependability rely

upon the dynamic exercises of the product artifact. Due to every

one of these variables, we favor dynamic metrics instead of

customary static metrics. With the assistance of customary static

metrics, we are not capable to analyze different actualities of

programming. There are various types of this OO static and

dynamic equipments. In this paper we have played out a similar

investigation of different OO static and dynamic metrics tools

and find out the hybrid too is counted as best one extraction of

both, static and dynamic characteristics from mobile Android

applications. The source code and a Docker compartment is

utilized by open source tool in only three phases pre-static, static

and dynamic examination.

Keywords—Software metrics; static metrics; dynamic metrics;

Object Oriented (OO)

I. INTRODUCTION

A software metric is fundamentally a software engineering
track which relates to the various software developments and
dimensions. One effective tool used for software product
analysis is software metrics [1] [2] [3]. It plays a major role in
the analysis and improvement of software quality along with
measurement of software complexities [4]. An appropriate
software model is required for the development of reliable
software. ISO 9126 is one of the quality models that uses
software metrics [5] [6]. Several tools are required for making
of software quality models which intends to do metrics
calculations. Though, these tools are also required to produce
accurate data [7]. Software metrics are categorized into three
parts: product metrics, process metrics, and project metrics, as
shown in Fig. 1.

Results are specified by a standard unit known as "Metric".
It is used for evaluation of software processes, products, and
services. Different authors have proposed several object-
oriented (OO) metrics which are quite famous in the present
software development environment [9]. These are different
from standard metrics as they use objects instead of

algorithms as a key object [10]. Traditional metrics are not
eligible in determining the quality as intricate projects are
enforced through OOD design practices, so they are required
[11]. Somerville [12] described metrics in two types known as
static and dynamic. Static metrics analyze code before
executing it whereas dynamic metrics analyze code during
code execution. In this research, static metrics is more focused
on the understanding of procedural and object-oriented
programming languages [4]. In this paper comparison of Static
and dynamic OO tools are proposed. They are more
emphasized for finding object-oriented metric tools on the
basis of several parameters.

This paper is written in several sections. Firstly, Section II
describes the literature work of various Object-oriented Static
and dynamic metrics tools. Then, in Sections III is discussed
the differentiation between Static and Dynamic Metrics.
Various types of object-oriented Static and dynamic Metrics
are presented in Section IV. In Section V, the comparative
study of OO Metric Tools is performed. Lastly, Section VI,
presents the conclusion of this article.

Fig. 1. Software Metrics [8]

II. LITERATURE REVIEW

Various OO metrics are developed until now which differ
in their properties and features. The main purpose of this
paper is to find out huge OO metric computational tools on the
basis of their properties. Complex metrics to be resolved are
still an issue whereas in traditional OO some metrics like CK
and MOOD are considered quite helpful in the development of
software [13].

Munson and Hall [14] identified the program complexity
level along with three processes of functional, fractional, and
operational complexity. Mayo et al. [15] discussed the quality
attribute of the interface which calculates modules complexity
and dynamic metrics when it's executed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

526 | P a g e

www.ijacsa.thesai.org

Honglei et al. [16] presented metrics definition, types, and
history. Measurement of software complexity is one important
factor and it's also related to software development price
factor.

Hassoun et al. [17] proposed Dynamic Coupling Metric
(DCM) for object level coupling that considers program
execution as it is used to measure objects coupling during
runtime. Though it also estimates the runtime complexity and
system comparison at meta-level along with those systems
which have no reflective features.

Singh and Singh [18] presented four class-level dynamic
couplings for identifying object-oriented systems quality.
They are more determined in finding key coupled classes
consisting of most active classes during runtime. Gupta [19]
presented three dynamic coupling metrics which consists of
foremost relations between objects during runtime, i.e.
aggregation, inheritance, etc.

Mayo et al. [20] defined both automated Interface and
Dynamic Metrics. The first one is used for identifying
modules complexity whereas dynamic metric calculates
quality factor during execution. Hays in [21] identified OO
systems testing and compared them with conventional
programming language testing.

