
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

536 | P a g e
www.ijacsa.thesai.org

Reengineering Framework to Enhance the

Performance of Existing Software

Jaswinder Singh1

Department of Computer Application

IK Gujral Punjab Technical

University

Kapurthala, Punjab, India

Kanwalvir Singh Dhindsa2

Department of Computer Science

and Engineering

BBSB Engineering College

Fatehgarh Sahib, Punjab, India

Jaiteg Singh3

Department of Computer

Applications

Chitkara University

Rajpura,Punjab,India

Abstract—Term reengineering refers to improve the quality of

the system. Continues maintenance and aging degrade the

performance of the software system. Right approach and

methodology must be adapted to perform reengineering. With

lack of right approach and methodology, reengineering itself will

be costly and time-consuming. For the process of reengineering

main concerns include when to reengineer, how to estimate cost,

the right approach for reengineering, and how to validate software

enhancement. This research paper proposed a framework to

identify the need for reengineering, to estimate the cost of

reengineering, and to validate software quality improvement.

Research work used the agile methodology to perform tasks of

reengineering. Reengineering needs are identified using prediction

based decision tree approach. Reengineering is applied using the

agile Scrum methodology. Cost estimation is done using story

point estimation. Performance analyses are done using complexity

measures analysis of the internal design metrics and mean time to

execute metric. The research used various automated tools like

CKJM ver1.9, Rapid Miner studio ver7.1, and Net beans7.3
framework.

Keywords—reengineering; maintenance; decision tree; agile

methodology; scrum

I. INTRODUCTION

Maintenance is one of the most critical phases of software
development. Continues maintenance degrades the software
quality and increases the maintenance cost. The software
reengineering plays a vital role to improve the quality of
software. Reengineering is required to upgrade the existing
system and to reduce the maintenance cost. Many researchers
[1, 2] proposed a framework for reengineering identification and
reengineering cost estimation. But these frameworks are not able
to handle the ever-changing behavior of customer needs and
requirements. These existing frameworks lack the flexibility to
adopt the changes and as well as to estimate cost. Earlier
approaches are based upon conventional engineering methods.
Since a few decades, we have also seen changes in software
development approach, especially with the use of agility in
software development. So need is to use a comprehensive
approach to provide a new framework for software
reengineering that is flexible as well as an interactive model to
adopt the customer requirements and able to perform the cost
estimations. This research work proposed a framework to
identify the need for reengineering, estimate the cost of
reengineering, uses an agile approach, reduce the maintenance

cost of the reengineered system and finally evaluate the
performance of reengineering system. Proposed research work
provides a vision for developers to quickly identify
reengineering needs and able to apply to reengineer in a people-
centric environment using agile. Research work in this paper
organized under different sections. Related work discussed in
the literature review section. Section 3 describes the research
methodology used in this paper. Another section identifies
whether the software is required to be reengineered or
maintained. Reengineering agile model and estimations
discussed in Sections 5 and 6. Performance evaluation is given
in the last section.

II. LITERATURE REVIEW

The existence of a reengineering approach is not new. It has
been observed that due to continuing changes in the existing
software, software quality deteriorates [3] and reengineering
must be performed to adapt the changing requirements of end-
user. Researchers identified [4] the importance of reengineering
and stated the importance of information technology in software
reengineering. Reengineering performs preventive maintenance
for the software system [5]. Reengineering includes three
important subtasks named reverse engineering, restructuring or
alteration, and forward engineering. Reengineering tasks are
shown in Fig. 1 [6]. Researcher [7] also identified various
benefits like better software quality, fewer maintenance efforts,
and ease of software testing and a better understanding of the
software. Sneed observed the impact of reengineering over
maintenance [8]. Researchers [9] proposed a cost model for
reengineering using the conventional approach. Agile
methodology has proven to be a successful approach to software
development for the last few years [10]. Agile is integrated with
the field of reengineering by many researchers. The researcher
proposed N-Process model [11]. N-process model is N-shaped
reengineering structure to perform various tasks of
reengineering. Tasks are mapped in N shaped structure. Other
work gives the idea of service-oriented software reengineering
[12]. Service-oriented computing paradigms applied to enhance
the legacy systems. Work is also done to provide prototypes at
the initial stages of reengineering [13]. Researchers also worked
on aspect-oriented reengineering [14]. In aspect-oriented
reengineering, reengineering work is validated by applying
various object-oriented metrics, and tasks were performed in
short iterations of agile.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

537 | P a g e
www.ijacsa.thesai.org

Fig. 1. Software Reengineering [6].

