
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

269 | P a g e

www.ijacsa.thesai.org

Hyperparameter Optimization in Convolutional

Neural Network using Genetic Algorithms

Nurshazlyn Mohd Aszemi
1
, P.D.D Dominic

2

Department of Computer and Information Sciences, Universiti Teknologi Petronas, Seri Iskandar, Perak, Malaysia

Abstract—Optimizing hyperparameters in Convolutional

Neural Network (CNN) is a tedious problem for many

researchers and practitioners. To get hyperparameters with

better performance, experts are required to configure a set of

hyperparameter choices manually. The best results of this

manual configuration are thereafter modeled and implemented

in CNN. However, different datasets require different model or

combination of hyperparameters, which can be cumbersome and

tedious. To address this, several works have been proposed such

as grid search which is limited to low dimensional space, and tails

which use random selection. Also, optimization methods such as

evolutionary algorithms and Bayesian have been tested on

MNIST datasets, which is less costly and require fewer

hyperparameters than CIFAR-10 datasets. In this paper, the

authors investigate the hyperparameter search methods on

CIFAR-10 datasets. During the investigation with various

optimization methods, performances in terms of accuracy are

tested and recorded. Although there is no significant difference

between propose approach and the state-of-the-art on CIFAR-10

datasets, however, the actual potency lies in the hybridization of

genetic algorithms with local search method in optimizing both

network structures and network training which is yet to be

reported to the best of author knowledge.

Keywords—Hyperparameter; convolutional neural network;

CNN; genetic algorithm; GA; random search; optimization

I. INTRODUCTION

Human are capable of recognizing things both environment
and object within a second. This recognition skills are trained
since human are young. Similarly, if the computers are able to
recognize or classifying object and environment by looking for
low-level features such as edges and curves, then it can build
more abstract concepts of what it recognizes through a series of
convolutional layers. Hence, image recognition and
classification in the neural network are called Convolutional
Neural Network (CNN).

Building CNN requires a set of configurations which is
external to the data and manually tune by the machine learning
researcher. The variable of the network structure and the
network trained of CNN are known as hyperparameters [1].
Finding a set of hyperparameters that gives an accurate model
in a reasonable time is also part of the hyperparameter
optimization problem [2]. Hyperparameter optimization is a
problem that identifies a good model of hyperparameter [3] or
a problem of optimizing a loss function over a graph-structured
configuration space [4]. Testing all the possible set model of
hyperparameter can become computationally expensive [5].

Therefore, the need for an automated and structured way of
searching is increasing, and hyperparameter space, in general,
is substantial.

Numerous works have been done in optimizing the
hyperparameters [3], [6]–[8]. Other optimization methods that
have been applied using evolutionary algorithms (EAs) as
mentioned in [5]. Bochinski et al [5] defines hyperparameters
as the configuration of the network structure which will lead to
an optimization problem in finding the optimal configuration
of the CNN. Others who have applied evolutionary algorithms
are [9] and [10]. However, [11] claims that none of the
approaches consider the impact of setting up the
hyperparameter which in assumptions that: (1) Hyperparameter
setting does not matter, however, selecting among default
implementations is sufficient and (2) hyperparameter value
may have a significant impact on performance and should
always be optimized.

Very less research has been done to validate these
assumptions since the optimization of hyperparameter is
theoretically and practically significant [11]. Due to these
flaws, the idea of automating hyperparameter search is getting
attention in machine learning [12]. This means that most
common optimization has been done using the random search
[3] and a combination of grid search and manual search [13].
Ozaki [14] claim that most people do not have sufficient
computing resources and are unwilling to adjust the
hyperparameters that use difficult optimization method. Author
acknowledge that there is some research that applies genetic
algorithms such as [15], [16] on tuning the hyperparameters of
the network and the structure of the system [17] and [18].
However, the work aims to hybridize genetic algorithms with
local search method in optimizing the CNN hyperparameters
that both are of network structures and network trained which
is not studied in these prior works.

To the best of author knowledge, there are no approaches
that hybridized genetic algorithms with local search method in
optimizing both network structures and training algorithms in
CNN. As a start, a trial of an experiment on a random search
method will be conducted to testify the performance as per said
in [3]. The objectives of this work are twofold: (1) to
investigate the hyperparameter search method on CIFAR-10
datasets and (2) to perform benchmarking on CIFAR-10
datasets with the state-of-the-art accuracy.