Mohsin, Shaikh, and Zeeshan Kaleem [22] presented the
idea of code comprehension with a combination of Software
metrics and techniques called Program Slicing. It is basically
coded automation analysis for coupling, cohesion, and
complexity.

Debbarma, Mrinal Kanti et al. [23] described the
comparison of static and dynamic metrics and analyzed them
in terms of regression testing that helps in effort and time
estimation used during testing.

III. TYPES OF METRICS

In various real-time applications, there is a small number
of the most eminent metrics that are analyzed. There are
different categories of metrics that are presented below:

A. Traditional Metrics

In an object-oriented system, traditional metrics are
commonly applied to the methods that include the class
operation. "A method is a component of an object that

operates on data in response to a message and is defined as
part of the declaration of a class". Methods reveal how a
problem is fragmented into different sections. Two traditional
metrics are Cyclomatic complexity and size (line counts) [24].

B. Object-Oriented Metrics

Object-oriented software metrics emphasis on
measurements that are functional to the conceptions of classes,
coupling, and inheritance. Encapsulation metrics are applied
for classes, not for modules. Information Hiding is measured
& enhanced due to Inheritance complexity is additional, the
level of abstraction can be measured by Object Abstraction
metrics. These are as follows:

 Metrics correlated with Class

 Metrics associated with Methods

 Metrics Encapsulation

 Measurement of Cyclomatic complication

 Metrics used for Inheritance [25, 26].

1) Static metrics: This Metric is the outcome of non-

executable code. Static metrics describe system features from

design through maintenance. Earliest Metric used for Static is

[27] (LOC/KLOC) examine the throughput of a software

package. In earlier 1990, McCabe was the most powerful

metric for examining the intricacy of cyclomatic [28]

complexity. Complexity is evaluated from the graphical

representation and various mathematical equalities. In 1976

McCabe [29] demarcated the cyclomatic complexity metric. It

measures the total numbers of independent routes over a

software component.

2) Dynamic metrics: These are resultant of source code

investigation. When code is running it evaluates what is really

happening. Dynamic metrics comprise complication events

and processes beneficial in consistency demonstrating at the

same time [30]. When software is executing its values are

reliant on the involvement or experimental information. From

coding to maintenance system aspects are classified by

dynamic metrics [8]. The comparison of static and dynamic

metrics with its merits, demerits are shown in Tables I and II.

TABLE I. STATIC VS. DYNAMIC METRICS

Static Metrics Dynamic Metrics

1. Its nature is always static. 1. Its nature is always dynamic.

2. It is simpler and easier to collect. 2. It is difficult and tough to gather.

3. OO software attributes are difficult to examine.
3. Different characteristics are easy to inspect like

Inheritance, polymorphism, coupling, cohesion, and difficulty.

4. It takes less time as compared to dynamic analysis of software. 4. It takes more time to perform dynamic analysis of a program.

5. It is available at the early stages of the software development life cycle. 5. It is accessible late in the software development life cycle.

6. For software quality prediction its results are less accurate. 6. For software quality prediction its results are more accurate.

7. More Tools are effortlessly available to accomplish this examination. 7. Only a few tools are available for this analysis.

8. Its implementation is done on the code. 8. Its implementation is performed while code is being run.

9. It deals with structural aspects of the system. 9. It deals with the behavioral aspects of the system.

10. It identifies vulnerabilities in a runtime environment. 10. It can find weaknesses in the code at the exact location.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

527 | P a g e

www.ijacsa.thesai.org

TABLE II. COMPARISON OF STATIC VS. DYNAMIC METRICS

Serial

No.

Static Software

Metric
Description Merits Demerits Equations

1

SLOC

(Source lines of
code) [4]

 It evaluates total lines

in the program to

measures its size.
When software is

developed it

determines the
productivity of the

program.

Measuring automation

possibilities

Inaccuracy in

Accountability.

For (i = 0; i < 100; i++) printf("hello"); /* How

many lines of code is this? */

Above case illustrate the following information:

 1(LOC),

 2(SLOC) (for statement
and printf statement),

 1 comment line.