III. RESEARCH METHODOLOGY

The case study includes twenty open sources, Java-based
software systems. The complexity of the Java-based system is
measured using Chidamber and Kemerer metric popularly
known as CK Metric [15] of object-oriented software. Six basic
metric sets of CK metric suit include Depth of the Inheritance
Tree (DIT), Number of Children (NOC), Response for a Class
(RFC), Lack of Cohesion of Methods (LCOM), Weighted
Methods per Class (WMC) and Coupling between Object
Classes (CBO). CKJM tool is used to measure the basic set of
CK metric. Using CK metric, internal design complexity of the
software system can be determined. To identify the need for
reengineering, prediction based decision tree approach [16] is
used for the software systems. Once the software got categorized
for reengineering or maintenance requirements [17], agile
development approach is used to get the software reengineered
and also to estimate the cost of reengineering. Performance of
the reengineered system is evaluated by comparing the design
complexity of reengineered and old software. Classes having
complex design are the candidate for reengineering.

IV. IDENTIFY THE NEED FOR REENGINEERING

The decision among maintenance and reengineering is made
using prediction based decision tree approach. Data set consist
of twenty software systems divided into two parts. Each part is
a mix of varying lines of codes and complexity. Research work
considered fifteen software projects as a training data set, and
five projects as model data set. Attributes of the training data set
will be applied to predict model data sets. For implementing the
predictions using a decision tree approach, an average of internal
design complexity and size of software systems act as two main
metrics. Table I shows Java-based software systems considered
under the training data set. Software belongs to different size and
having different average internal design complexity. Internal
design complexity is measured using a basic set of CK metric
suit.

Five projects are considered under the model data set. Table
II shows various software systems for model data set. Training
data set will be applied to the mode data set to predict
reengineering and maintenance requirements.

The process of Applying and executing a decision tree using
rapid minor tool is as followed.

 Import training data set having fifteen Java-based
software projects.

 Roles are used to selecting attributes. First role operator
is used to choosing a category attribute. Average
complexity and size are chosen as two parameters.

 The second role is used to skip project names from the
analysis part.

 Predictions are made using a decision tree with Decision
Tree operator.

 Training data set will be input to the Decision Tree
operator.

 The classification model is the output of Decision Tree
that will be used for decision making

 Model data set is imported using a retrieve operator. New
role is applied to the data set setting parameter
‘Category’ which is required to be predicted.

 There are two outputs of Apply model. One output is the
prediction of attributes applied to model data using
training data, and other is training data itself.

 The complete design is presented in Fig. 2.

 Finally, decision tree and predictions can be viewed by
executing the designed scenario.

TABLE I. TRAINING DATA SET COMPLEXITY MEASURE [17]

SrNo Software SLOC(Size)
Mean

Complexity

1 PongGame Software 713 31.3

2 Software ChessGame 150 29

3 Battle City Software 563 77.2

4
Software Customer Info
System

1139 120.3

5 Parser Software 143 13.8

6
Software Scheduling and
dispatch

203 82.7

7 Dictionary Software 337 24.7

8 Software ChatServer 284 24.3

9 My Notepad Project 290 2

10
Trigonometric Function
Software

634 362.7

11 SoftwareCricketAnalyzer 234 16.7

12 Diary App Software 431 26.3

13 Software TicTacToe 276 12.7

14 FIFO Software 637 75

15 Software BounceBall 160 12.1

TABLE II. MODEL DATA SET COMPLEXITY MEASURE [17]

Sr. No Software SLOC(Size)
Mean
Complexity

1 E-library Software 323 55

2 Shopping Cart Software 154 24.7

3 Code Level Security Software 201 144.5

4 Point of Sale Software 1082 526.5

5 SmartFileConverter Software 440 39.7

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

538 | P a g e
www.ijacsa.thesai.org

Fig. 2 represents the design interface. Apply Model operator
is required to apply a decision tree on the model data set.

Once executed, the decision tree will appear, as shown in
Fig. 3. A decision tree is made up of nodes and edges. The root
of tree denotes prominent predictor. Thus it is observed that
Average complexity is our best predictor of deciding
reengineering requirements. It predicts whether or not the Java

project requires reengineering. The predicted value for Average
complexity comes out to be 25.5. The second node is of size
attribute. Thus best predictor at second level is source line of
code SLOC (Size). The tree from root to the leaf can be
interpreted as if Average complexity >25.5 and SLOC
(Size)>176.5 the software undergoes reengineering. Thus except
shopping cart software of model data set given in Table II, all
other software are the candidate for reengineering.