The remainder of this paper is organized as follows. In
Section II, the related work in the area of CNNs and GA is
provided. Section III presents the background and Section IV

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

270 | P a g e

www.ijacsa.thesai.org

lay out the experimental setup. Experimental results are
discussed in Sections V and VI. Finally, the paper is
concluded, and future work is recommended in Section VII.

II. RELATED WORK

In this section, the related works are presented and
discussed as follows.

A. Search Optimization Method

Grid search method is a trial and error method for every
hyperparameter setting on the specific range of values. The
advantage of using a grid search is that it can be easily
parallelized [3]. Researchers and practitioners will specify the
boundary and steps between values of hyperparameters which
will form a grid of configurations [19]. However, if one fails,
the rest of the jobs will fail accordingly. In usual cases,
machine learner will use a limited grid and then extend which
will make the grid more efficient to configure the best while
continually searching for the new grid [19]. Four
hyperparameters will become impractical as the number of
functions to evaluate will increase with adding parameter; this
is due to the limitation on dimensionality [20].

Random search method samples the hyperparameter space
„randomly‟. Based on [3], the random search has more benefits
than grid search regarding the application which can still use
even the cluster of the computer fail. It allows practitioners to
change the „resolution' on the go and it is feasible to add new
trials to the set or even ignore the fail test. Simultaneously, the
random search method can stop any time, and it will form a
complete experiment it can be carried out synchronously [21].
Furthermore, a new trial can be added to the experiment
without jeopardizing if more computers become are available
[22].

Another latest development in hyperparameter tuning is
using Bayesian optimization. It uses distribution over functions
which is known as Gaussian Process. To train using Gaussian
Process; fitting it to given data is essential as it will generate
function closely to observe data. In Bayesian optimization, the
Gaussian process will optimize the expected improvement and
surrogate the model which is the probability of the new trial
and will improve the current best observation. The highest
expected improvement will be used next, and expected
improvement can be calculated at any point in the search space.
Widespread implementation of Bayesian optimization includes
spearmint that uses Gaussian process [23]. However, Bergstra
et al. [3] claim that the method of Bayesian optimization is
limited; as it works on high dimensional hyperparameter and it
became very computationally expensive. Therefore, it has poor
performance.

B. Genetic Algorithm Optimization

The difference between genetic algorithms and
evolutionary algorithms is that the genetic algorithms rely on
the binary representation of individuals (an individual is a
string of bits) due to which the mutation and crossover are easy
to be implemented. Such operations produce candidate values
that are outside of allowing searching space. In contrast, the
evolutionary algorithms rely on customized data structures and

need appropriately craft mutation and crossover which this will
heavily dependents on the problem at hand [24]. The author in
[25] has been mentioned that Genetic algorithms can be used
when there is no information about gradient function at
evaluated points. It can achieve good results when there is
several local minima or maxima. Unlike any other search
method, the function is not determined in a single place but
simultaneously in different areas. They can be carried out in
several processors since the calculations of the function on all
points of a population are independent of each other [26].
Furthermore, they can be parallelized with little effort which
makes many paths to the optimum processed in parallel. In
[25], it has been mentioned that genetic algorithm has
advantages over local methods as they do not remain trapped in
suboptimal local maximum or minimum.

III. FOUNDATION

A. Hyperparameters Optimization

The optimization of hyperparameter can be simplified as
how many function evaluations will perform on every
optimization to select the best hyperparameter in that model.
Besides, optimization can be explained in a simple manner
which “given a function that accepts inputs and returns a
numerical output, how can it efficiently find the inputs, or
parameters, that maximize the function‟s output?” [27]. Hence,
upon tuning or optimizing the hyperparameter, author will take
input as a function to the hyperparameter model and the output
as the measurement on the model performance. Consequently,
the hyperparameter optimization problem setup can be
formally defined as [2]:

 machine learning algorithm is a mapping

 where is the set of all datasets and is the
space of all models

 is the chosen hyperparameter configuration with
 being the is P-dimensional
hyperparameter space.

 The learning algorithm estimates a model that
minimizes a regularized loss function (e.g.
misclassification rate):

 (
)

 (

) (1)

The task of hyperparameter optimization is to find the
optimal hyperparameter configuration λ using a validation set,

()

 (2)

The will be the miscalculation rate or error rate. The
hyperparameter space all possible values that are usually
defined as acceptable bounds for each hyperparameter and the
number of the hyperparameter is the dimension of the function
[28].