2
LOC
(Line of Code)[4]

It consists of any

number of lines,
consist of source,

whitespace, and
comments.

Universal measure.

 Several

languages issues

 GUI tools

Starter

1 (LOC) as stated in the above example

3

AMLOC(Average

lines per method)

[32]

It defines the average
size of the method.

Method Size can detect
simply.

Less clear and additional
code statement.

Average Method Size=

(The Total number of LOC) / (Number of

Methods)

4

ACLOC(Average

lines per class)

[32]

It determines the

moderate size of class

according to LOC.

It is simple to define

the number of code

lines for each class
therefore accurately

determine the size of

the class

More code lines can’t be

verified and can’t be

altered safely.

Average Class Size=

(The Total number of LOC) / (Number of

Methods)

5
NCLASS

[32]

These metrics calculate
the number of classes

in the project.

Main Characteristics
are undone or round-

trip engineering.

In general UML figure
categories, it supports

class diagram.

6

Cyclomatic

complexity
[33]

Indicate the program

difficulty areas.

 It assesses
AI semantic

complexity.

 Useful in
geographical and

landscape
environmental inquiry.

 Positive correlation

among cyclomatic
complexity and defects.

 More errors in maximum
complexity functions and

methods.

M = E − N + 2P,
E = Graph edges.

N = Graph nodes.
P =Connected components.

7
Function point

[34]

It is a measurement

element to examine the
business functionality

that delivers to a

customer.

 An end-user

business function maps
to functional consumer

requests like data

entry.

 Function

points plot easily into
user-oriented requests.

lbrecht perceived in his
research that Function

Points were extremely

associated with code
lines and increase

complexity.

 Define the number of data functions
(ILFs and EIFs)

 indicative size (fp) = 35 x number of
ILFs + 15 x number of EIFs.

8
Bug Counting
[34]

Program inaccuracy

results in improper or
unpredicted result act

in unintentional ways.

 Failure

count models

 Error

seeding models

 Involved

more in program
performance, does not

concentrate on a number

of program bugs.

 Most requests

of customers define
according to functional

reliability and not in

terms of errors.

Bugs.Count
Bugs.SUM(Effort)

Bugs.SUM(CustomValues.Number("Cost"))

UserStories.SUM(CustomValues.Number("Bu

gs Count")) + Bugs.Where(UserStory.Feature

== null || Feature.Id !=
UserStory.Feature.Id).Count

9

Halstead

complexity

[4][34]

Recognize computable

software properties and
the associations

between them.

 These are

traditional metrics but

they can evaluate
projects like C, C++,

and Java.

 It calculates
the bugs, project

length, size, and
validity period.

 Modularity

 All-Depth

 Operator
Type

 Database
Impact and Declaration

Program Vocabulary:

N=n1 + n2

Program Length:

N=N1+N2

Calculated Program Length:

N= n1 log2 n1+ n2log2 n2

10
Continuous

Value Metrics[24]

In numerous

circumstances it innate
incorrectness:

A straight line in a

diagram can have the
equivalent general

average as a slanting

line.

 Define a
best, fewer bugs metric

where single value
metrics is possibly

imprecise.

 Value
Metrics extension

Secondary metrics are
frequently insufficient to

actually define the

dissimilarity in
performance, demanding

further tertiary metrics.

https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/Printf
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Undo
https://en.wikipedia.org/wiki/Round-trip_engineering
https://en.wikipedia.org/wiki/Round-trip_engineering
https://en.wikipedia.org/wiki/Connected_component_(graph_theory)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

528 | P a g e

www.ijacsa.thesai.org

IV. CURRENT ISSUES AND CHALLENGES

 After negotiations upon dynamic metrics, it has
definitely perceived that currently not any metrics
available for testability at execution time of the
software systems.

 Its benefit includes accuracy and precision; however,
they are more difficult in evaluation to static ones.
Therefore, a good hybrid approach is required.

 For the analysis of different software aspects pseudo
dynamic metrics is another auspicious research
prospect readily accessible to researchers.

 It can be certainly observed from the survey of many
research studies conducted by different authors that
dynamic metrics are examined and tested using a
project that is not bulky [31].

