
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

176 | P a g e

www.ijacsa.thesai.org

Android Security Development: SpywareDetection,

Apps Secure Level and Data Encryption Improvement

Lim Wei Xian
1
, Chan Shao Hong

2
, Yap Ming Jie

3
, Azween Abdullah

4
, Mahadevan Supramaniam

5

Taylor’s University Lakeside Campus, School of Computing & IT (SoCIT), Subang Jaya, Selangor, Malaysia
1, 2, 3, 4

Research and Innovation Management Center, SEGi University, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia
5

Abstract—Most Android users are unaware that their

smartphones are as vulnerable as any computer, and that

permission by Android users is an important part of maintaining

the security of Android smartphones. We present a method that

uses manifest files to determine the presence of spyware and the

security level of apps. Furthermore, to ensure that no leaked data

occurs in Android smartphones, we propose new method for the

encryption of data from Google Suite applications.

Keywords—Android; spyware detection; security level index;

data encryption

I. INTRODUCTION

In 2017, Android accounted for 85% of the smartphone
market, and the Android operating system was also the most
popular. However, Android is an open-source operating system
that is often targeted by malicious software. In 2017, there
were more than 3.5 million malware applications [1]. Since the
development of Android 6.0 in 2015, Android has required
permission for apps considered dangerous, and users can
revoke this permission at any time [2].

The aim of the “Android Security Development” project is
to provide a safer environment for Android smartphone users
by detecting spyware more efficiently and effectively, prevent
the leakage of personal information from Android
smartphones, and raise awareness regarding permission for
apps downloaded by Android users. Personal information in
smartphones may include contacts, calendar schedule, and
location, to name a few.

The first goal of this project was to prevent users from
having spyware implanted in their smartphones and to prevent
users from downloading malicious applications that cause their
personal information to be leaked. As users may not be aware
when their smartphones have been implanted with spyware or
when they are downloading a malicious application, requiring
permission does not effectively protect Android users’
smartphones. As such, a spyware detection system is urgently
needed that can detect and prevent malicious applications from
being downloaded. We developed a Spyware Detection System
than can alert users that a specific application has been
implanted with spyware.

The second project goal was to provide an application
security level index for users to access details about
applications. With this index, users can assess the level of risk
associated with using applications and be more informed
regarding the permission request. The Application Security

Level Index is a software program that can produce a report
about the type of permission required, as well as the risk of
specific data being leaked if permission is given for the
application. The Application Security Level Index will be in
place before the application is available at the Google Play
store.

The third goal was to implement Hybrid, which encrypts
data from Google Suite to Google’s server. We called it Hybrid
because the process of encryption uses two encryption
methods, both the Advanced Encryption Standard (AES) and
the RSA encryption method. AES performs symmetric-key
algorithm encryption and RSA asymmetric key algorithm
encryption. With these two encryption methods, the data being
transferred can be made sufficiently secure. Hence, users need
not worry that their data is being leaked during its
transmission.

In summary, the “Android Security Development” target
audience is all those who use Android smartphones. With these
three implementations, we provide our target audience with a
safe and more secure environment for their Android
smartphones. This paper is presents in ten sections, including
the Introduction, Related Work, Architecture Diagram, Method
for Detecting Android Spyware, Method for Implement
Application Security Level Index, Method for Hybrid–
Cryptosystem, Experiment Setup, Experiment Results, Critical
Analysis and Conclusion and Future Work.

II. RELATED WORK

A. Android Permission Mechanism

Android is an operating system which used widely on
billions of different devices, such as smartphones, tablets,
wearable devices and intelligent appliances. However, such
flexible supply of applications which causes vulnerable
applications and malware easily obtains by users [3].

Various security mechanisms used in Android such as
sandbox and permissions to solve Android related security
threats. However the results of these security mechanisms are
not satisfactory, as the malicious activities still targeting the
Android applications. Android has improved the permission
scheme since Android version 6 Marshmallow benefiting
Android current users [3].

The permission mechanism in Android is to achieve a
better security to Android platform. The permission
mechanism is designed to separate the system and the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

177 | P a g e

www.ijacsa.thesai.org

applications, which application have limited access to the
system. The permission mechanism is essentially mandatory in
Android control system based on permission labels, which will
check the specific application, have the specific permission
when attempting to access the protected resources such as
gallery, phone and contact. Therefore the applications which
needed 35 permissions is require to declare in its
AndroidManifest.xml files and is mandatory to receives
approval from the users to use the protected resources [3].

Furthermore, there is around 140 standard permissions in
Android for protecting corresponding resources in an Android
device. All the 140 permissions are classified into several
categories which based on its sensitivities. Dangerous
permissions are further grouped based on the functional
relationship, for example, “READ_SMS” and
“RECEIVE_SMS” permissions are comprise of “SMS” group.
Moreover, permission system is workable on third party
applications if their developers self-created permissions or
apply standard to the interface of their applications [3].

Although, Android have permission system, permission
protected resources are still contains vulnerabilities. Permission
leak vulnerabilities is quite normal in third party applications,
since the application is written by developers which are
insufficient security background [3].

B. Android Request App Permissions

According to the Android developer website [2], every
Android mobile application that requires a permission must put
a <user-permission> element in the app manifest at the top
level in the project view as a <manifest> element. For example,
an app that requires permission to send SMS messages would
have a code in the manifest such as that shown in Fig. 1.

