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Abstract—Optimizing hyperparameters in Convolutional 

Neural Network (CNN) is a tedious problem for many 

researchers and practitioners. To get hyperparameters with 

better performance, experts are required to configure a set of 

hyperparameter choices manually. The best results of this 

manual configuration are thereafter modeled and implemented 

in CNN. However, different datasets require different model or 

combination of hyperparameters, which can be cumbersome and 

tedious. To address this, several works have been proposed such 

as grid search which is limited to low dimensional space, and tails 

which use random selection. Also, optimization methods such as 

evolutionary algorithms and Bayesian have been tested on 

MNIST datasets, which is less costly and require fewer 

hyperparameters than CIFAR-10 datasets. In this paper, the 

authors investigate the hyperparameter search methods on 

CIFAR-10 datasets. During the investigation with various 

optimization methods, performances in terms of accuracy are 

tested and recorded. Although there is no significant difference 

between propose approach and the state-of-the-art on CIFAR-10 

datasets, however, the actual potency lies in the hybridization of 

genetic algorithms with local search method in optimizing both 

network structures and network training which is yet to be 

reported to the best of author knowledge. 
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I. INTRODUCTION 

Human are capable of recognizing things both environment 
and object within a second. This recognition skills are trained 
since human are young. Similarly, if the computers are able to 
recognize or classifying object and environment by looking for 
low-level features such as edges and curves, then it can build 
more abstract concepts of what it recognizes through a series of 
convolutional layers. Hence, image recognition and 
classification in the neural network are called Convolutional 
Neural Network (CNN). 

Building CNN requires a set of configurations which is 
external to the data and manually tune by the machine learning 
researcher. The variable of the network structure and the 
network trained of CNN are known as hyperparameters [1]. 
Finding a set of hyperparameters that gives an accurate model 
in a reasonable time is also part of the hyperparameter 
optimization problem [2]. Hyperparameter optimization is a 
problem that identifies a good model of hyperparameter [3] or 
a problem of optimizing a loss function over a graph-structured 
configuration space [4]. Testing all the possible set model of 
hyperparameter can become computationally expensive [5]. 

Therefore, the need for an automated and structured way of 
searching is increasing, and hyperparameter space, in general, 
is substantial. 

Numerous works have been done in optimizing the 
hyperparameters [3], [6]–[8]. Other optimization methods that 
have been applied using evolutionary algorithms (EAs) as 
mentioned in [5]. Bochinski et al [5] defines hyperparameters 
as the configuration of the network structure which will lead to 
an optimization problem in finding the optimal configuration 
of the CNN. Others who have applied evolutionary algorithms 
are [9] and [10]. However, [11] claims that none of the 
approaches consider the impact of setting up the 
hyperparameter which in assumptions that: (1) Hyperparameter 
setting does not matter, however, selecting among default 
implementations is sufficient and (2) hyperparameter value 
may have a significant impact on performance and should 
always be optimized. 

Very less research has been done to validate these 
assumptions since the optimization of hyperparameter is 
theoretically and practically significant [11]. Due to these 
flaws, the idea of automating hyperparameter search is getting 
attention in machine learning [12]. This means that most 
common optimization has been done using the random search 
[3] and a combination of grid search and manual search [13]. 
Ozaki [14] claim that most people do not have sufficient 
computing resources and are unwilling to adjust the 
hyperparameters that use difficult optimization method. Author 
acknowledge that there is some research that applies genetic 
algorithms such as [15], [16] on tuning the hyperparameters of 
the network and the structure of the system [17] and [18]. 
However, the work aims to hybridize genetic algorithms with 
local search method in optimizing the CNN hyperparameters 
that both are of network structures and network trained which 
is not studied in these prior works. 

To the best of author knowledge, there are no approaches 
that hybridized genetic algorithms with local search method in 
optimizing both network structures and training algorithms in 
CNN. As a start, a trial of an experiment on a random search 
method will be conducted to testify the performance as per said 
in [3]. The objectives of this work are twofold: (1) to 
investigate the hyperparameter search method on CIFAR-10 
datasets and (2) to perform benchmarking on CIFAR-10 
datasets with the state-of-the-art accuracy. 

The remainder of this paper is organized as follows. In 
Section II, the related work in the area of CNNs and GA is 
provided. Section III presents the background and Section IV 
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lay out the experimental setup. Experimental results are 
discussed in Sections V and VI. Finally, the paper is 
concluded, and future work is recommended in Section VII. 

II. RELATED WORK 

In this section, the related works are presented and 
discussed as follows. 

