
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

723 | P a g e

www.ijacsa.thesai.org

Value-Driven use Cases Triage for Embedded

Systems: A Case Study of Cellular Phone

Neunghoe Kim
1

Department of Computer

Korea University, Seoul, Republic of Korea

Younkyu Lee
2

Multimedia Processing Lab Samsung Advanced Institute of

Technology, Suwon, Republic of Korea

Vijayan Sugumaran
3

Department of Decision and Information Sciences

Oakland University, Rochester, United States

Soojin Park
4, *

Graduate School of Management of Technology

Sogang University, Seoul, Republic of Korea

Abstract—A well-defined and prioritized set of use cases

enables the enhancement of an entire system by focusing on more

important use cases identified in the previous iteration. These use

cases are given more opportunities to be refined and tested. Until

now, use case prioritization has been done from a user

perspective, and through balanced measurement of actors/

objects usage. Lack of cost consideration for realization,

however, renders it ineffective for economic purposes. Hence, this

study incorporates the „value‟ concept, based on cost benefit

analysis, in use case prioritization for embedded systems. The use

case satisfaction level is used as the surrogate for „benefit‟, and

the complexity of implementation for „cost‟. Based on the value,

use cases are prioritized. As a proof-of-concept, we apply our

value-based prioritization method to the development of a

camera system in a cellular phone.

Keywords—Value-based software engineering; use case triage;

embedded system; cost-benefit analysis

I. INTRODUCTION

Software development has evolved around users and there
is more focus on developing use cases to cover the entire
process such as inspection, requirement analysis, and testing.
How to select use cases is one of the main issues in the
planning process of an iteration-based software development
project using the Unified Software Development Process [1].
The earlier a use case is placed in iteration, the more test
opportunities it gets resulting in higher quality. Therefore, it is
vital for improving the quality of the entire system to detect
core use cases in the earlier stage and include them in the
iteration plan.

Requirements prioritization has been an active area of
research. Herrmann and Daneva [2] have conducted a
systematic review of this literature and classified the existing
requirements prioritization approaches based on several criteria
and have identified fifteen well established methods. Based on
their analysis, they point out several weaknesses among
existing methods such as: a) not being able to estimate the
benefits at the individual requirements level as opposed to the
system level, b) lack of guidance for selecting the appropriate
cost estimation technique given a specific context, and c) not
taking into account the dependencies between various
requirements [2]. Some of these limitations can be mitigated by

conducting cost-benefit analysis at the use case level. We
contend that this process enables us to better estimate the
benefits, account for complexity as well as dependencies
between requirements. Thus, use case prioritization provides a
systematic approach for analyzing the benefits and cost of
realization of requirements. In this research, we utilize the
principles from cost-benefit analysis and determine the value
of use cases by combining user preferences and complexity.
Specifically, our proposed value-based use case prioritization
method assigns higher priority to use cases that provide
maximum satisfaction to users, while consuming minimum
time and cost of realization.

The rest of the paper is structured, as follows. Section 2
discusses the prior studies related to the prioritization methods
of use cases. The proposed approach and case study for value-
oriented prioritization of use cases are described in Section 3.
In Section 4, the evaluation conducted to verify the validity and
efficiency of the proposed approach earlier is discussed.
Section 5 concludes the paper, and outlines the future work.

II. RELATED WORK

Conventional studies on use case prioritization assign
priority based on objective measurement of actors and objects
usage metrics as well as subjective stakeholder viewpoints [3].
However, they are not very effective for actual application
since they lack economic consideration of the costs of
realization. Karlsson and Ryan [4] discuss a cost-value
approach for prioritizing requirements, however, they do not
provide a systematic way of estimating cost. They also don‟t
consider dependency relationships and software quality
attributes.