Basically, the Android permission system is divided into
various protection levels based on the sensitivity of the app
requiring permission. Some permission that are considered
“normal” or that must use permissions is not affected very
much by the system. However, if permission is listed as
“dangerous,” the system will prompt the user to explicitly grant
the app access. The protection levels of Android permissions
that affect third party apps are categorized as either normal,
signature, or dangerous. These protection levels are also
affected whether or not a runtime permission request is
required.

The ability of users to revoke their permission for any app
at any time became available only with the introduction of
Android 6.0 (API Level 23). For example, if gallery permission
was given by a user for an application yesterday, it would only
be valid for that day. If the application wanted to access the
gallery again, it must request permission once again.

In another example, if an application wanted to request
permission to access the calendar, a method known as the
“ContextCompat.checkSelfPermission ()” method is called, as
shown in Fig. 2.

If the corresponding app has permission to access the
calendar, the method shown in the figure above will return
PERMISSION_GRANTED, and only then can the application
proceed to make changes in the calendar. However, if the

corresponding application does not have permission, this
method will return PERMISSION_DENIED, and the
application must explicitly ask for user permission.

The reason Android has implemented this permission
mechanism in the developer is to allow users to know which
information apps are accessing their data and why
corresponding apps need to access it. For example, if a user
frequently denies permission requests by an app, this probably
means that the user does not understand the reason the
application is requesting such permission, and the user
considers that the app does not need this access.

C. Android Permission Groups

The Android web area [4] shows that Android categorizes
all of its permissions group by group. With our proposed
system, permission requests are in charge at the group level
and single permission groups correspond to several permission
declarations in the app manifest. For example, the
CALENDER group includes both READ_CALENDER and
WRITE_CALENDER declarations. Fig. 3 shows an
architectural view of how a permission group works [4].

Fig. 1. Code to Request Permission [2].

Fig. 2. Code to Check for Permission [2].

Fig. 3. Permission Group Architecture [4].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

178 | P a g e

www.ijacsa.thesai.org

Permission groups in Android include all dangerous
permissions. Although any permission that can belong to a
permission group is assigned a protection level, a permission
group only affects dangerous permissions that might affect the
user experience, such that the system will protect the user’s
privacy.

D. Structure of Android Application Packages

Android applications are in APK file format. Fig. 4 shows
that each APK file contains four important files, which include
AndroidManifest.xml, classes.dex, META–INF, and resource
files. Of these files, AndroidManifest.xml and classes.dex are
often used in evaluating and analyzing threats and
vulnerabilities [5].

The AndroidManifest.xml file contains application
information described in XML, which is stored in binary form.
Android Studio and Apktool can extract information from the
AndroidManifest.xml file. Table I shows the main information
stored in AndroidManifest.xml [5].

Android permissions in AndroidManifest.xml are
categorized into three levels: normal, dangerous, and signature.
Dangerous permissions will require approval from users. The
version of Android operating system being used will determine
the number of permissions requested [5]. Forty-four Android
apps are in Java language and compiled in Java bytecode.
These Java bytecodes are translated into Dalvik bytecode and
stored in Dalvik executable format (DEX), for example in
classes.dex. Dalvik bytecode enables code analysis without the
use of source code, and it is also reverse-engineer friendly.
APK files are stored in binary and since they are zip files, APK
files cannot be analyzed directly. The Apktool has the ability to
convert AndroidManifest.xml into text. So the bytecode in
classes.dex can be reverse engineered to produce Smali code, a
type of bytecode that is in human readable style and is useful
for analysis [5].

E. Sandbox

Sandbox is a security mechanism for isolating app
resources from each other to reduce system failures or the
spread of malicious applications and to protect apps and the
system from other malicious applications [6][7]. In general, a
sandbox will allow an application to run in an isolated
computing environment with limited resources. To use
sandbox, Android assigns a unique user ID for each Android
application and allows it to run its own process.

Sandbox is frequently used to run untrusted code or
unverified programs obtained from third market applications
that may contain malware. Typically, to run unfamiliar
applications, sandbox will control resources, such as limiting
the space for memory and permission access. In Android, the
programmer must manually code the application that runs
within the sandbox, so that the application will not be able to
perform any unpermitted actions such as reading smartphone
information without permission or any other malicious actions.

For example, if application A is downloaded from an
untrusted source and tries to perform a malicious action, such
as accessing a smartphone contact or gallery without
permission, the Android operating system will prohibit this

action since application A does not have the required
permission.

F. SafeGuard

Safeguard is a real time anti-malware application that
detects and blocks suspicious or malicious actions and
behaviors. The SafeGuard database frequently updates types of
malware threats and blocking rules. In general, SafeGuard
monitors all applications that are running on the Android
operating system in real time. If the SafeGuard library detects
behavior that uses an API or combination of APIs, the database
will detect it and alert the user [8].

As Android is an open-source operating system, its security
is weaker and more vulnerable to attack. Most Android
applications use Java as the official programming language,
which makes it easier to use reverse engineering to allow the
injection of malicious code and rewriting of code. This means
Android users are at greater risk than those who use Apple’s
App Store [8]. Although normal signature-based detection can
be used to easily detect malware from source code, malware is
evolving rapidly. In addition, Android has developed and
applied a new security model called Sandbox that prevents
access by one application to other applications, based on the
unique share ID created for all applications and those running
in the virtual environment.