V. RESULTS

We have to concern together static along with Dynamic
Metrics to realize the deviation. After comparing both of these
metrics we concluded that dynamic metrics analysis gives
result at execution time of programs whereas static analysis at
rest of the SDLC process. So, for dynamic analysis data is
collected with the help of tool based on either Java or C++
based application, then apply a statistical tool to measure the
quality of the product. Dynamic analysis can give a better
result than static analysis.

AndroPyTool executes different tools in order to extract
wide-ranging features from an input set of Android samples.
All these features and the evidence that they symbolized are

organized in three dissimilar classes (pre-static, static and
dynamic), both the features and how they are extracted.

In Pre Static it comprises extracting information without
inspection of code and permits to categorize and to track the
sample. It also includes the package name and the main
activity name, which are found with Andro-guard. In Static
analysis, it contains those features that are regained by
analyzing the application at the code level. In this category,
features such as API calls, activities, opcodes or permissions
can be originated. In Dynamic Analysis, it includes Droid Box
tool for this purpose, which allows to dynamically find
dissimilar information in real time. The information gathered
by the Droid Box tool includes: the use of cryptographic
functions, loaded DEX classes in run time and the kind of
operation, network connections, SMS, phone calls, started
services, enforced permissions and information leaks detected.
The detail diagram of AndroPyTool is shown in Fig. 2 [38].

VI. DISCUSSION

Various OO Metrics tools their description, merits and
demerits are studied in this research paper. These tools are
tabulated under various attributes that would be of interest to
developers and researchers using the tools as elaborated in
Table III. Our study has further pointed out the work and
research findings that has been done till now to use of hybrid
approach of static as well as dynamic metrics, although they
have tremendous scope. Based on the analysis of existing
dynamic metrics, we have tried to reveal potential research
challenges and opportunities existing in the field of dynamic
metrics. Best methodology that is suitable for pre-static, static
and dynamic metrics is hybrid approach and its tool that is
AndroPyTool.

Fig. 2. AndroPyTool [38].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

529 | P a g e

www.ijacsa.thesai.org

TABLE III. COMPARISON OF STATIC VS. DYNAMIC METRICS TOOLS

Tool Name Description Language Availability Authors Tool Type

CheckStyle
[35]

Java Checkstyle is an improvement tool to

enable designers to compose Java code that

clings to a coding standard. Presently
Checkstyle gives checks that discover class

plan issues, copy code, or bug designs like

twofold checked to bolt.

Java Open source Oliver Burn Static

FindBugs

[35]

This is the Static Analysis tool and is open

source that checks and study class files or

JAR libraries for probable problems
adjacent to a list of bug patterns by matching

the byte code [5].

Java Open source
David Hovemeyer and

William Pugh
Static

StyleCop

[35]

For plugins and customs rules, StyleCop
provides an extensible framework to write

down custom rules which match up to our

requirements.

C# Free
Andy Reeves, Chris

Dahlberg
Static

JMT

[36]

It only associates the Metrics with Java

language.
Java Free

Politecnico di Milano

and Imperial College
London

Dynamic

QMOOD++

[37]

QMOOD++ is easy and free of cost

accessible in the runnable application and
source code form.

It handles the 30+ Metrics. QMOOD++ is

an inclusive, multi-handler, multiprocessing,
incorporated software tool.

C++ Free
Bansiya, Jagdish, and

Carl Davi,
Dynamic

JMetric [11]
JMetric only works with Java. Its
information is presented through tables and

charts.

Java Free Commercial Tool Dynamic

AndroPyTool

[38][39]

AndroPyTool incorporate different analysis

tools and Android applications

Processing tools, in order to convey fine-

grained reports drawing their individual

performance and features.

Python ----

Alejandro Mart, Raul

Lara-Cabrera, David

Camacho

Hybrid

VII. CONCLUSION

A correlation of diverse software metrics and its major
tools are presented in this comparative study. On the base of
their major types like static and dynamic metrics, these are
differentiated. At early stages of software development life
cycle (SDLC), Static metrics are reachable easily. These
metrics manage the overall structural qualities of the product
framework and very simple to assemble. The unpredictability
of static metrics has calculated the measure of exertion
expected to create and keep up the code. In the latter stage of
the software development life cycle, dynamic metrics are
easily reachable.