Numeral Assignment Technique, Planning Game and the
Analytic Hierarchy Process (“AHP”) are three representative
examples of the stakeholder preference-based approach. AHP
incorporates pairwise comparison and is used for computation
of relative values from stakeholders and cost of individual
requirements. Technical complexity-based approaches are cost
estimation methods such as the Lines of Code (“LOC”),
Constructive Cost Model (“COCOMO”), Function Point
Method, and Use Case Points Method. Models such as LOC
and COCOMO are inappropriate for cost estimation of projects

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

724 | P a g e

www.ijacsa.thesai.org

where the number of lines of code is hard to estimate. The
problem with Function Point Method is that application to
embedded systems is almost impossible due to its indifference
to the internal operations of software. Finally, with respect to
Use Case Points Method, the criteria are too unclear to
determine the complexity and the weight of each use case for
embedded systems. Hence, propose a new method for
estimating use case complexity that reflects the characteristics
of embedded systems.

By using the notion of value, we introduce a new method
for prioritizing use cases for an embedded system, which
considers both stakeholder preferences and technical
complexity.

III. VALUE-DRIVEN USE CASES TRIAGE METHOD AND CASE

STUDY

A. Value of a use Case

The term “value” is defined in different ways according to
the needs of different fields (e.g. marketing, business
management). Typically, Cost-Benefit analysis compares
benefits and costs of a project or a system. In our work, we
define value as the ratio between the benefits and cost of
software development, which is computed using the following
equation [5]:

Benefit Cost Ratio (BCR) = Benefit/Cost (1)

In general, “cost” includes all costs ranging from capital,
planning, installation, application development, to continuous
maintenance, while “benefit” includes benefits from savings in
labor and operation cost, and improved productivity [6].

Adapting the above equation to the software development
context, the value of a use case can be determined as follows:

Value of Use Case = Level of Satisfaction of the Use Case

/Cost of Realization of the Use Case (2)

As shown in equation 2, the benefit of a single use case that
specifies a particular functionality can be substituted with the
satisfaction level that a user gets from the use case. Satisfaction
level is measured using pairwise comparison of all the use
cases, which is part of AHP. The cost factor is the cost of
realization of a use case and depends on the complexity of that
use case. It is measured using the extended complexity factors
of the sequence diagram associated with the use case.
According to equation 2, the more satisfied a user feels about a
single use case, and at the same time, the less it costs for its
realization, then higher the value of that use case.

B. Value-Driven use Cases Triage Method

The proposed method of prioritizing use cases involves
cost-benefit analysis, which in turn computes the ratio between
the benefit and the cost of developing that function. The
proposed method consists of the following steps: 1)
investigating relative satisfaction level, 2) identification of
inter-component collaboration using state and sequence
diagrams, 3) complexity calculation, and 4) use case value
adjustment. Each of these steps is briefly described below and
the computations done in each step is summarized in Table I.

The relative satisfaction level in Step 1 is obtained by
means of AHP. Through pairwise comparison, we measure
user satisfaction from realizing a function represented by a
particular use case compared to other functions. The results
form a comparison matrix, which is used to determine the
relative satisfaction levels of use cases by averaging over the
normalized columns, as proposed by Thomas Saaty [7].

The collaboration between components in a use case is
examined in Step 2 using a state diagram and a sequence
diagram. The Gray-Box based requirements specification
method for embedded systems proposed in [8] is used to
generate these diagrams. Among the objects constituting an
embedded system such as controller, sensor, and actuator, we
focus on the state diagram (top-level) for the embedded
controller object. The information on how the state transition of
the system interacts with internal components is represented in
the sequence diagram.