Referring to [29], optimizing the hyperparameter require
knowledge on the relationship between the settings and the
model performance. It will first run a trial to collect
performance on several configurations and then will make an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

271 | P a g e

www.ijacsa.thesai.org

inference which will decide what configuration will be applied
next. The purpose of optimizing is to minimize the number of
trials on hyperparameter while finding the optimum model
[29]. Hence, author can consider the process as sequential and
not parallel.

B. Convolutional Neural Network

Convolutional neural network gain advantages over inputs
that consist of images which neurons are arranged in 3
dimensions of width, height, and depth [30]. For examples,
CIFAR-10 datasets have volume dimensions of 32x32x3
(width, height, depth). Fig. 1 describes the visualization
between a regular three-layer neural network with CNN. A
regular 3-layer neural network consists of input – hidden layer
1 – hidden layer 2 – output layer. CNN arrange the neurons
into three dimensions of width, height, and depth. Each layer
will transform the 3D input to 3D output volume of neuron
activations. Hence, the red input layer holds the image, the
dimensions of the image will be width and height, and the
depth will be the three RGB (red, green and blue) channels.

CNN architectures build in three main types of sequence
layers: Convolutional Layer, Pooling Layer, and Fully-
Connected Layer. A simple CNN for CIFAR-10 datasets can
have the architecture of [INPUT–CONV–RELU–POOL–FC].
As per describe [30].

 INPUT will hold on the raw pixel value of images.

 CONV will compute the output of the neurons.

 RELU stands for Rectified Linear Unit is an activation
function that converts all negative pixel values to 0.

 POOL will pass over sections of the image and pool
them into the highest value in the section.

 FC (fully-connected) layer will calculate the class
scores such as 10 categories in CIFAR-10, and finally,
each neuron will be connected to all number in the
previous volume.

However, not all layers are in the same sequence as
[INPUT–CONV–RELU–POOL–FC]. Some layers have
CONV/FC and do not need RELU/POOL. Others require
CONV/FC/POOL but not RELU and vice versa. Fig. 2 shows
the example of CNN architecture from small VGG Net [31].
The 3D volumes are sliced into rows as it is manageable to see
the architecture. For examples, the input can be taken as raw
images of the car that eventually will break down into
sequences of convolutional layers that will compute and
produce the output into their classes. The last layer holds the
score of each class which is labeled. The architecture shown is
a tiny VGG Net [31]. There are several CNN architectures that
have name in image classifications world such as LeNet [32],
AlexNet [33], GoogLeNet [34], VGGNet [31] and ResNet
[35]. More information about their architectures and state-of-
the-art accuracy can be found in their respective papers.

Defining the model architectures can be difficult as there
are numerous design choices made available. Author do not
know what the optimal model architecture it should be for a
given model immediately. Hence, this paper would like to

explore a range of possibilities. An actual machine learner will
ask the machine to perform this exploration and configure the
optimal model architecture automatically. The variable in the
configuration can be called hyperparameters which it is
external to the model, and the value cannot be estimated from
the data. Hyperparameters can be divided into two types:

a) Hyperparameter that determines the network structure

such as:

 Kernel Size –the size of the filter.

 Kernel Type–values of the actual filter (e.g., edge
detection, sharpen).

 Stride–the rate at which the kernel pass over the input
image.

 Padding–add layers of 0s to make sure the kernel pass
over the edge of the image.

 Hidden layer–layers between input and output layers.

 Activation functions–allow the model to learn nonlinear
prediction boundaries.

b) Hyperparameter that determines the network trained

such as:

 Learning rate–regulates on the update of the weight at
the end of each batch.

 Momentum–regulates the value to let the previous
update influence the current weight update.

 A number of epochs–the iterations of the entire training
dataset to the network during training.

 Batch size–the number of patterns shown to the network
before the weights are updated.

Models can have more than 10 hyperparameters and
finding the best combination can be view as the search
problem. Hence, the right choice of hyperparameter values can
affect the performance of the model.

Fig. 1. A regular 3-Layer Neural Network vs. CNNs [30].