These metrics confine the dynamic conduct of the
framework and difficult to acquire and got from hints of code.
After a virtual study of various static and dynamic tools are
performed and broke down that hybrid tool is best in the
greater part of the android applications. AndroPyTool, the
primary objective is to furnish scientists and malware
examiners with an incredible and coordinated device for
extracting multi-source highlights from Android applications.
In future work, more tools and features can be add on into
AndroPyTool tool for better analysis and to improve the data
analysis stages, in order to give more functionalities to the
users.

REFERENCES

[1] M. Sharma, Dr. G. Singh, “Analysis of Static and Dynamic Metrics for
Productivity and Time Complexity,” IJCA, vol. 30, issue.31, September
2011.

[2] H. F Li and W. K Cheung, “An Empirical Study of Software Metrics,”
Software Engineering IEEE Transactions,vol.13, issue. 6, pp. 697-708,
1987.

[3] N. E Fenton “Software Metrics,” Conference Proceedings of on the
future of Software engineering ICSE vol. 8, issue: 2,2000.

[4] M. Sharma, A. Bhardwaj, L. Singh, N.Singh and C. Sharma,
“Comparative study of static metrics of procedural and object oriented
programming languages,” International Journal of Computers &
Technology, Volume 2 No.1 February 2012.

[5] ISO ISO/IEC 9126-1, Software engineering–Product Quality - Part 1:
Quality model., 2001.

[6] ISO. ISO/IEC 9126-3, Software engineering–Product Quality - Part 3:
Internal metrics., 2003.

[7] J. Novak and G. Rakić, “Comparison of software metrics tools for .net,”
University of Novi Sad, Faculty of Sciences, Department of
Mathematics and Informatics, 2011.

[8] BM. Goel and S. Bal Gupta, “A Comparative Study of Static and
Dynamic Object Oriented Metrics,” International Journal of Information
Technology & Systems, vol. 5, issue. 1, 2016.

[9] J. Chawla and A. Agarwal, “Object-Oriented Design Metrics to Predict
Fault Proneness of Software Applications,” (IJCSIT) International
Journal of Computer Science and Information Technologies, vol. 5 (3),
2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

530 | P a g e

www.ijacsa.thesai.org

[10] A. Albrecht and J. Gaffney: Software Function, Source Lines of Code,
and Development Effort Prediction: A Software Science Validation; in
IEEE Trans. Software Eng., pp. 639-648,2008.

[11] Kayarvizhy N, “Systematic Review of Object Oriented Metric Tools,”
International Journal of Computer Applications vol. 135 issue.2,
February 2016.

[12] Somerville “Software Engineering”, 6th Edition, Editor: Addison
Wesley.

[13] Y. Ma, K. He, D. Du, J. Liu, and Y. Yan , “A Complexity Metrics Set
for Large-scale Object-oriented Software Systems,” IEEE International
Conference on Computer and Information Technology (CIT'06).

[14] John C. Munson and Gregory A. Hall, “Estimating test effectiveness
with dynamic complexity measurement,” Empirical Software
Engineering Journal.

[15] Kevin A. Mayo, Steven A. Wake and Sallie M. Henry, “ Static and
Dynamic Software Quality Metric Tools,” Department of computer
Science, Virginia Tech, Blacksburg.

[16] B. Mohan Goel and S. Bal Gupta, “Dynamic Coupling Based
Performance Analysis of Object Oriented Systems,” International
Journal of Advanced Research in Computer Science, vol. 8, issue. 5,
May-June 2017.

[17] Y. Hassoun, R. Johnson and S. Counsell, “A Dynamic Runtime
CouplingMetric for Meta Level Architectures,” In Proceedings of Eighth
EuromicroWorking Conference on Software Maintenance and
Reengineering, pp. 339, 2004.