In Step 3, the complexity of each use case is calculated
based on the sequence diagram. The objects in the sequence
diagram are classified as simple, average, and complex and
weights assigned for each type. Similarly, messages are
classified as synchronous or asynchronous, with weights given
to each type. Since actors do not affect the complexity of
software development, they are ignored. The weights are
determined by an expert, since it is heavily dependent on the
project and domain characteristics. The complexity of each use
case is computed as follows using the equation discussed in [9]
(shown in Table I). First, we count the total number of actors
collaborating within the sequence diagram. Then, we count the
number of objects in each category and multiply it by the
corresponding weight for that category. Then, these weighted
numbers are summed up. Similarly, we do the same type of
computation for messages. The complexity of the sequence
diagram is determined by adding up the scores for each of the
three parts. The complexity of a use case is then determined by
summing up the complexities of all the sequence diagrams that
are associated with that use case. Overlapping in computation
is avoided by not counting the actors, objects, and messages
more than once if they appear in many sequence diagrams.

In Step 4, the value of each use case is determined by
dividing the relative satisfaction level generated in Step 1 by its
complexity computed in Step 3. Use case values are then
adjusted by considering the dependency relationships among
the use cases and their expected quality levels. Specifically, the
value is adjusted if include and extend relationships exist
among use cases, or when the sequential order of the use cases
is established by the preconditions existing in them. The
adjustment to reflect expected quality levels is to take into
account the expectations on distinct quality attributes given for
each use case. According to [10], the quality attributes relevant
for embedded systems are: reliability, usability, performance,
real timeliness, and purpose limitation. The expected quality
level of each use case for each attribute is categorized as high,
medium, or low. The value of each empirical weight is
determined based on the project and domain characteristics.
The use case value is multiplied by the weighted quality level
scores to determine the adjusted value. These adjusted values
determine the final order of development (priority) for each use
case.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

725 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPUTATIONS USED IN VALUE-DRIVEN USE CASES TRIAGE

Step 1: Investigating Relative Satisfaction Level (using AHP)

 [

] •••• [

] ⇒ [

] ⇒ [

] (
 ecording a ideo

)

 Use Case Comparison Matrices Comparison Matrix Created Satisfaction Levels Example
 from All Users using Geometric Mean of of Use Cases

 Individual Scores

Step 2: Identification of Inter-Component Collaboration

 The Gray-Box technique [8] is used to generate the State Diagram and the Sequence Diagram

Step 3: Complexity Calculation (adapted from [9])

 Complexity of a Sequence Diagram = Actor Complexity+Object Complexity+Message Complexity

 = ∑No. of actors+∑(No. of objects*object weight)+∑(No. of message*message weight)

 Complexity of Use Case = ∑(Complexity of Constituent Sequence Diagram)

Example: Complexity Calculation from Case Study (for the “Recording a Video” Use Case)

 Actor Complexity = User+Camsensor+MIC = 1+1+1 = 3

 Object Complexity = CamsensorIF*Complex+AudioControlIF*Average = (1*2)+(1*1.5) = 3.5

 Message Complexity = oper_set_state()*Asynchronous+get_sensordata()*Synchronous+
oper_record()*Asynchronous+oper_take_movie()*Asynchronous+set_autdio_path()*Asynchronous+get_audio_input_data()*Synchronous+check_f

ree_space()*Asynchronous+save_recorded_data()*Asynchronous+get_temp_filename()*Asynchronous+save_file()*Asynchronous+stop_record()*

Asynchronous+restartPreview()*Asynchronous = (1*1)+(1*2)+(1*1)+(1*1)+(1*1)+(1*2)+(1*1)+(1*1)+(1*1)+(1*1)+(1*1)+(1*1) = 14

 Complexity of the Sequence Diagram = 3+3.5+14 = 20.5

 Complexity of Use Case = 20.5 (This use case contained only one sequence diagram)

Step 4: Use Case Value Adjustment

 Adjusted Value of Base Use Case under <<extend>> = value of base use case*∑extend weight

 Adjusted Value of Included Use Case under <<include>> = value of included use case*∑include weight

 In Case of Precondition, Value of Prerequisite Use Case = value of prerequisite use case*∑precondition weight

 Adjustment of Quality Attributes = value of use case*∑(No. of quality attributes*weight of quality attributes category)