SafeGuard detects suspicious APIs such as accesses to
GPS, conversation histories, galleries, private information etc.
in real time. It then instructs users to block those malicious
behaviors to protect their personal information. In addition,
SafeGuard expands the reach of the behavior detection
mechanism corresponding to the malicious behavior type
against the target application and API behaviors. Moreover,
SafeGuard is constantly being updated via the Internet to keep
the database up to date and able to deal with the limitations of
anti-virus software and prevent malicious activity by malicious
applications. To deal with new malware that dynamically
fetches codes, a heuristic detection method has been proposed
that detects both original and dynamic codes. In existing
mobile anti-virus software, old malware can be easily detected,
but new malware is difficult to screen. To address this
problem, SafeGuard monitors application behavior and the
calling of malicious APIs in real time. If an application breaks
a behavior-based rule, SafeGuard will block the application
from running.

Fig. 4. APK File Structure [5].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

179 | P a g e

www.ijacsa.thesai.org

TABLE I. ANDROID PERMISSION

Tag Name Content

Application General configuration of application, such as icons, labels, and display theme

Uses-sdk Range of API levels needed to run the application

Uses-permission Permissions requested by the application

Uses-library Libraries used by the application

G. Types of File Analysis

There are two main major file analysis method, which are
static analysis and dynamic analysis, which combine can
become hybrid analysis. Static file analysis can inspect the files
inside an APK file. AndroidManifest.xml and classes.dex
contain data which are suitable use for analysis. The
permission request information which are in Android
Manifest.xml and can be extracted [5][9].

Static analysis is focus on application’s code analyses
without executing the code [10]. There are already quite many
static analysers that can analyse Java source code, as we know
that Android mobile application is wrote in Java language.
Nevertheless, most of the static analysers are based on
syntactical analyses or will use theorem providing some
simplifying hypotheses. Unfortunately, most of the static tools
do not support technologies such as XML, which will affect the
control flow graph of an Android app, as we know that
Android Manifest is a XML file type. However, Julia static
analyser performs a semantic sound analysis. First of all, the
apps are reverse engineer using dex2jar to able to extract the
Java bytecode and will have apktool to extract the Android
Manifest. The Android Manifest is use to determine the entry
points for parsing the Java bytecode of the app [11].

The Julia analyser library provides a representation of Java
bytecode which is suitable for interpretation (Mandal, Cortesi,
Ferrara, Panarotto, & Spoto, 2018). Julia analyses the Java
source code, which are already complied into Java bytecode
inside Android Studio [12].

Dynamic analysis is the analysis that analyses the executing
application on real time. It mainly focus on the behaviour of
the application [8]. A dynamic analysis which presented by
Taint Droid which it monitors the privacy of Android devices
at real time by using privacy-sensitive data sources. Droid Box
has extended the functionality of Taint Droid by modifying the
Android framework; it can monitor the interesting API calls
invoked by an application. It executes the application, and
produce log of the behaviour that in the host operating system.
After the executing which produces a more accurate analysis,
however these approaches still contain problems which are
overhead and require modification in the operating system and
can cause a large part of Android users cannot use the system
[13].

A type of Hybrid analysis called FlowSlicer, mixes a
conservative static analysis with a dynamic analysis. The
FlowSlicer allows a control over Android malicious
applications with lower overhead and high accuracy. The idea
behind FlowSlicer is that the static analysis use in filter
elements that are important, while the dynamic analysis is use

during the executing of application. The techniques used in the
static analysis are instrumentation and program slicing are used
while the techniques used in dynamic analysis is a tagging
architecture [13].

Program slicing is a type of static analysis that has been
used in many different purposes, such as information flow,
software maintenance, program analysis and optimization.
Program slicing is used in FlowSlicer with the objective of
filtering and identifying the possible information-flow leaks in
order to do a better analysis. Program slicing is a technique that
creates an executable slice of the original program. Only the
needed statement from the original program will be slice out,
known as slicing criterion. FlowSlicer will discover the
dependencies of each statement present in the reachable
methods [13].

H. Advanced Encryption Standard (AES)

AES is a popular and widely used algorithm [14] that
replaced DES following a public call in 1997 by the U.S.
National Institute for Standards and Technology (NIST). The
reason Triple-DES was replaced is that it required that DES be
run three times to complete the encryption process, which it is
not efficient, so a new and more efficient standard was needed.
AES is a symmetric-key algorithm that uses the same key for
both the encryption and decryption of data. The security of
AES is directly proportional to the size of the key and the
security level. This means that the longer the length of the key,
the stronger the security. However, when the key is long, it also
becomes slower.

I. Rivest-Shamir-Adleman (RSA)

RSA is a cryptosystem that is popular for securing the
transmission of data by generating a public and a private key
that are mathematically linked to each other but cannot be
derived from each other [15]. It is an asymmetric algorithm,
meaning that it consists of two different keys, one public and
the other private. The public key can be given to everyone,
whereas the private key must be kept private or given only to
authorized personnel. Public keys encrypt data that can only be
decrypted by the matching private key.