Fig. 2. Small VGGNet Architectures [30].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

272 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL SETUP

CIFAR10 will be used as datasets [31] as it is a subset of
the 80-million tiny image database. There are 50,000 images
for training, and 10,000 images for testing. All of them are 32
× 32 RGB images. CIFAR10 contains 10 basic categories, and
both training and testing data are uniformly distributed over
these categories. To avoid using the testing data, 10,000
images have been left from the training set for validation. This
will protect from getting overfitting.

Searching for the best combination of hyperparameters
requires computational resources. Fortunately, Nvidia Tesla
K80 is a supercomputer that is used as a computing platform in
this research. It can dramatically lower data center costs by
delivering exceptional performance with fewer and more
powerful servers. TensorFlow is a framework that will be used
in representing computations as graphs, allows easier
computation and analysis of these models and utilizing multi-
dimensional arrays called Tensors and by computing these
graphs in sessions. TensorFlow will implement Keras as the
backend to allow for easy and fast prototyping through user
friendliness, modularity, and extensibility. It supports the
convolutional neural networks as well running smoothly in
CPU and GPU.

To test the understanding on search method, experiments
were performed on CIFAR-10 datasets using random search
method. In the first experiments, the model only had two
convolutional layers as is trained on CPU. The height, width,
channels and outputs are fixed which is 32x32x3 with output of
10. 24 iterations within epoch will run on accuracy check. The
maximum number of epochs was 500 with 4 rounds of early
stopping. The model then is trained with the hyperparameter
configurations based Table I and Table II. Note that the range
values randomly. Then, the hyperparameter evaluations are
being stored in training logs. The results were being evaluated
with two other experiments that will run on GPU. Additional
hyperparameters might be added to improve the accuracy, and
then the selected hyperparameter configuration will be
compared with the state-of-the-art accuracy on CIFAR-10
datasets.

Table I below highlights the hyperparameters considered in
this study. Each of the hyperparameters is labeled with shorter
and easier name (abbreviation). Also, ranges are indicated
within square brackets. The following table presents the
network trained hyperparameters.

TABLE I. NETWORK STRUCTURE HYPERPARAMETERS

Hyperparameter Abbreviation Range

Number of Filters Filters_1 [16, 32, 64, 96]

Kernel Size Ksize_1 [3, 4, 5]

Number of Filters Filters_2 [48, 64, 96, 128]

Kernel Size Ksize_2 [3, 4, 5]

Number of Filters Filter_3 [64, 96, 128]

Kernel Size Ksize_3 [3, 4, 5]

Hidden Layer full_hidden1 [60, 100, 125]

Hidden Layer full_hidden2 [60, 100, 125]

Activation activation [„relu‟, „lrelu‟, „elu‟]

TABLE II. NETWORK TRAINED HYPERPARAMETERS

Hyperparameter Abbreviation Range

Learning rate learning_rates [0.001, 0.003, 0.01,0.03]

Batch Size batch_sizes [32, 64, 128, 256]

Momentum momentum [0.9, 0.95, 0.99]

Optimizer optimizer [„Adam, „rmsprop‟, „Nesterov']

In Table II above, the four-network trained
hyperparameters are listed alongside their abbreviations. These
abbreviations will be constantly used as reference to any of the
above-listed hyperparameters.

A. Results on Small CNNs on CPU

The accuracy only reached at 60.85% and takes 5 days to
run on CPU. Hence, the hyperparameter space were minimized
by only performing optimization on network structure, learning
rate, and batch size. Overall, small CNNs contain 9 network
hyperparameters, 2 network trained hyperparameters and 2
layer hyperparameters resulting total of 9 + 2 + 2 × 2 = 15
configurable hyperparameters. The possible combinations of
hyperparameters are 15,116,544. Based on the results, training
accuracy did not reach satisfaction level and overfitting is not
an issue. However, the learning rates were not congregating as
shown in Fig. 3. Hence, this will be eliminated on further
search experiments. Architecture with more features in fully
connected layers perform better. Next experiments, the third
convolutional layer are added. Few selections of activation
functions and optimization algorithms are included and run on
GPU.

B. Results on Small CNNs on GPU

In second experiments, activation functions were added and
optimization algorithms along with momentum for batch
normalization. The border pixels [0, 1, 2] were removed. Third
convolutional layers were added and running 3 days on GPU.
Based on the results, the accuracy was increased from 60.85%
to 71.17% and appears the model had difficulty on converging.
Overall, small CNNs contain 9 network hyperparameters, 4
networks trained hyperparameters and 3-layer resulting in a
total of 9 + 4 + 3 × 3 = 22 configurable hyperparameters.