Example: Use Case Value Adjustment (“Recording a Video” Use Case)

 Value of Use Case = Relative Satisfaction Level/Complexity = 16/20.5 = 78 (We multiply this by 100 and round off to the nearest integer)

 Dependency (Not Related)

 Adjustment of Quality Attributes = 78*(reliability*Medium+usability*High+performance*High+real timeliness*High+purpose limitation*Low) =

78*(0.2+0.3+0.3+0.3+0.1+1) = 172 (1 is added to the sums of empirical weights to compensate for reduction of values owing to decimal values of
weights)

C. Case Study: A Camera System in Cellular Phone

To demonstrate the feasibility of calculating use case
values, we have conducted a case study using the camera
system in a cellular phone. We implemented this system in a
domestic 3G feature handset for a global electronics company.
The project utilized 21 software developers and took 7 months
to complete. First, use case modeling was carried out based on
the requirements for the camera system. Ten use cases
(Previewing, Taking a Snapshot, Recording a Video,
Postviewing, Playing a Video, Album Management, Editing
Photo&Video, Sending Photo&Video, Printing a Photo,

Albumview) and 9 actors (Camsensor, MIC, Speaker, User,
LCD, Wallpaper Manager, MMS Manager, Bluetooth
Manager, Printer) were derived. The “ ecording a ideo” use
case is used to demonstrate the computations in our approach.

1) STEP 1 Investigating relative satisfaction level: As part

of the AHP methodology, the use case comparison matrices

from 30 users were used to generate a single comparison

matrix by taking the geometric mean of the individual

comparison scores. This matrix was then normalized and the

relative satisfaction levels for each of the use cases were

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

726 | P a g e

www.ijacsa.thesai.org

determined. The consistency ratio of the corresponding values

in the comparison matrices from users was less than 0.1,

indicating that these matrices are reliable [7]. To express the

relative satisfaction levels as integer values, they were

multiplied by 100 and rounded off to the nearest integer. The

relative satisfaction levels for the use cases are: Taking a

Snapshot = 24, Recording a Video = 16, Previewing = 11,

Postviewing = 11, Playing a Video = 10, Album Management

= 7, Albumview = 7, Sending Photo&Video = 6, Editing

Photo&Video = 5, and Printing a Photo = 4.

2) STEP 2 identification of inter-component

collaboration: A state diagram was created for the

„CameraController‟ component that controls the state and

transition information of the camera system in the cellular

phone. As an essential object controlling the state of the entire

system, the „CameraController‟ object functions as the owner

of the state diagram [8]. In the state diagram, the camera

system in a cellular phone should maintain states such as

“idle,” “initialized,” “preview,” “postview,” “recording,”

“albumview,” “editing,” “sending,” “printing,” “playing,”

“snapshot,” and “stopped.” As this object is used in computing

the complexity of the use case, the “ ecording a ideo” use

case triggers the state transition upon its activation, and the

transition goes through the following flow: “preview

recording preview.”

Next, the sequence diagram is created, while assigning the
events and the actions shown on the state diagram and marking
them chronologically. In the sequence diagram of the
“ ecording a ideo” use case, the CameraController in the
“preview” state sends commands such as Oper_set_state() and
Get_sensor_data() to Camsensor_IF object, upon receipt of the
StartRecord event invoked by a user. Then, while carrying out
its own oper_record(), the “preview” state transitions into the
“recording” state. During this transition, Camsensor_IF also
sends certain messages to Camsensors to fulfill the objective(s)
of the message(s) it has received. Through this analytical
process, it is made clear how the goal of each use case is
accomplished by understanding what messages are sent and
received by each component object constituting the entire
system.