RSA works by multiplying two large prime numbers to
produce a difficult form such that decryption is infeasible.
Even with the best computers or super computers today,
breaching the security of data being transmitted remains
infeasible due to its complexity and large size. As technology
continues to improve day by day, the ability to factor larger and
larger numbers has also increased. As such, increasing the
strength of data security becomes directly proportional to the
size of the key, whereby the larger the size of the key, the
stronger the security.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

180 | P a g e

www.ijacsa.thesai.org

J. Objective

In Google Play Protect, there are still many flaws in their
machine learning in terms of Spyware Detection. Spyware
might not always be active as there passively infecting in the
system without doing anything harmful at all to the infected
system. However, once given command, the Spyware will only
send the file to outside system. Because of this, the Spyware
Detection is to be implemented. Secondly, the main idea of
implement Application Security Level Index, is because of the
current Android application’s permission is not obvious on the
application page; hence the implementation of Application
Security Level Index is to create awareness for all the Android
users, which the current system have not implemented. Thirdly,
the reason why this hybrid-cryptosystem is to be implemented
is mainly because, they were only a simple encryption using
Application Level Transport Security (ALTS) between the
transmission channels of Android user’s phone to the server of
Google. And so hybrid-cryptosystem is to make sure that the
transmission channels between Android user’s phone and the
server of Google to be secure, so that the information and data
being transmitted through the transmission channel will be able
to be secured also to be able to prevent any man-in-the-middle
to be listening and stealing information and data.

III. ARCHITECTURAL DIAGRAM

Based on Fig. 5, starting from the left, which shows the
developer of an app or apps, an app is published on the Google
developer console via the Internet, is then connected and
configured with the Google Services Cloud Server. The

app is in the file format of .apk file. The app will then go
through our implementation, which is a software of combine
the Application Security Level Index and Spyware Detection
mechanism.

Next, our software will use Apktool to reverse engineer the
apk file, after the reverse engineer the apk file will produce few
files, but in our implementation, we just used the
AndroidManifest.xml file for our Android Security Level
Index and Spyware Detection mechanism.

Furthermore, will have two separate parts which are
Application Security Level Index and Spyware Detection
mechanism. Regarding to Application Security Level Index,
the Android uses permission is extracted out from the
AndroidManifest.xml, and our program will analyses the
extracted uses-permission and produce a permission report. For
the Spyware Detection mechanism, the program will extract
specific information from the AndroidMnifest.xml. The
program will then compare with a list of keyword list and
produce a result which identify whether the apps is benign or
malignant from spyware.

After completing this process, it will produce a permission
report and download approve for the app, and the app with
permission report and download approve will be passed on to
Google Play and then be published in the Google Play Store.
The Google Play Store in the end user’s devices is connected to
Google Play Services. So, if the application requires updates, it
will provide information to Google Play Services, which is
connected to the Google Developer Console so the app
developer can update the application.

Fig. 5. Architectural Diagram of our System.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

181 | P a g e

www.ijacsa.thesai.org

The last implementation, Hybrid Cryptosystem, is invoked
when there are quite a number of Google Suite apps in Android
OS devices that contain Google Search, Gmail, Google
Account, YouTube, etc. These apps contain important
information about the user of the smartphone. Hence, the
Hybrid Cryptosystem will encrypt messages sent from the end
user phone to Google’s server.

IV. METHOD FOR DETECTING ANDROID SPYWARE

Our proposed method for detecting Android spyware
analyzes AndroidManifest.xml files. The Android application
package known as an APK file (.apk) contains the manifest
file, application program for the Dalvik virtual machine (VM),
and application resources. The manifest file takes the form of
“AndroidManifest.xml,” which occurs in all Android
applications, while the application program is known as
“classes.dex.” Application resources contain pictures, music,
and some xml files that provide layout information.

Android malware is detected by following the steps shown
in Fig. 6:

 Extract specific information in the
AndroidManifest.xml of the APK file.

 Compare the extracted information with that in the
keywords list provided by our new method. Then,
calculate the malignancy score of the sample by
comparing the information in Step 1 with the list.

 Compare the malignancy score in Step 2 with the
threshold values established by this new method. If the
malignancy score exceeds the threshold value, the
sample is judged to be malware.

A. Extraction of Information Items

Manifest files contain essential information about Android
applications, such as the version number of the application, the
name of a package, required permission, and the API level. The
format of the manifest file is identical in benign and malicious
applications. However, there are certain differences in the
characteristics of several information items. In our research
phase, we investigated benign and malware samples and
obtained a total number of samples. We then selected specific
information items that showed a wide variety of spyware as
compared to benign applications. Based on our results, Table II
shows six information items that are extracted from manifest
files and used by our proposed method to detect Android
malware. The items are represented as text strings or numbers.

B. Keyword Lists and Malignancy Score

With this new method, several keyword lists are compiled
for an application. Benign or malicious strings in a manifest
file are recorded in the keyword list. We generate four types of
keyword lists: (1) permission, (2) intent filter (action),
(3) intent filter (category), and (4) process name, as shown in
Table III. Because items (5) intent filter (priority) and
(6) number of redefined permissions are represented by an
integer and not a text string, they have no associated keyword
lists.

After we obtain the keyword lists, the malignancy score for
the above four information items are calculated. This process is
performed by classifying the keywords as either benign or
malicious. The malignancy score is calculated using

Formula (1):

 (1)

where P is the malignancy score, M is the number of
malicious strings, B is the number of benign strings, and E is
the total number of information items.