In Fig. 3 below, the accuracy on fail learning rate were
tested by 0.01 and 0.03. The numerical representation of these
results is presented in Appendix 1. Subsequently, the accuracy
was also tested on small CNN on GPU as depicted in Fig. 4
below. Please refer to Appendix 2 for detailed results.

Fig. 3. Test Accuracy on Fail Learning Rate by 0.01 and 0.03.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

273 | P a g e

www.ijacsa.thesai.org

Fig. 4. Test Accuracy of Small CNNs on GPU.

C. Benchmarks on CIFAR-10 Datasets

In final experiments, hyperparameters that tended to
underperform were eliminated. Fig. 4 shows the distribution of
test accuracy appears to be models that had difficulty
converging. The stride of first CNN layer are reduce from 2 to
1 and patch reduction to 0. The possible combinations of
hyperparameters were reduced from 15,116,544 to 3,072. The
increasing number in hyperparameter to learn results in
increasing training time. Hence, the hyperparameter setting
was sampled accordingly as in Table III. Fig. 5 illustrates the
test accuracy in finding the optimum hyperparameter that fits
the CNNs model with additional third convolutional layers.
„relu‟ or „lrelu‟ offer performing better than „elu‟, with „relu‟
dominating on activation functions. The Adam optimizer
algorithm are better than „Nesterov Accelerated Gradient‟ or
„RMSProp‟ in this case. Batch size of 32 gives inconsistent
results. A batch size of 64 can achieve good results and is more
reliable. However, while other CNNs have had success with
this approach, there is no benefit from the current architecture.

In the first convolutional layer, number of filters are
increased and gives an improvement performance.
Interestingly, the next two layers are not performing well with
more filters. Perhaps because of overfitting. A 4x4 kernel gives
slightly an average performance. In the second experiments, a
batch size of 64 and the “lrelu” activation function looks
promising. Hence, these were both fixed and with more
features in 1st conv layers are helping gaining better
performance. The stride is reduced from 2 to 1 in the final
experiments. Signs of overfitting are shown. Thus,
regularization is applied which is the dropout layers and
running on 2 days on GPU. Based on the results, it achieved
80.62% accuracy which then compared with the state-of-the-
art on CIFAR-10 datasets without interfering with the data
(data augmentation).

This put the results on the bottom of the leaderboard for
cifar-10 in Table IV, which is satisfying and the purpose of this
study, was to investigate hyperparameter search on CIFAR-10
datasets [36].

D. Random Search and Genetic Algorithm

In [41], random search generates randomly individual
solutions at any point of search space via calculating and

comparing the value of each solution while genetic algorithms
(GA) mimic the natural evolutions process. In the search space,
GA works with populations of solutions which each generation
is subjected to selection, crossover and mutation operations.
This will help GA in obtaining the newly improved generations
of the solutions. However, the questions arise as can genetic
algorithm become the random search. The author in [41] stated
that GA does not have the potential to become a purely random
search alone. Conversely, Yahya et al. [42] considered genetic
algorithms as “Guided Random Search Algorithms”. The
randomness of the algorithms can be controlled and become
guided search as GA takes inspirations from the evolution
concepts such as survival of the fittest, crossover, mutation and
selections. Moreover, the degree of randomness of algorithms
can be determined by setting the values of its control
parameters, and through it, the algorithms can be purely
random search algorithms or deterministic algorithms [42].

The following figures depict the results obtained from the
experiments. Starting from Fig. 5 to Fig. 7, accuracy is tested
on activation function, optimizer, and batch size.

It can be observed from Fig. 5 that „relu‟ or „lrelu‟ offer
performing better than „elu‟, with „relu‟ dominating on
activation functions. The raw results are shown in Appendix 2.

On the other hand, Adam optimizer algorithm is better than
„Nesterov Accelerated Gradient‟ or „RMSProp‟ in this case,
please see Appendix 2.