Fig. 2. Decision Tree Modeling in Rapid Miner [18].

Fig. 3. The Decision Tree Structure for Model Data Set [18].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

539 | P a g e
www.ijacsa.thesai.org

V. AGILE REENGINEERING MODEL

Once the software is chosen for performing reengineering,
an approach to perform reengineering is required. Among
various software development approaches, one of the most
popular and acceptable methods for development is agile [19,
20]. Development of software in agile include active
participation among various stakeholders of software. Many
agile frameworks exist like Scrum, Extreme Programming, Lean
programming, United Process, Kanban, FDD (Feature-Driven
Development), Crystal, DSDM (Dynamic Systems
Development Method). Among these frameworks, Scrum is one
of the most useful approaches by IT professionals. In a report of
Scrum alliances [21], 89% of agile users used the scrum
approach. Major Scrum activities include Scrum planning; Daily
Scrum, sprint review, and sprint retrospective shown in Fig. 4.
Sprint represents a single iteration in fix time. Many sprints can
be used to develop the required product. Requirements are
analyzed in terms of user stories, and estimation is performed by
assigning story points to each user story. Whole requirements
are collected as a product backlog. Requirements of high priority
assembled in the sprint backlog. In sprint planning, the work
required to perform decided. A product backlog is analyzed, and
sprint backlog is prioritized in this phase. The team meets every
day to evaluate the progress of the sprint. The team reviews the
work and changes required. The team finally discusses goals
achieved and if anything went wrong, ways of improvement.

Because of the flexible and interactive approach of software
development, it is decided to perform reengineering using agile
methodology. The inclusion of reengineering tasks with agile
scrum methodology is shown in Fig. 5. Proposed agile
reengineering model retains the essence of reengineering and
agility. Three tasks of reengineering are performed using an
Scrum methodology. All three reengineering tasks are enclosed
in one sprint of three-week iteration.

Agile reengineering model works as follows:

 Ensure planning of release of reengineering software,
planning of iterations (time allocation for iteration, team

members required, etc.), and estimation of cost. All
requirements are prioritized in the product backlog.

 Requirements required to implement in one sprint are
assigned to the sprint backlog. Planning is done by the
Scrum team, including all stakeholders.

 Analysis of Reengineering Requirements in terms of user
stories and allocation of story points.

 Execution of sprint with 3-week iteration to
accommodate forward, alteration and reverse
engineering

 Retrospective action to confirm the implementations of
required objectives. After iteration, estimation, and
speed of requirement implementations (velocity) is
verified.

 Daily planning is performed every day.

 One sprint perform reverse, alterations and forward
engineering

 Integration for final complete System.

Fig. 4. Scrum Activities.

Fig. 5. Agile Reengineering Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

540 | P a g e
www.ijacsa.thesai.org

VI. ESTIMATIONS

Estimations of effort and cost are essential for any projects.
One important aspect of proposed framework is to estimate
efforts and cost of existing systems. Proposed work measures
effort and cost estimations of reengineering with the help of an
agile approach.

A. Efforts Estimations

Reengineering efforts are estimated by assigning story
points to the required tasks. Planning poker also called Scrum
poker is highly acceptable techniques for assigning story points
to reengineering requirements. As stated by Cohen [22],
"Planning poker is a proper mix of expert opinion, analogy, and
disaggregation techniques which can successfully give quick
and reliable estimates.

Benefits of planning poker include

 Scrum team, including Scrum master, product owner,
and development team (developer, testers, Analyst) sit
together to perform estimations.

 Both high and low estimation points for user story are
discussed. Meeting avoids the problem of conflict for
the future.

 Work starts when all members are agreed upon the same
consensus so commitment for the project increases.

As everyone gets a chance to justify himself and everyone‘s
opinion is welcomed, so no chance of dominance of individual
arises.

B. Cost Estimations

Reengineering cost is estimated considering the cost of
human resources, Time required to complete the tasks, cost of
other resources required (hardware, software licensing,
etc.).Sprint is planned, and the time of one sprint is estimated.
Formulations of Various cost estimations are as follows:

 Let Ann. Sal represents the annual salary of the Scrum
team member.