3) STEP 3 complexity calculation: The complexity of a

use case is determined based on the information contained in

the sequence diagram. The sequence diagram pertaining to the

“ ecording a ideo” use case contains three actors, two

objects and 12 messages. The object weights applied in this

project are Simple = 1.0, Average = 1.5, and Complex = 2.0,

while message weights are set as Synchronous = 2.0 and

Asynchronous = 1.0. For example, CamsensorIF was

classified as “complex,‟ while AudioControlIF was

categorized as “average.” In the case of messages,

get_sensordata() and get_audio_input_data() were marked as

“synchronous”, while the others were deemed

“asynchronous.” Thus, the complexity of the sequence

diagram for the “ ecording a ideo” use case is computed to

be 20.5. It is to be noted that this use case contained only one

sequence diagram. Therefore, the sequence diagram

complexity also represents the complexity of the use case. The

complexity values computed for the use cases in the case

study are: Previewing = 28, Recording a Video = 20.5,

Postviewing = 18.5, Album Management = 16.5, Sending

Photo&Video = 15, Printing a Photo = 14, Playing a Video =

12.5, Taking a Snapshot = 12, Editing Photo&Video = 11, and

Albumview = 10.

4) STEP 4 use case value adjustment: The use case values

are obtained by dividing the relative satisfaction levels by the

complexities. This ratio is expressed as whole number, by

multiplying it by 100 and rounding off to the nearest integer.

The values of the use cases computed in the case study are as

follows: Taking a Snapshot = 200, Playing a Video = 80,

Recording a Video = 78, Albumview = 70, Postviewing = 59,

Editing Photo&Video = 45, Album Management = 42,

Sending Photo&Video = 40, Previewing = 39, and Printing a

Photo = 29. In the case of the “Playing a Video” use case, its

relative satisfaction level is 10, or the 5th highest among the

ten use cases, and its complexity is 12.5, or the 4th lowest

among them. However, its value computes to 80, the second

highest among the ten use cases.

Next, the use case values are adjusted based on inter use
case dependencies and each case‟s expected quality level. The
values are rounded off to the nearest integer. The value
adjustment for the “ ecording a ideo” use case is shown in
Table I. The adjusted values of the use cases in the case study
are as follows: Taking a Snapshot = 420, Albumview = 189,
Recording a Video = 172, Previewing = 128, Playing a Video
= 104, Postviewing = 65, Album Management = 63, Editing
Photo&Video = 50, Sending Photo&Video = 48, and Printing a
Photo = 35. For the adjustment, a weight of 0.1 is assigned to
dependency relationship, while three weights are assigned to
the expected quality level (i.e. high = 0.3, medium = 0.2, low =
0.1). Playing a Video, Albumview, Postviewing, Editing
Photo&Video, Sending Photo&Video, and Previewing use
cases had their priority positions changed after the adjustment.

IV. EVALUATION

In the case study described in section 3, we discussed how
the use case values for a cellular phone camera system were
derived. To demonstrate the effectiveness of the process, we
have to answer the following three questions:

 Does the use case complexity computed through our
approach match the complexity experienced in
realizing the use case?

 How much do the stakeholders trust the results of our
proposed method after applying it to their processes?

 Are the results from our approach more useful
compared to the previous use case prioritizations that
were being used?

We demonstrate the validity of our complexity calculation
by showing the proportional relationship between our
complexity values and the actual LOC values for
corresponding use cases. In addition to this quantitative

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

727 | P a g e

www.ijacsa.thesai.org

evaluation, we demonstrate the trust shown by different
stakeholders in our proposed approach by administering a
survey to the marketing staff and development engineers of
embedded software in the case study organization. Lastly, we
show the usefulness of our proposed method through
comparative analysis of the results from our method and the
results from previous use case prioritizations generated by the
development engineers.