TABLE III. NETWORK STRUCTURE HYPERPARAMETERS

Hyperparameter Abbreviation Range

Learning rate learning_rate
[0.001, 0.003,

0.002,0.0015]

Batch Size batch_size [64]

Momentum momentum [0.9, 0.95, 0.99]

Optimizer optimizer [„adam‟]

Number of Filters filters1 [64, 96]

Kernal Size ksize1 [4, 5]

Number of Filters filters2 [96, 128]

Kernal Size ksize2 [4, 5]

Number of Filters filter3 [96, 128]

Kernal Size ksize3 [4, 5]

Hidden Layer full_hidd1 [100, 125]

Hidden Layer full_hidd2 [100, 125]

Activation activation [„lrelu‟]

TABLE IV. ACCURACY ON CIFAR-10 WITHOUT DATA AUGMENTATION

Network CIFAR-10 (%)

ALL-CNN [37] 92.00

Deeply-supervised [38] 90.22

Network in Network [39] 89.60

Maxout [40] 88.32

3Conv + 2FC + Dropout + stride 1 on all layers 80.62

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

274 | P a g e

www.ijacsa.thesai.org

Fig. 5. Accuracy vs Optimizer.

Fig. 6. Accuracy vs Activation Function.

On batch size, results shows that batch size 32 have higher
median performance. Although this seems to be good
achievement, a higher batch size (64) is capable of achieving

better and reliable results. Next, the results of the optimised
network structure hyperparameters are presented. Appendix 2
shows the results in a tabular form.

In Fig. 8 Optimizing the network structure using random
search for filters seems to improve performance at first
convolutional layer. However, as number of layers increase,
the performance begins to decline significantly. Although the
exact reasons that have caused the drastic decline might be
inconclusive at this stage, author attributed it to the possible
overfitting. This is nonetheless subject to debate through more
detailed experiments. Please refer to appendix 2 for raw results
of filters after being optimized by random search. In Fig. 9
below however, the situation shows better results.

Alternatively, optimizing the network structure using
random search for kernel performs better on 4x4 kernel.
However, a similar situation with filters is observed in kernel
too (Fig. 9). Kernel 1x1, 2x2 and 3x3 performed below average
respectively. Yet, slightly better performance is noticed on the
rest of the kernels. For better understanding of the results
resented in Fig. 9, raw data of the results are as shown in
Appendix 2.

Fig. 7. Accuracy vs Batch Size.

Fig. 8. Network Structure Hyperparameters after being Optimized by Random Search (Fiters).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

275 | P a g e

www.ijacsa.thesai.org

Fig. 9. Network Structure Hyperparameters after being Optimized by Random Search (Kernel).

E. Computational Considerations

Computing random search on CPU is computational costly
as it took around 5 days with limited 3GB memory. Running
on GPU accelerate the computing process into 2 days while
eliminating the huge hyperparameter combinations. Moreover,
constructing CNNs architectures can consume a lot of memory.
Modern GPU is equipped on limited of 3/4/6GB memory with
the best GPUs of 12GB memory [30]. To avoid this, three
sources of memory need to keep track on:

 Activations: The raw number of activations can
consume a lot. Running CNNs only at test time can
reduce this by storing the currents activations at any
layer and discards the previous activations.

 Parameters: These are the number that holds the
network parameters, step cache for optimization such as
momentum, „Adagrad‟ or „RMSprop‟. The memory
store needs to be multiplied by a factor of 3 or so.

 Miscellaneous: Every CNN as to maintain the
miscellaneous such as image data batches, etc.

Calculate the amount of memory by taking the right
estimate of the total number values of activations, parameters,
misc. and multiply by 4 to get a raw number of bytes. And then
divided by 1024 multiple times to get in KB, MB and finally
GB. Another way to make the network fit is to decrease the
batch size as the most memory was consumed by activations
[30].

V. CONCLUSIONS AND FUTURE WORK

Author presented a genetic algorithm method on optimizing
the convolutional neural network hyperparameter. For this
purpose, author first investigate the hyperparameter search
method focusing on image classification of CIFAR-10 datasets.
Random search method was to choose on running the trial of
experiments. The small CNNs on CPU showed that learning
rates with range of 0.01 and above are not giving good
performance on the models. Performing grid search will waste
a lot of time with the mention learning rates. Millions
combination of hyperparameter will make Grid search seems
impractical. Random search allows some hyperparameter

values to be selected by process of elimination or selection.
The random search did not achieve state-of-the-art accuracy by
90% above. However, it satisfies enough to quality over par
around 80% on the leaderboard of CIFAR-10 [36].