[18] P. Singh, H. Singh, “Class-level Dynamic Coupling Metrics for Static
and Dynamic Analysis of Object-Oriented Systems,” International
Journal of Information and Telecommunication Technology, pp. 16-28,
2010.

[19] V. Gupta, “Validation of Dynamic Coupling Metrics for Object-
Oriented Software.” ACM SIGSOFT Software Engineering
Notes,vol.36(5), 2011.

[20] Kevin A. Mayo, Steven A. Wake, Sallie M. Henry, “Static and Dynamic
Software Quality Metric Tools,” Department of computer Science,
Virginia Tech, Blacksburg.

[21] J. Huffman Hayes, “Testing of Object-Oriented Programming Systems
(OOPS): A Fault-Based-Approach,” Science Applications International
Corporation, 1213 Jefferson-Davis Highway, Suite 1300, 22202
Arlington, Virginia.

[22] M. Shaikh, and Z. Kaleem. "Program Slicing Based Software Metrics
towards Code Restructuring," In Computer Research and Development,
Second International Conference on, pp. 738-741. IEEE, 2010.

[23] Debbarma, M. Kanti, N. Kar, and A. Saha, "Static and dynamic
software metrics complexity analysis in regression testing," In Computer
Communication and Informatics, International Conference on, pp. 1-6.
IEEE, 2012.

[24] S. Pasupathy and R. Bhavani, “Object Oriented Metrics Evaluation,”
International Journal of Computer Applications (0975 – 8887)
vol.78,issue.1, September 2013.

[25] S. Morasca, “Software Measurement: State of the Art and Related
Issues, slides from the School of the Italian Group of Informatics
Engineering,” Rovereto, Italy, September 2008.

[26] J. Alghamdi, R. Rufai, and S. Khan, “Oometer: A software quality
assurance tool. Software Maintenance and Reengineering 2009,” 9th
European Conference on, pp. 190, March 2010.

[27] Li, Cheung, W.K, “An Experimental investigation of software metric
and their relationship to software development effort,” IEEE Transaction
on software engineering 649-653, Piscataway, NJ, USA.

[28] Thomas J. McCabe, “A Complexity Measure, IEEE Transaction on
Software Engineering,” vol.2 issue. 4, pp. 308-320.

[29] S. Singh, K.S. Kahlon, “Static Analysis to Model & Measure OO
Paradigms,” SAC, ACM.

[30] K. Kaur, K. Minhas, N. Mehan, and N. Kakkar, “Static and Dynamic
Complexity Analysis of Software Metrics,” World Academy of Science,
Engineering and Technology International Journal of Computer and
Systems Engineering vol.3, issue.8, 2009.

[31] Chhabra JK, Gupta V, “A survey of dynamic software metrics.
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,”
vol.25(5),pp.1016–1029 Sept. 2010.

[32] G. Singh, M. Sharma, “A Comparative Study of Static Object Oriented
Metrics,” International Journal of Advancements in Technology, 21
January 2018.

[33] G. K. Gill, C. F. Kemerer, “Cyclomatic Complexity Density and
Software Maintenance Productivity”, IEEE Transactions on Software
Engineering, 1981, pp. 1284-1288.

[34] A. Versa, Rahul, “A Study of Various Static and Dynamic Metrics for
Open Source Software,” International Journal of Computer Applications
(0975 – 8887) vol. 122, 10 July 2015

[35] J. Novak, A. Krajnc and R. Zontar, “Taxonomy of Static Code Analysis
Tools,” 16 March 2015.

[36] M. Bertoli G. Casale and G. Serazzi, “JMT: Performance engineering
tools for system modelling,” Giuliano Casale, 04 June 2014.

[37] J. Bansiya, C. Davis, Using QMOOD++ for object-oriented metrics, Dr.
Dobb’s Journal , 1997.

[38] A. Martin, R. lara-cabrera and D. Camacho, “A new tool for static and
dynamic Android malware analysis,” 24 September 2018.

[39] A. Martin, R. LaraCabrera and D. Camacho, “Android malware
detection through hybrid features fusion and ensemble classifers:the
AndroPyTool framework and the OmniDroid dataset,” 05 February
2019.