A. Verification of the Complexity-Calculation Process

We counted the number of lines of executable source code
upon completion of the development of the cellular phone
camera system. As discussed earlier, the reason for measuring
LOCs is to check whether or not the complexity-based use case
priority, which had been generated prior to realization, matches
the LOC size-based priority upon completion. If the two types
of priority are in direct proportion to each other, our proposed
method of estimating use case values is applicable to the actual
development of embedded systems. To investigate the
relationship between our use case complexities and the actually
realized LOCs, we plotted the LOCs and the corresponding use
case complexities, as shown in Fig. 1(a), (b). The use case
complexity rank and the LOC rank corresponds to the rank
ordering of use cases from the most complex (1) to the least
complex (10) in the case study. As seen from Fig. 1(a), the
complexity rank and the LOC rank for the use cases follow
each other closely.

In this case study, the correlation coefficient between the
complexities of the use cases computed based on our approach
and the corresponding LOC was determined to be 0.96,
meaning a strong relationship between them. Also, we ran a

simple linear regression model with complexity as the
independent variable and LOC as the dependent variable. The
regression coefficients and the R

2
 are shown in Fig. 1(b). The

R
2
 value is 0.9207, which is very significant and strongly

suggests a linear relationship between the use case
complexities computed through our approach and the resulting
LOC. Considering these findings, it is fair to conclude that the
use case complexity computation method proposed herein is a
good indicator of the complexity of the actually realized code.

B. Acceptance of the Proposed Method

A survey was administered to 40 developers of embedded
systems and 10 marketing staff members from the corporation
that developed the camera system for the cellular phone. On
average, the marketing staff members had five years of
experience, and the developers had 7 years of experience.

The survey contained questions focusing on three main
aspects: a) choosing use cases based on cost, b) trustworthiness
of the results from our approach, and c) usefulness of our
approach. With respect to the need for choosing use cases in
consideration of development costs, 90% of the marketing staff
and 95% of the developers indicated that cost should be
considered in selecting use cases for implementation. With
respect to our model‟s trustworthiness, 80% of the marketing
staff and 85% of the developers responded positively. In terms
of usefulness of our approach, 70% of the marketers and 40%
of the developers acknowledged that the method would be
useful in their organization. The lower percentage value of the
developers may be due to unfamiliarity with modeling,
personal habits, corporate culture and internal
structural/organizational issues.

Fig. 1. Results from Case Study (Camera System in Cellular Phone).

1

8

2

3

7

4

9

5

6

10

1

5

2

3

6

4

9

7

8

10

 Use Case Complexity Rank Use Case LOC Rank

3

1

2

10

4

5

7

9

8

6

4

1

3

6

5

7

8

9

10

2

Experience-based Use Case Prioritization Value-based Use Case Prioritization

Use Case 1

Use Case 2

Use Case 3

Use Case 4
Use Case 5

Use Case 6

Use Case 7
Use Case 8

Use Case 9

Use Case 10

0

5

10

15

20

25

30

0 5 10 15 20 25 30

U
se

 C
as

e
 R

e
la

ti
ve

 S
at

is
fa

ct
io

n
 L

e
ve

l (
p

e
rc

e
n

t)

Use Case LOC (percent)