 Acc.Sal denotes accumulated salary, which is the sum of
the annual salary and other expenses. For reengineering
process, we can include other expenses as half of the
annual salary of employee as suggested by Cohen [22]
for software development. Character ‘i’ denotes n
number of members of the Scrum team.

(𝐴𝑐𝑐. 𝑆𝑎𝑙)𝑖 ∀ (𝑖 = 1,2 … 𝑛) = (𝐴𝑛𝑛. 𝑆𝑎𝑙)𝑖 ∀ (𝑖 = 1,2 … 𝑛) +

(
1

2
) ∗ ((𝐴𝑛𝑛. 𝑆𝑎𝑙)𝑖 ∀ (𝑖 = 1,2 … 𝑛)) (1)

 Let K denotes the number of weeks per iterations then
salary per iteration (Sal.Iter) is

(𝑆𝑎𝑙. 𝐼𝑡𝑒𝑟)𝑖 ∀ (𝑖 = 1,2 … 𝑛) = (
𝐾

52
) ∗ (𝐴𝑐𝑐. 𝑠𝑎𝑙)𝑖 ∀ (𝑖 =

1,2 … 𝑛) (2)

 Let P denotes the estimated number of days required for
an employee to work on the project then the percentage
of time spent by employees will be

(𝑇𝑖𝑚𝑒. 𝑆𝑝𝑒𝑛𝑡)𝑖∀ (𝑖 = 1,2 … 𝑛) = (
1

5∗𝐾
) ∗ (𝑃𝑖∀ (𝑖 =

1,2 … 𝑛) ∗ 100) (3)

 Accumulated cost per time spent (Acc.Cost.Time.Spent)
for each member of scrum team is

(𝐴𝑐𝑐. 𝐶𝑜𝑠𝑡. 𝑇𝑖𝑚𝑒. 𝑆𝑝𝑒𝑛𝑡)𝑖∀ (𝑖 = 1,2 … 𝑛) = ((𝑆𝑎𝑙. 𝐼𝑡𝑒𝑟)𝑖 ∗
 (𝑇𝑖𝑚𝑒. 𝑆𝑝𝑒𝑛𝑡)𝑖))∀ (𝑖 = 1,2 … 𝑛) (4)

The initial cost may be estimated in a long time, and
estimations can be reviewed after each sprint.

VII. CASE STUDY

As discussed, reengineering is performed using the Scrum
methodology. For our case study, software named
CodeLevelSecurity from Table II is chosen for reengineering.
Table III shows all the classes of this software. Complexity
measures for software are determined using a basic set of CK
metric.

Three classes are selected for sprint backlog depending upon
their usage and importance in the project. Login, IDE, and
UserDetail classes have been chosen to perform reengineering.
Several reengineering tasks performed in one sprint are
discussed in Table IV. Sprint iteration of 3 weeks is estimated
for implementing the required reengineering. Story points
assigned to Login, IDE, and UserDetails are 2, 8 and 5
respectively. Each task in sprint backlog is estimated on an
hourly basis.

TABLE III. CANDIDATE SOFTWARE FOR REENGINEERING [19].

Sr

No Classes

Design Metrics

WMC DIT NOC CBO RFC LCOM

1 Login 12 6 0 9 8 60

2 IDE 17 6 0 17 21 70

3 UserDetail 23 5 0 12 09 183

4
program

access report
12 6 0 8 9 62

5
Profile

detail'
11 5 0 6 4 25

6 User report 8 6 0 6 7 24

7

Saved

program

report

14 6 0 10 8 73

8
User

maintenance
2 1 0 1 5 1

9

Program

update

report

12 6 0 9 94 48

10 Main frame 22 6 0 19 9 233

11
program

report
8 6 0 6 4 24

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

541 | P a g e
www.ijacsa.thesai.org

TABLE IV. VARIOUS REENGINEERING TASKS PERFORMED IN ONE SPRINT

S.