Of the five permissions listed in Table IV, READ_SMS,
RECEIVE SMS, and SEND SMS are recorded in the keyword
list and are classified as malicious strings, as shown in
Table IV. Then, the malignancy score of this sample is
calculated using

Formula (2):

 (2)

Fig. 6. Flowchart for Detecting Android Spyware.

TABLE II. LIST OF EXTRACTED INFORMATION ITEMS

No. Extracted information Items

1 Permission

2 Intent filter (action)

3 Intent filter (category)

4 Process name

5 Intent filter (priority)

6 Number of redefined permissions

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

182 | P a g e

www.ijacsa.thesai.org

TABLE III. KEYWORDS LISTS

(List 1) Permission

1. READ_SMS 7. READ_HISTORY_BOOKMARKS

2. SEND_SMS 8. Write_HISTORY_BOOKMARKS

3. RECEIVE_SMS 9. READ_LOGS

4. WRITE_SMS 10. INSTALL_PACKAGES

5. PROCESS_OUTGOING_CALLS 11. MODIFY_PHONE_STATE

6. MOUNT_UNMOUNT_FILESYSTEMS

(List 2) Intent-filter(action)

1. BOOT_COMPLETED 8. Install_SHORTCUT

2. SMS_RECEIVED 9. left_up

3. CONNECTIVITY_CHANGE 10. right_up

4. USER_PRESENT 11. left_down

5. PHONE_STATE 12. right_down

6. NEW_OUTGOING_CALL 13. SIG_STR

7. UNISTALL_SHORTCUT 14. VIEW (benign keyword)

(List 3) Intent-filter (category) (List 4) Process name

1. HOME 1. remote2

2. BROWSABLE (benign keyword) 2. main

 3. two

 4. three

TABLE IV. PERMISSION KEYWORDS IN A SAMPLE

<uses-permission android:name=”android.permission.INTERNET” />

<uses-permission android:name=”android.permission.READ PHONE STATE” />

<uses-permission android:name=”android.permission.READ SMS” />

<uses-permission android:name=”android.permission.RECEIVE SMS” />

<uses-permission android:name=”android.permission.SEND SMS” />

C. Thresholds and Judgement

The proposed method provides threshold values for the
malignancy score. We use a data mining tool, Weka, to
determine these threshold values. As with the four categories
of information, the threshold values are set using the Weka J48
algorithm, which is based on a decision tree. We use both
benign and malicious samples in the machine learning process.

Making a judgment about the safety of an application
sample is based on conditions 1 and 2 and Formula (3), which
are shown below. Condition 1 describes the characteristics of
malware. Condition 2 is used to avoid incorrect judgments. In
Formula (3), SCORE refers to the final malignancy score of the
sample.

C1 and C2 are the number of items satisfied by a sample in
conditions 1 and 2, respectively.

Condition 1:

 Malignancy score is greater than the threshold value
determined by Weka.

 Count of intent filter (priority) is greater than the
threshold value.

 Count of redefined permissions is greater than the
threshold value.

Condition 2:

 Malignancy score of (2) intent filter (action) is negative
(< 0)

 Malignancy score of (3) intent filter (category) is
negative (< 0)

Criteria formula (3): SCORE = C1–C2

If the final score is greater than or equal to 1, the sample
application is considered to be malware.

V. METHOD FOR IMPLEMENTING APPLICATION SECURITY

LEVEL INDEX

Fig. 7 demonstrates on how “Application Security Level
Index” works. Fig. 7 shows in a simple way to illustrate the
main process of Application Security Level Index.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

183 | P a g e

www.ijacsa.thesai.org

Fig. 7. Application Security Level Index’s System Flow.

First of all, we will take the apk folder as an input to our
system, the first step will be reverse engineer the apk folder,
this is because apk folder is similar to zip folder, and cannot be
unzip in a normal way, hence the purpose of reverse engineers
the apk folder is to get the AndroidManifest.xml. The tool we
used for reverse engineer the apk file is Apktool, which
Apktool will produce the original folder, res folder, smali code
folder, apktool.yml, assets folder, lib folder and
AndroidManifest.xml. However, based on my system, I only
need AndroidManifest.xml to analyses the Android uses
permission of the apps. Hence, I will extract the Android uses
permission from AndroidManifest.xml and yet analyses the
permission uses. Based on the permission uses, the permission
report will be ready to produce.

The purpose of permission report is to raise the awareness
of Android users regarding to the permission uses for
application that installed to their device. This is because based
on my research, I found out that, majority of the users does not
care about the permission requested from the app, as long the
users can use the application. Furthermore, the nature of
Google play store is also a problem. Apps description that in
Google play store, does contain the permission that the specific
apps require, however it is not easily to find the app permission
from the description, users need to scroll all the way down to
read more only can see the app permission. Moreover, the app
permission does not tell the users that is the permission
dangerous or normal. Hence users are not aware of dangerous
permissions, such as calendar. Basically, with the app that
request calendar permission, the particular app knows the
schedule of users, if the users schedule is saved in the phone
calendar. Here comes a bigger problem, with the technology
today, people desire to make everything that around us to be
simplified and convenient. Some of the smartphone users, store
important data in their smartphone, for example, password,
schedule, personal information such as identity card number,
house address and etc. The examples above are important data

to users. That's why in Application Security Level Index’s
system, is to raise the awareness of smartphone’ users, we
cannot prevent users from saving important data with their
phone, but what we can do is, to provide a solution to the users,
let them conscious about the permission uses in their
smartphone.