A. Search Optimization Method 

Grid search method is a trial and error method for every 
hyperparameter setting on the specific range of values. The 
advantage of using a grid search is that it can be easily 
parallelized [3]. Researchers and practitioners will specify the 
boundary and steps between values of hyperparameters which 
will form a grid of configurations [19].  However, if one fails, 
the rest of the jobs will fail accordingly. In usual cases, 
machine learner will use a limited grid and then extend which 
will make the grid more efficient to configure the best while 
continually searching for the new grid [19]. Four 
hyperparameters will become impractical as the number of 
functions to evaluate will increase with adding parameter; this 
is due to the limitation on dimensionality [20]. 

Random search method samples the hyperparameter space 
„randomly‟. Based on [3], the random search has more benefits 
than grid search regarding the application which can still use 
even the cluster of the computer fail. It allows practitioners to 
change the „resolution' on the go and it is feasible to add new 
trials to the set or even ignore the fail test. Simultaneously, the 
random search method can stop any time, and it will form a 
complete experiment it can be carried out synchronously [21]. 
Furthermore, a new trial can be added to the experiment 
without jeopardizing if more computers become are available 
[22]. 

Another latest development in hyperparameter tuning is 
using Bayesian optimization. It uses distribution over functions 
which is known as Gaussian Process. To train using Gaussian 
Process; fitting it to given data is essential as it will generate 
function closely to observe data. In Bayesian optimization, the 
Gaussian process will optimize the expected improvement and 
surrogate the model which is the probability of the new trial 
and will improve the current best observation. The highest 
expected improvement will be used next, and expected 
improvement can be calculated at any point in the search space. 
Widespread implementation of Bayesian optimization includes 
spearmint that uses Gaussian process [23]. However, Bergstra 
et al. [3] claim that the method of Bayesian optimization is 
limited; as it works on high dimensional hyperparameter and it 
became very computationally expensive. Therefore, it has poor 
performance. 

B. Genetic Algorithm Optimization 

The difference between genetic algorithms and 
evolutionary algorithms is that the genetic algorithms rely on 
the binary representation of individuals (an individual is a 
string of bits) due to which the mutation and crossover are easy 
to be implemented. Such operations produce candidate values 
that are outside of allowing searching space. In contrast, the 
evolutionary algorithms rely on customized data structures and 

need appropriately craft mutation and crossover which this will 
heavily dependents on the problem at hand [24]. The author in 
[25] has been mentioned that Genetic algorithms can be used 
when there is no information about gradient function at 
evaluated points. It can achieve good results when there is 
several local minima or maxima. Unlike any other search 
method, the function is not determined in a single place but 
simultaneously in different areas. They can be carried out in 
several processors since the calculations of the function on all 
points of a population are independent of each other [26]. 
Furthermore, they can be parallelized with little effort which 
makes many paths to the optimum processed in parallel. In 
[25], it has been mentioned that genetic algorithm has 
advantages over local methods as they do not remain trapped in 
suboptimal local maximum or minimum. 

III. FOUNDATION 

A. Hyperparameters Optimization 

The optimization of hyperparameter can be simplified as 
how many function evaluations will perform on every 
optimization to select the best hyperparameter in that model. 
Besides, optimization can be explained in a simple manner 
which “given a function that accepts inputs and returns a 
numerical output, how can it efficiently find the inputs, or 
parameters, that maximize the function‟s output?” [27]. Hence, 
upon tuning or optimizing the hyperparameter, author will take 
input as a function to the hyperparameter model and the output 
as the measurement on the model performance. Consequently, 
the hyperparameter optimization problem setup can be 
formally defined as [2]: 

   machine learning algorithm   is a mapping    

       where   is the set of all datasets and   is the 
space of all models 

      is the chosen hyperparameter configuration with 
                 being the is P-dimensional 
hyperparameter space. 

 The learning algorithm estimates a model      that 
minimizes a regularized loss function  (e.g. 
misclassification rate): 

  ( 
       )          

      
 (    

       )                  (1) 

The task of hyperparameter optimization is to find the 
optimal hyperparameter configuration λ using a validation set, 

             
      

 
(           )          

        
              (2) 

The    will be the miscalculation rate or error rate. The 
hyperparameter space all possible values that are usually 
defined as acceptable bounds for each hyperparameter and the 
number of the hyperparameter is the dimension of the function 
[28]. 

Referring to [29], optimizing the hyperparameter require 
knowledge on the relationship between the settings and the 
model performance. It will first run a trial to collect 
performance on several configurations and then will make an 
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inference which will decide what configuration will be applied 
next. The purpose of optimizing is to minimize the number of 
trials on hyperparameter while finding the optimum model 
[29]. Hence, author can consider the process as sequential and 
not parallel. 