No
Reengineering Tasks Hours allotted

1. Reverse Engineering

1.1
Generating Documentation/re-

documentation
6

 Design Recovery

1.2 High-level design analysis 4

1.3 Low-level design analysis 8

1.4 Analysis of restructuring requirements. 12

2. Alterations and forward engineering

2.1 Classes Remodeling 6

2.2
Design Complexity reduction in classes

through Alterations
18

2.3 Performing Unit test 6

2.4 Performing Regression test 12

2.5 Increment Integration 6

2.6 Testing 6

2.7 Retrospective 6

 Total Sprint Time 90 Hrs

A. Cost Estimation

Cost is estimated using the equations (1), (2), (3), and (4).
Scrum team includes three members named Scrum master,
programmer, and tester. Consider annual Salary of Scrum
master, programmer and tester as $1,50,000, $60,000 and
&60,000 respectively. Accumulated salary (Acc.Sal) as given in
equation (1) is calculated as $225000, $90000, $90000 for each
employee. For the reengineering process with three-week
iteration (putting K=3 in equation (2)) accumulated salary per
iteration (Sal.Iter) is approximately $12981, $5192 and $5192
corresponding to all scrum team. Time Estimation is performed
for each Scrum team member. The estimated value of P is15
days for Scrum master, 12 days for programmers and eight days
for tester then the percentage of time spent by every member as
calculated by equation (3).

For scrum Master, estimated days (P) are 15.

By putting the value of P in equation (3),

(1/(5*3)) * (15*100) that is 100 % time.

For programmer, estimated days (P) are 12.

By putting value of P in equation (3),

(1/ (5*3)) * (12*100) that is 80 % time.

For Tester, estimated days (P) are 8.

By putting the value of P in equation (3),

(1/ (5*3)) * (8*100) that is approximately 53% time.

Accumulated cost per time spent as given in equation (4) for
Scrum Master is $12981.Similarly, by putting values in equation
(4), Accumulated cost per time spent for the

programmer is approximate $4154 and for the tester is $2752.
So the total cost of project per iteration is $19887.Thus we can
estimate the actual cost of reengineering. Still, we can assume
the uncertainty factor which can reduce or increase the actual
cost of reengineering. As suggested by Cohen [22], the actual
cost in an agile environment can be + or – 25% of estimated
values.

B. Evaluating Complexity Reduction and Performance

Improvement of Reengineered Software

Once reengineering is performed, software is analyzed for
complexity reduction and performance up gradation. Outcomes
of reengineering interpreted in three ways.

 Complexity in terms of the Basic set of CK metrics has
been reduced in reengineered classes.

 Reduction of software complexity results in an
improvement in maintainability.

 Improvement in the overall mean time to execution
(MTTE) of the project, due to CK metric value reduction.

1) Complexity in terms of the basic set of CK metrics

reduced in reengineered classes: It has been observed that by

applying reengineering tasks, the inherent design complexity of

classes measured in terms of CK metrics has been reduced to a

reasonable extent, as shown in Table V. For all the three classes

of the project, there is a reduction in WMC, CBO, RFC, and

LCOM. Due to reengineering, classes are restructured, and

alterations are done at the function level. The numbers of

functions and dependencies in each class have been reduced.

Comparisons of reengineered and old classes are shown in

Table V.

TABLE V. CK METRIC COMPARISON BEFORE AND AFTER

REENGINEERING

 Design Metrics

Metrics &

Software Classes

WM

C

DI

T

NO

C

CB

O

RF

C

LCO

M

Tot

al

Login

Class

Reenginee

red
4 6 0 5 48 2 65

Before

Reenginee

ring

12 6 0 9 78 60 165

IDE

Class

Reenginee

red
4 6 0 12

10

2
0 124

Before

Reenginee

ring

17 6 0 17
12

1
60 221

UserDet

ail

Class

Reenginee

red
6 6 0 4 67 0 83

Before

Reenginee

ring

23 5 0 12
10

9
183 332

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

542 | P a g e
www.ijacsa.thesai.org

2) Reduction in the software complexity results in an

improvement in maintainability of software system: As stated

[23], larger the values of CK metric more will be the software

complexity, and hence the software will be more error-prone.

Total reduction of CK metric values for all the three classes are

shown in Fig. 6. The Fig. 6 shows CK metric analysis for both

reengineered and existing candidate classes. On the x-axis,

there are three classes, and on the y-axis, CK metric complexity

is depicted.

Once the software got reengineered, the maintenance cost of
the reengineered project will be undoubtedly low. As suggested
by Chaudhary and Ugrasen [24], maintenance can be estimated
based on story points. Before reengineering, story points for
three classes were fifteen, then after reengineering they are
reduced to six only. Story points assigned to Login, IDE, and
UserDetails are 1, 3 and 2 respectively. That means

 More classes can be accommodated (if required) in one
iteration of the Scrum

 Will results in the reduction of the cost

 less time spent to perform changes

 fewer complexity results in less possibility to induce
more errors

So the system once reengineered can survive longer and
further can adapt changes (undergo maintenance) with less cost
and time.