If our system is implemented, the users can see the
permission report at a glance of the app description in the
Google play store. With the use of our system, we basically
highlighted the uses permission in Google play store, to
achieve our objective.

VI. METHOD FOR HYBRID-CRYPTOSYSTEM

Fig. 8 is the flow of the hybrid-cryptosystem. The hybrid-
cryptosystem will be using Advanced Encryption Standard
(AES) and RSA (Rivest-Shamir-Adleman).

The client will first generate a secret key using the AES
program automatically. Then, the client will be request for a
public key of their partner, so that they will be able to encrypt
the secret key that is generated which will be then to be sent to
their partner.

The process of sending the secret key will be encrypted by
the RSA program using the formula CT = PT^E mod N where
N = p x q, and p and q are 2 large prime number. The public
key will have its value produced by the formula gcd(ø(n), E) =
1; 1< E < ø(n) where ø(n) = (p – 1) (q – 1). Then the secret key
received by their partner will be decrypted by their own private
key using the formula PT = CT^D mod N, where value of the
private key is produced by the formula (D x E) mod ø(n) = 1.

After the secret key has been received by the partner, the
data that is needed to be sent to their partner will be encrypted
using the secret key, and when the partner received the data,
they will be decrypting it using the secret key.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

184 | P a g e

www.ijacsa.thesai.org

Fig. 8. The Flow of the System.

VII. EXPERIMENTAL SETUP

A. Experimental Setup for Second Implementation

“Application Security Level Index”

For this setup we used NetBeans and Apktool [16], [17].
NetBeans is an integrated development environment for Java
and Apktool is a tool for reverse engineering Android apk files.
Hence, the language for our program is Java.

First, we installed Apktool on our computer via the
Internet, and performed a setup on our computer to ready it for
use. Next, we downloaded some popular applications used in
Android devices, including WhatsApp, WeChat, Twitter,
Subway Surf, Starbucks, Snapchat, Instagram, Clean Master,
Clash of Clans, Google Chrome and Telegram [18] [19] [20].
These are the apps we used to test the program in this
experiment.

The next step was to use the command prompt to run
Apktool to reverse engineer the downloaded apps. Since the
Android application package (.apk) file is actually a zip file, for
our experiment, we needed to extract the AndroidManifest.xml
from the apk file to analyze the Android permission used.

Fig. 9(i) shows an example of how Apktool reverse
engineers the Telegram application. After the reverse
engineering is complete, Apktool creates a folder name for the
application, which in this case is telegram, and this folder
contains res, smali, assets, lib, original, unknown,
AndroidManifest.xml and apktool.yml, as shown above in
Fig. 9(ii).

In our experiment we needed only the
AndroidManifest.xml file. The AndroidManifest.xml file has
plenty of lines of code, but our experiment requires only the
Android use permissions.

First, we coded our program to analyze the
AndroidManifest.xml file. This program extracted all of the
Android use permissions from AndroidManifest.xml and
compared them with the Android permission database we
constructed of the permissions taken from Android [4]. After
the comparison, we categorized the Android use permissions as
either normal or dangerous. At the end of the program, two
files are produced, i.e., Use-permissions.txt and report.txt. The
Use-permissions file contains all the extracted Android Use
permissions, and report.txt categorizes these permissions as
either dangerous or normal, provides the number of
permissions used, and shows the security level index. Fig. 9(iii)
shows the generated Clash of Clans’s report.txt.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

185 | P a g e

www.ijacsa.thesai.org

(i) Apktool Reverse Engineer Telegram.Apk.

(ii) Telegram Folder. (iii) Report.txt for Clash of Clans.

Fig. 9. (i) Apktool Reverse Engineer Telegram.Apk. (ii) Telegram Folder. (iii) Report.txt for Clash of Clans.

B. Experimental Setup of Advanced Encryption Standard

(AES)

An AES encryption is a symmetric-key encryption, and like
the traditional door, it uses the same key to lock and unlock
itself, which is also known as encrypt and decrypt in
cryptosystems. The following steps show how AES Encryption
works.

 Generate a key using “javax.crypto.KeyGenerator;” and
“KeyGenerator”

 Encode key into files using “writeKey,”
“FileOutputStream” and “write(key.getEncoded())”

 Receive the key using “getSecretKey,”
“SecretKeySpec”and “Files.readAllBytes(file.toPath())”
from “javax.crypto.spec.SecretKeySpec;” to be encoded
as a key.

 Encrypt using “Cipher,” “SecretKey” and
“Cipher.ENCRYPT_MODE.”

 Decrypt using “Cipher,” “SecretKey” and
“Cipher.DECRYPT_MODE.”

1) Testing: To test that the encryption and decryption

were working, we used messages “message” and “getBytes(),”

as well as “encrypted” and “decrypted,” then printed out the

original message and the encrypted and decrypted messages.

a) Secret Key generated using “SecretKey” and

“generateKey()”

b) Encryption and Decryption using the same key as

“encrypted” and “decrypted”

c) IF (original, encrypted and decrypted message printed

out without error)

Testing complete and successful

ELSE

Testing incomplete and unsuccessful.