High Medium

Low

UC 1

UC 2

UC 3

UC 4

UC 5

UC 6

UC 7
UC 8

UC 9
UC 10

y = 227.96x - 1878.2
R² = 0.9207

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30

U
se

 C
as

e
 (

U
C

)
LO

C

Use Case (UC) Complexity

(a) Comparison of Complexity
and LOC Ranks of Use Cases

(b) Linear Regression Model
between Use Case (UC) Complexity and LOC

(c) Comparison of Experience-based
and Value-based Use Case Priorities

(d) Relative Satisfaction Level
vs. Cost (LOC) for Use Cases

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

728 | P a g e

www.ijacsa.thesai.org

C. Usefulness of the Proposed Method

For the ten use cases in the case study, the developers
independently estimated the priority based on their prior
experience. Developers tend assign high priority to use cases
corresponding to basic functions even if they have high cost of
realization. For the other functions, they assign lower priority
even if they are complex. Fig. 1(c) shows the experience-based
use case priorities and the value-based priorities developed
using our approach. While the priorities are similar for a few
use cases, there is considerable difference for some of them. To
further analyze the differences, we have developed a cost-value
diagram similar to the one discussed in [4]. The normalized
relative satisfaction levels and the normalized LOC values for
the use cases are plotted, as shown in Fig. 1(d). Based on the
value of use cases (ratio of satisfaction level and LOC), we
group the use cases into three categories (High, Medium,
Low). For high value use cases, the ratio exceeds 2, for
medium value, between 0.5 and 2, and for low value below 0.5,
as used in [4]. As seen in Fig. 1(d), Use Case 2 (Taking a
Snapshot) and 10 (Albumview) are high value use cases and
they were correctly assigned a high priority value of 1 and 2 in
our approach. However, the developers assigned a priority of 6
for Use Case 10, thus failing to identify this high value use
case. Use Case 1 (Previewing) is a low value use case, as
shown in Fig. 1(d). Our approach assigned a priority of 4,
while the developers assigned a priority of 3. Thus, our
approach is better able to assign more appropriate priorities
compared to the experience based use case prioritization.

V. CONCLUSION

This study has proposed a value-based method for
prioritizing use cases. This approach is used to improve quality
by discerning “valuable” use cases and incorporating them in
the iteration plan at an earlier stage. To demonstrate the
validity and usefulness of the proposed approach, a case study
and a survey were conducted.

The contributions of this study are as follows:

 In prioritizing use cases, the notion of value is defined
based on the external requirement of “satisfaction
level” and the internal requirement of “cost.” Our
prioritization process is based on value, which is a
balanced metric. In this study, the cost of each use case
refers to the effort required to realize that use case and
it increases in direct proportion to the complexity of
the use case.

 To determine the complexity of use cases tailored to
the embedded system domain, it is computed based on
the inter-component collaboration model.

 The validity of our model has been demonstrated by
applying our complexity estimation model to an actual
case and showing that the complexity estimates
produced through our approach matched the actually
realized LOCs.

Although we have demonstrated the feasibility of our
approach, further work is needed to fully establish its efficacy.
The evaluation results verify the validity of the complexity
estimation of each use cases. However, further work is needed
to verify the validity of users‟ satisfaction. As part of future
work, a quantitative study will be conducted to investigate how
much improvement can be achieved in the quality of the
software product, when the relevant iteration planning is
carried out in accordance with the prioritization results
produced through our model.

REFERENCES

[1] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process, Addison-Wesley Professional, 1999.

[2] A. Herrmann and M. Daneva, “ equirements prioritization based on
benefits and cost prediction: an agenda for future research,”
International Requirements Engineering Conference, pp. 125-134,
September 2008.

[3] F. Moisiadis, “Prioritizing use cases and scenarios,” International
Conference on Technology of Object-Oriented Languages and Systems,
pp. 108-119, November 2000.

[4] J. Karlsson, K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, vol. 14, no. 5, pp. 67-74,
September/October 1997.

[5] H. Erdogmus, “Cost-benefit analysis of software development
techniques and practices,” International Conference on Software
Engineering, pp. 178-179, May 2007.

[6] T. Pisello, Return on Investment for Information Technology Providers,
New Canaan Connecticut: Information Economics Press, 2001.

[7] T. L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, 1980.

[8] S. Park, S. Park, “A gray-box based software requirements specification
method for embedded systems,” Journal of Korean Institute of
Information Scientists and Engineers, vol. 38, no. 9, pp. 485-490,
September 2011.

[9] A. Kanjilal, S. Sengupta, S. Bhattacharya, “Analysis of complexity of
requirements: a metrics based approach,” India Software Engineering
Conference, pp. 131-132, February 2009.

[10] J. Lim, H. Yoon, “Extraction of quality attribute for designing the S/W
architecture in weapon systems embedded software,” Korean Fuzzy
Logic and Intelligent Systems Society Autumn Conference, pp. 268-271,
November 2006.