In the future, genetic algorithms (GA) will be used as an
optimization search method with tested CNNs architectures.
Combining search methods such as grid search, manual search,
random search and local search with a global search like GA
will be implement for further research. However, running GA
as hyperparameter search space is computationally cost. Hence,
running on multiple GPU are taken into considerations by the
author. Given enough time, more optimization method such as
Bayesian can be investigated like random search on this paper.

ACKNOWLEDGMENT

The author would like to thank High-Performance Cloud
Computing Centre (HPC³) and Universiti Teknologi
PETRONAS for supporting this study.

REFERENCES

[1] L. Xie and A. Yuille, “Genetic CNN,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, vol. 2017-October,
pp. 1388–1397.

[2] M. Wistuba, N. Schilling, and L. Schmidt-Thieme, “Hyperparameter
optimization machines,” in Proceedings - 3rd IEEE International
Conference on Data Science and Advanced Analytics, DSAA 2016,
2016.

[3] J. Bergstra, J. B. Ca, and Y. B. Ca, “Random Search for Hyper-Parameter
Optimization Yoshua Bengio,” 2012.

[4] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, “Collaborative
hyperparameter tuning,” Proc. 30th Int. Conf. Mach. Learn., 2013.

[5] E. Bochinski, T. Senst, and T. Sikora, “Hyperparameter Optimization For
Convolutional Neural Network Committees Based on Evolutionary
Algorithms,” I2017 IEEE Int. Conf. Image Process., pp. 3924–3928,
2017.

[6] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
Optimization of Machine Learning Algorithms,” Jun. 2012.

[7] T. Domhan, J. T. Springenberg, and F. Hutter, “Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation of
learning curves,” in IJCAI International Joint Conference on Artificial
Intelligence, 2015.

[8] K. Eggensperger, M. Feurer, and F. Hutter, “Towards an empirical
foundation for assessing bayesian optimization of hyperparameters,”
NIPS, BayesOpt Work., pp. 1–5, 2013.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

276 | P a g e

www.ijacsa.thesai.org

[9] C. Gagn, “DEAP : Evolutionary Algorithms Made Easy,” J. Mach. Learn.
Res., vol. 13, pp. 2171–2175, 2012.

[10] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast Bayesian
Optimization of Machine Learning Hyperparameters on Large Datasets,”
in Proceedings - 20th International Conference on Artificial Inteligence
and Statistics (AISTATS) 2017, 2017.

[11] S. Sanders and C. Giraud-Carrier, “Informing the use of hyperparameter
optimization through metalearning,” in Proceedings - IEEE International
Conference on Data Mining, ICDM, 2017, vol. 2017-November, pp.
1051–1056.

[12] M. Claesen and B. De Moor, “Hyperparameter Search in Machine
Learning,” 2015.

[13] P. LeCun, Yann; Bottou, L.;Bengio, Y.;Haffner, “Lecun-01a,” Proc.
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[14] Y. Ozaki, M. Yano, and M. Onishi, “IPSJ Transactions on Computer
Vision and Applications Effective hyperparameter optimization using
Nelder-Mead method in deep learning,” IPSJ Trans. Comput. Vis. Appl.,
vol. 9, 2017.

[15] L. Xie and A. Yuille, “Genetic CNN,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017.

[16] H. Pérez-Espinosa, H. Avila-George, J. Rodriguez-Jacobo, H. A. Cruz-
Mendoza, J. Martínez-Miranda, and I. Espinosa-Curiel, “Tuning the
Parameters of a Convolutional Artificial Neural Network by Using
Covering Arrays,” Res. Comput. Sci., vol. 121, no. 2016, pp. 69–81,
2016.

[17] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial
neural networks.,” IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 694–713,
1997.

[18] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6683
LNCS, pp. 507–523.

[19] L. Li and A. Talwalkar, “Random Search and Reproducibility for Neural
Architecture Search,” ArXiv, 2019.

[20] I. Dewancker, M. McCourt, and S. Clark, “Bayesian Optimization for
Machine Learning : A Practical Guidebook,” Prepr. ArXiv, 2016.

[21] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-
Parameter Optimization.”.