C. Experimental Setup of RSA (Rivest-Shamir-Adleman)

Encryption

 Generate pairs of keys using “generateKey” and
“KeyPairGenerator”

 Encode the pair of keys named “Public Key” and
“Private Key” using “DataOutputStream” and
“getEncoded()”

 Encryption method using “PublicKey,” “Cipher” and
“ENCRYPT_MODE.”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

186 | P a g e

www.ijacsa.thesai.org

 Decryption method using “PrivateKey,” “Cipher” and
“DECRYPT_MODE”

 Re-create “PublicKey” from serialized key using
“getInstance,” “KeyFactory” and “generatePublic” for
“publicKeyPath”

 Re-create “PrivateKey” from serialized key using
“getInstance,” “KeyFactory” and “generatePrivate” for
“privateKeyPath”

 Re-create “PublicKey” from public key byte array using
“getInstance,” “KeyFactory” and “generatePublic” as
“encryptedPublicKey”

 Re-create “PrivateKey” from private key byte array
using “getInstance,” “KeyFactory” and
“generatePrivate” as “encryptedPrivateKey”.

1) Testing: To determine if the encryption and decryption

works, a message usingare working, we used the messages

“data” and “getBytes()” will be used,(),” as well as

“encrypted” and “decrypted” will also be used,,” then a

message ofprinted out the original message, and the encrypted

and decrypted message will be printed outmessages.

a) Public Key and Private Key generated using

“generateKey()”

b) “publicKey” encoded using “getPublicKey” as

encrypted

c) “privateKey” encoded using “getPrivateKey” as

decrypted

d) IF (original, encrypted and decrypted message printed

out without error)

Testing complete and successful

ELSE

Testing incomplete and unsuccessful.

VIII. EXPERIMENTAL RESULTS

A. Test Results for Application Security Level Index

TABLE V. APPLICATION SECURITY LEVEL INDEX’S TEST RESULTS

Apk file AUP NP DP SLI

WhatsApp 30 18 12 31.00%

WeChat 30 19 11 35.50%

Twitter 18 9 9 50.50%

Subway Surf 6 5 1 92.50%

Starbucks 9 6 3 82.00%

Snapchat 20 12 8 54.00%

Instagram 18 10 8 55.00%

Clean Master 21 14 7 58.00%

Clash of Clans 8 6 2 87.00%

Google Chrome 23 15 8 52.50%

Telegram 25 14 11 38.00%

AUP = Total Number of Android Use Permissions

NP = Total Number of Normal Permissions

DP = Total Number of Dangerous Permissions

SLI = Security Level Index (where 100% is no permission

use)

Table V shows the results of our program, with the apk
files that we tested via our program in the left column. The
results include the total number of Android use permissions,
the total number of normal and dangerous permissions, and the
security level index. The fewer permission requests by the
application, the safer is that application. However, this does not
mean that a larger number of permission requests by an
application means that it is dangerous. More permission
requests by an application simply mean that the specific
application can access most of your phone utilities or data,
which can but may not necessarily harm the end user.

Based on the above results, we found communications apps
to require the most permission compared to other applications.
These are apps such as WhatsApp, WeChat, and Instagram.
The security level index of these applications is less than 50%,
whereas the apps that request less permission include Subway
Surf, the Starbucks app, and Clash of Clans, whose security
level indexes are greater than 80%. By the color indicator,
green indicates fewer use permissions with an index higher
than 80%, yellow indicates a moderate number of use
permissions with an index between 50% and 79%, and red
indicates a high number of use permissions with an index less
than 50%.

IX. CRITICAL ANALYSIS

Based on the above test result from the Application
Security Level Index, where shows the outcome result are
expected from what we plan in the system flow. The SLI in the
Table V is the index where is use to alert the end user about the
specific apps that the end users installed in their device. The
apps that we tested are the apps which is popular in the market
and most of the public are using these apps. Although, if the
SLI is indicate red color where a lot of data is used by the app,
which doesn’t mean that the specific apps is dangerous, the
index is indicate to the users the how much of data privacy are
they exposing to the specific app developer, whether the app
developer is trusted or not.

Then from the experiment test and test result from the
Advanced Encryption Standard (AES) and RSA (Rivest-
Shamir-Adleman) above, we use a line of text as a simulation
of the real data because that we wanted to test and experiment
if the cryptosystem is working. Not only that, in our
experiment test, all keys included “Secret Key”, “Public Key”,
“Private Key” will be generated automatically as a simulation
of different key that will be used by the real application. By
doing this, we assure that the code will be running successfully
even with different keys. Then for the cryptography, as if the
code has run successfully, meaning that the original text has
been encrypted into cipher text, and the cipher text has been
decrypted into plain text, it means that the code has been
running successfully and the encryption and decryption is also
running smoothly without errors. In the real form of data, it is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

187 | P a g e

www.ijacsa.thesai.org

much more complicated, and then it is why we perform the
simulation of data using a line of text. With our testing and
results, we assure that, by just convert the text into the form of
a real data, the real data will also be able to be encrypted and
decrypted.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a spyware detection method for
determining the security level of Play Store applications and
the data encryption of Google Suite applications. Both spyware
detection and apps security use only manifest files to process
the results. Since manifest files are required in all Android
applications, the proposed method is applicable to all Android
applications. The cost of analyzing the manifest file is quite
low and combined with Google Play Protect; it provides a
more precise detection method. These two implementations
will ensure the security of smartphones, even those free of any
malware. In response to the global concern about data privacy,
we have provided a data encryption method for the Google
Suite applications used by most Android users.