Fig. 6. CK Metric based Maintainability Comparisons.

Fig. 7. MTTE Values for Existing and Reengineered Project.

3) Improvement in the overall mean time to execution

(MTTE) of the project: Another improvement in the

reengineered project is in the meantime to execute (MTTE). For

all the three old and reengineered class modules, samples of 35

executions are taken. Net beans7.3 is used with system

configuration of i5-4th gen processor, 8GB RAM, HDD 1TB

and Java7. MTTE is 290.6 milliseconds for classes of the old

project and 271.7 milliseconds for reengineered project classes.

MTTE analysis is shown in Fig. 7.

VIII. RESULTS AND DISCUSSION

The proposed research work is discussed from Sections IV
to VII. Except shopping cart software of model data set given in
Table II, all other software is the candidate for reengineering.
These software systems are CodeLevelSecurity, PointofSale, E-
Library, and SmartFileConvertor. Among these four candidate
systems, CodeLevelSecurity is chosen to reengineer. Three
classes of the software are reengineered. CK metric suit is used
to measure the design complexity of software. Agile
Reengineering Model is proposed to perform estimations and to
apply reengineering tasks. Two main objectives of the proposed
model included:

 To apply agile-reengineering development approach to
perform reengineering on the candidate system.

 Performing effort and cost estimations for reengineering.

After performing reengineering, the reengineered system is
evaluated for maintainability and performance up gradation. It
is validated that the reengineered system performs much better
than the existing candidate system. Results for average
complexity and MTTE are shown in Table VI.

It is important to note that the candidate software gone
through reverse, alteration and forward engineering. After
reengineering, the numbers of functions in the three classes are
also reduced from thirty three to thirteen. So in place of
refactoring, the reengineering process is applied to the software
to inculcate requirements of reducing complexity and increasing
performance. Not only the complexity of the software is reduced
but the performance of the system is also improved.

TABLE VI. REENGINEERED SYSTEM PERFORMANCE MEASURES

Sr No Software Type

Average

Complexity of

three classes

MTTE in

milliseconds for

complete

software

1
Reengineered

Software
272 271.7

2
Existing Candidate

Software
718 290.6

IX. CONCLUSION

Proposed work introduced a framework that identifies
reengineering requirements for software using prediction based
decision tree approach. Agile Reengineering model uses
features of the agile development approach with a reengineering
approach. Cost estimation is done using story point technique.
Complexity and performance analyses are performed using CK
metric and MTTE metric. Using agile reengineering approach,

65

124
83

165

221

332

0

100

200

300

400

500

Login IDE UserDetail

C
K

 M
e
tr

ic

Classes
Reengineered Class Old classes

260

270

280

290

300

Before
Reengineering After

Reengineering

Ti
m

e
 i

n
 m

s

Project

Mean Time To Execiute[MTTE]

MTTE

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 5, 2019

543 | P a g e
www.ijacsa.thesai.org

reduction in the cost of maintenance and improvement in
maintainability observed. After reengineering of classes of
software, complexity is reduced to a greater extent. As a result
indicates, performing reengineering by using agile methodology
is beneficial in terms of implementing requirements, estimating
cost, and enhancing performance. Cost estimations are realistic
and involve a consensus of all stakeholders. Software
complexity in terms of the internal design of software calculated
using CK metric. This research can be a benchmark to the
software development companies to identify whether software
needs maintenance or reengineering. Also, cost estimations can
easily be measured for the software to be reengineered.

Further, software complexity can be validated using other
software metrics like cyclomatic complexity, reliability, etc. For
a generalization of the framework and to make it industry ready
more and more software systems can be considered to make an
extensive training data set. Larger the training data set, more
accurate will be the predictions. The experience of Scrum team
will play crucial role to successfully implement Agile
Reengineering Model.

ACKNOWLEDGMENT

We like to acknowledge IK Gujral Punjab Technical
University for providing resources and support.

REFERENCES

[1] H. M. Sneed, “Estimating the Costs of a Reengineering Project,”
Proceeding of 12th Working Conference Reverse Engineering. IEEE CS

Press, Pittsburgh, USA , 2005, pp. 111–119.

[2] S. Sood, Software reengineering-A metric set based approach, Himachal

Pradesh University.2012.