[22] J. Bergstra, D. L. K. Yamins, and D. D. Cox, “Making a Science of
Model Search: Hyperparameter Optimization in Hundreds of Dimensions
for Vision Architectures,” Icml, pp. 115–123, 2013.

[23] J. Snoek et al., “Scalable Bayesian Optimization Using Deep Neural
Networks,” Feb. 2015.

[24] R. Chiong and O. K. Beng, “A Comparison between Genetic Algorithms
and Evolutionary Programming based on Cutting Stock Problem,” Eng.
Lettters, vol. 14, no. 1, 2007.

[25] R. Rojas, Neural Networks: A Systematic Introduction. Springer-Verlag,
1996.

[26] H. M. uhlenbein GMD Schloss Birlinghoven D- and S. Augustin,
“Asynchronous parallel search b y the parallel genetic algorithm.”

[27] Q. V Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng,
“On Optimization Methods for Deep Learning,” Proc. 28th Int. Conf. Int.
Conf. Mach. Learn., pp. 265–272, 2011.

[28] M. Wistuba, N. Schilling, and L. Schmidt-Thieme, “Learning
hyperparameter optimization initializations,” in Proceedings of the 2015
IEEE International Conference on Data Science and Advanced Analytics,
DSAA 2015, 2015.

[29] E. Hazan, A. Klivans, and Y. Yuan, “Hyperparameter Optimization: A
Spectral Approach,” ICLR, Jun. 2018.

[30] A. Karpathy, “CS231n Convolutional Neural Networks for Visual
Recognition,” Standford Education..

[31] G. Krizhevsky, A., Nair, V., & Hinton, “The CIFAR-10 dataset,” 2014.
[Online]. Available: online: http://www. cs. toronto. edu/kriz/cifar. htm.

[32] Y. Lecun, L. Eon Bottou, Y. Bengio, and P. H. Abstract|, “Gradient-
Based Learning Applied to Document Recognition.”

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process.
Syst., pp. 1097–1105, 2012.

[34] C. Szegedy et al., “Going Deeper with Convolutions,” Sep. 2014.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” Dec. 2015.

[36] R. Benenson, “Classification datasets results,” 2016.

[37] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for Simplicity: The All Convolutional Net,” 2014.

[38] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-Supervised
Nets,” Sep. 2014.

[39] M. Lin, Q. Chen, and S. Yan, “Network In Network,” Dec. 2013.

[40] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y.
Bengio, “Maxout Networks,” 2013.

[41] A. Aab et al., “De Mauro, 41 J.R.T. de Mello Neto, 35 I. De Mitri, 31, 32,
36,” J.R. Hörandel, vol. 56, p. 24, 2017.

[42] A. A. Yahya, R. Mahmod, and A. R. Ramli, “Dynamic Bayesian
networks and variable length genetic algorithm for designing cue-based
model for dialogue act recognition,” Comput. Speech Lang., vol. 24, no.
2, pp. 190–218, Apr. 2010.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

277 | P a g e

www.ijacsa.thesai.org

APPENDICES

APPENDIX 1 (NUMERICAL RESULTS OF ACCURACY ON FAIL LEARNING RATE BY 0.01 AND 0.03)

To get the best accuracy in the test sets, the experiment was performed in three rounds. Up to 60.85% was achieved in the first round (using 2 convolutional, 2
fully connected). In this first round are equipped with two convolutional layers. This was progressively increased to 3 in the subsequent rounds as shown in
Appendix 2 and 3. The training of this model was done on CPU; thereby limiting the number of convolutional. This results maps with Fig. 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

278 | P a g e

www.ijacsa.thesai.org

APPENDIX 2 (NUMERICAL REPRESENTATION OF THE RESULTS PRESENTED FROM FIG. 4 – FIG. 9)

In the second round of the experiments, up to 71.17% was achieved using 3 convolutional fully connected layers. This experiment was conducted to test the
accuracy of small CNNs on GPU. Also, accuracy was tested against activation function (RELU, LRELU or ELU), optimizer (Adam, RMSProp or Nesterov Adam)
as well as batch size. In addition, random search was used to optimise network structure hyperparameters for both filters and kernel.

APPENDIX 3

In third and final round of the experiments, up to 80.62% was achieved using 3 convolutional layers, This shows that increase in parameters learning, increase
the training time. Accordingly, only 5 hyperparameter were sampled and values of hyperparameter that are not performing well will be eliminated.