In future work, we plan to fix those APK files that cannot
be reverse engineered to obtain useful information, such as the
Facebook application, to ensure that our method is applicable
to all Android applications. We will closely follow trends in
hacking methods to ensure that our data encryption method
provides sufficient data security.

REFERENCES

[1] A. Arora and S. K. Peddoju, “NTPDroid: A Hybrid Android Malware
Detector Using Network Traffic and System Permissions,” Proc. - 17th
IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. 12th IEEE Int.
Conf. Big Data Sci. Eng. Trust. 2018, pp. 808–813, 2018.

[2] “Request App Permissions | Android Developers.” [Online]. Available:
https://developer.android.com/training/permissions/requesting#java.
[Accessed: 07- Nov- 2018].

[3] Xu, Y., Wang, G., Ren, J., & Zhang, Y. (2019). An adaptive and
configurable protection framework against android privilege escalation
threats. Future Generation Computer Systems,92, 210–224.
https://doi.org/10.1016/j.future.2018.09.042

[4] "Permissions overview | Android Developers,” Android Developers.
[Online]. Available: https://developer.android.com/guide/topics/
permissions/overview. [Accessed: 07- Nov- 2018].

[5] T. Takahashi and T. Ban, "Android Application Analysis Using
Machine Learning Techniques,” Springer Link, 2018. [Online].
Available: https://link.springer.com/chapter/10.1007%2F978-3-319-
98842-9_7. [Accessed: 05- Apr- 2019].

[6] "Application Sandbox | Android Open Source Project,” Android Open
Source Project. [Online]. Available: https://source.android.com/security/
app-sandbox. [Accessed: 11- Nov- 2018].

[7] A. Bryk, "Sandbox-Evading Malware: Techniques, Principles, and
Examples", Apriorit, 2018. [Online]. Available: https://www.apriorit.
com/dev-blog/545-sandbox-evading-malware. [Accessed: 06- Mar-
2019].

[8] Jeong E. S., Kim I. S. and Lee D. H., "SafeGuard: a behavior based real-
time malware detection scheme for mobile multimedia applications in
android platform,” 2017. [Online]. Available: https://link.
springer.com/article/10.1007%2Fs11042-016-4189-1. [Accessed: 05-
Apr- 2019].

[9] F. Shen, "Android Security via Static Program Analysis", Proceedings of
the 2017 Workshop on MobiSys 2017 Ph.D. Forum - Ph.D. Forum '17,
2017. Available: https://dl.acm.org/citation.cfm?doid=3086467
.3086469. [Accessed 7 March 2019].

[10] L. Tuan, N. Cam and V. Pham, "Enhancing the accuracy of static
analysis for detecting sensitive data leakage in Android by using
dynamic analysis", Cluster Computing, vol. 22, 2017. Available:
https://link.springer.com/article/10.1007%2Fs10586-017-1364-8.
[Accessed 10 March 2019].

[11] A. Mandal, A. Cortesi, P. Ferrara, F. Panarotto and F. Spoto,
"Vulnerability analysis of Android auto infotainment apps", Proceedings
of the 15th ACM International Conference on Computing Frontiers - CF
'18, 2018. Available: https://dl.acm.org/citation.cfm?doid=3203217.
3203278. [Accessed 10 March 2019].

[12] R. Salvia, P. Ferrara, F. Spoto and A. Cortesi, "SDLI: Static Detection of
Leaks Across Intents", 2018 17th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), 2018. Available: https://ieeexplore.ieee.org/
document/8456010. [Accessed 10 March 2019].

[13] L. Menezes and R. Wismuller, "Detecting information leaks in Android
applications using a hybrid approach with program slicing,
instrumentation and tagging", 2017 International Carnahan Conference
on Security Technology (ICCST), 2017. Available:
https://ieeexplore.ieee.org/document/8167856. [Accessed 10 March
2019].

[14] "Advanced Encryption Standard,” tutorialspoint. [Online]. Available:
https://www.tutorialspoint.com/cryptography/advanced_encryption_stan
dard.htm. [Accessed: 10- Nov- 2018].

[15] "RSA Cryptography Demo Applet | Holowczak.com Tutorials,”
Holowczak.com. [Online]. Available: https://holowczak.com/rsa-
cryptography-demo-applet/2/. [Accessed: 27- Mar- 2019].

[16] “Apktool - A tool for reverse engineering 3rd party, closed, binary
Android apps.” [Online]. Available: https://ibotpeaches.github.io/
Apktool/. [Accessed: 27- Mar- 2019].

[17] “Welcome to NetBeans.” [Online]. Available: https://netbeans.org/.
[Accessed: 27- Mar- 2019].

[18] “AndroidAPKsFree - Free Apps (apk) Download for AndroidTM.”
[Online]. Available: https://androidapksfree.com/. [Accessed: 27- Mar-
2019].

[19] “APKMirror - Free APK Downloads - Download Free Android APKs
#APKPLZ.” [Online]. Available: https://www.apkmirror.com/.
[Accessed: 27- Mar- 2019].

[20] “Download software about - Android ().” [Online]. Available:
https://en.uptodown.com/android/top. [Accessed: 27- Mar- 2019.