[3] M.M. Lehman, ”Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE. Vol. 68, No. 9, 1980, pp.1060-107.

[4] M. Hammer and J. Champy, Reengineering the Corporation: A Manifesto

for Business Revolution. New York: HarperCollins Publishers, 1993.

[5] S. Ian, Software Engineering, 9th ed., Pearson publication. 2014.

[6] E.J. Byrne, “A conceptual foundation for software re-engineering,”
Proceedings of Conference on Software Maintenance 1992, Orlando, FL,

USA, 1992, pp. 226-235.

[7] R.S. Arnold, ” Software Restructuring,” Proceeding of IEEE, vol. 77, no.
4, April 1989, pp. 607–617.

[8] H.M. Sneed and A.A. Kaposi, “Study on the effect of reengineering upon
software maintainability,” Proceedings. Conference on Software

Maintenance 1990, San Diego, CA, USA. 1990, pp. 91-99.

[9] P. Kumawat and N.Sharma, "Design and Development of Cost
Measurement Mechanism for Re-Engineering Project Using Function

Point Analysis," In R. Kamal, M. Henshaw and P. Nair (eds.),

International Conference on Advanced Computing Networking and

Informatics. Advances in Intelligent Systems and Computing, vol. 870.
Springer, Singapore,2019.

[10] J. kisielnicki and A.M. Misiak, “Effectiveness of agile compared to

waterfall implementation methods in it projects: analysis based on
business intelligence projects”, Foundation of management, vol. 9, No. 1,

pp. 273–286, 2017.

[11] A. Sahoo. D. Kung, and S. Gupta, “An Agile Methodology for
Reengineering Object-Oriented Software,” Proceeding of 28th

International Conference on Software Engineering & Knowledge
Engineering: SEKE. California; USA, 2016.

[12] S. Chung, D.H. Won, S. H. Baeg and S. Park, “A Model-Driven Scrum

Process for Service-Oriented Software Reengineering:mScrum4SOSR,”
Proceeding of 2nd International Conference on Computer Science and its

Applications, Korea (South), 2009, pp. 1-8.

[13] M.I. Cagnin, J. C. Maldonado and R.D. Penteado, “PARFAIT: Towards
a framework-based agile reengineering process,” Proceedings of the

Agile Development Conference (ADC): USA. 2003.pp. 22-31

[14] P.O. Adrian, “Aspect-Oriented Reengineering of an Object-oriented

Library in a Short Iteration Agile Process,” Informatica, vol. 35, No.4,
2012.

[15] S.R. Chidamber and C.F. Kemerer, “A metrics suite for object-oriented

design,” IEEE Transactions on Software Engineering, Vol. 20, No. 6,
1994, pp.476-493.

[16] M. North. Data mining for the masses. Global Text Project. August 2012.

[17] J. Singh, A. Gupta, and J. Singh, “Identification of requirements of

software reengineering for JAVA projects,” Proceeding of International
Conference on Computing, Communication, and Automation (ICCCA).

Greater Noida; India, 2017, pp.931-934.

[18] J. Singh, K. Singh, and J. Singh, “Reengineering framework for open
source software using decision tree approach,” International Journal of

Electrical and Computer Engineering (IJECE), vol. 9, No. 3, 2019,
pp.2041-2048.

[19] P. Serrador and J.K. Pinto,” Does Agile work? - A quantitative analysis

of agile project success,” International Journal of Project Management,
vol. 33,No. 5, 2015,pp.1040-1051.

[20] J. Kisielnicki and A.M. Misiak, “Effectiveness of agile compared to
waterfall implementation methods in its projects analysis based on

business intelligence projects,” Foundation of management, vol. 9 , No.1,
2017, pp. 273–286.

[21] scrumalliance.org. Scrum Alliances report-2017 [cited 2019 March 9]

available from https://www.scrumalliance.org/learn-about-scrum/state-
of-scrum/2018-state-of-scrum,.

[22] M. Cohan. Estimating and planning. Pearson Education.USA. 2006.

[23] V.R. Basili, L.C. Briand, and W.L. Melo, “Validation of object-oriented

design metrics as quality indicators,” IEEE Transactions on Software
Engineering, vol. 22, No.10, 1996, pp.751-761.

[24] J. Choudhary and U. Suman, “Story Points Based Effort Estimation

Model for Software Maintenance,” Procedia Technology. Elsevier.vol.4,
2012, pp.761-765.