B. Convolutional Neural Network 

Convolutional neural network gain advantages over inputs 
that consist of images which neurons are arranged in 3 
dimensions of width, height, and depth [30]. For examples, 
CIFAR-10 datasets have volume dimensions of 32x32x3 
(width, height, depth). Fig. 1 describes the visualization 
between a regular three-layer neural network with CNN. A 
regular 3-layer neural network consists of input – hidden layer 
1 – hidden layer 2 – output layer. CNN arrange the neurons 
into three dimensions of width, height, and depth. Each layer 
will transform the 3D input to 3D output volume of neuron 
activations. Hence, the red input layer holds the image, the 
dimensions of the image will be width and height, and the 
depth will be the three RGB (red, green and blue) channels. 

CNN architectures build in three main types of sequence 
layers: Convolutional Layer, Pooling Layer, and Fully-
Connected Layer. A simple CNN for CIFAR-10 datasets can 
have the architecture of [INPUT–CONV–RELU–POOL–FC]. 
As per describe [30]. 

 INPUT will hold on the raw pixel value of images. 

 CONV will compute the output of the neurons. 

 RELU stands for Rectified Linear Unit is an activation 
function that converts all negative pixel values to 0. 

 POOL will pass over sections of the image and pool 
them into the highest value in the section. 

 FC (fully-connected) layer will calculate the class 
scores such as 10 categories in CIFAR-10, and finally, 
each neuron will be connected to all number in the 
previous volume. 

However, not all layers are in the same sequence as 
[INPUT–CONV–RELU–POOL–FC]. Some layers have 
CONV/FC and do not need RELU/POOL. Others require 
CONV/FC/POOL but not RELU and vice versa. Fig. 2 shows 
the example of CNN architecture from small VGG Net [31]. 
The 3D volumes are sliced into rows as it is manageable to see 
the architecture. For examples, the input can be taken as raw 
images of the car that eventually will break down into 
sequences of convolutional layers that will compute and 
produce the output into their classes. The last layer holds the 
score of each class which is labeled. The architecture shown is 
a tiny VGG Net [31]. There are several CNN architectures that 
have name in image classifications world such as LeNet [32], 
AlexNet [33], GoogLeNet [34], VGGNet [31] and ResNet 
[35]. More information about their architectures and state-of-
the-art accuracy can be found in their respective papers. 

Defining the model architectures can be difficult as there 
are numerous design choices made available. Author do not 
know what the optimal model architecture it should be for a 
given model immediately. Hence, this paper would like to 

explore a range of possibilities. An actual machine learner will 
ask the machine to perform this exploration and configure the 
optimal model architecture automatically. The variable in the 
configuration can be called hyperparameters which it is 
external to the model, and the value cannot be estimated from 
the data. Hyperparameters can be divided into two types: 

a) Hyperparameter that determines the network structure 

such as: 

 Kernel Size –the size of the filter. 

 Kernel Type–values of the actual filter (e.g., edge 
detection, sharpen). 

 Stride–the rate at which the kernel pass over the input 
image. 

 Padding–add layers of 0s to make sure the kernel pass 
over the edge of the image. 

 Hidden layer–layers between input and output layers. 

 Activation functions–allow the model to learn nonlinear 
prediction boundaries. 

b) Hyperparameter that determines the network trained 

such as: 

 Learning rate–regulates on the update of the weight at 
the end of each batch. 

 Momentum–regulates the value to let the previous 
update influence the current weight update. 

 A number of epochs–the iterations of the entire training 
dataset to the network during training. 

 Batch size–the number of patterns shown to the network 
before the weights are updated. 

Models can have more than 10 hyperparameters and 
finding the best combination can be view as the search 
problem. Hence, the right choice of hyperparameter values can 
affect the performance of the model. 

 

Fig. 1. A regular 3-Layer Neural Network vs. CNNs [30]. 

 

Fig. 2. Small VGGNet Architectures [30]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 6, 2019 

272 | P a g e  

www.ijacsa.thesai.org 

IV. EXPERIMENTAL SETUP 

CIFAR10 will be used as datasets [31] as it is a subset of 
the 80-million tiny image database. There are 50,000 images 
for training, and 10,000 images for testing. All of them are 32 
× 32 RGB images. CIFAR10 contains 10 basic categories, and 
both training and testing data are uniformly distributed over 
these categories. To avoid using the testing data, 10,000 
images have been left from the training set for validation. This 
will protect from getting overfitting. 

Searching for the best combination of hyperparameters 
requires computational resources.  Fortunately, Nvidia Tesla 
K80 is a supercomputer that is used as a computing platform in 
this research. It can dramatically lower data center costs by 
delivering exceptional performance with fewer and more 
powerful servers. TensorFlow is a framework that will be used 
in representing computations as graphs, allows easier 
computation and analysis of these models and utilizing multi-
dimensional arrays called Tensors and by computing these 
graphs in sessions. TensorFlow will implement Keras as the 
backend to allow for easy and fast prototyping through user 
friendliness, modularity, and extensibility. It supports the 
convolutional neural networks as well running smoothly in 
CPU and GPU. 

To test the understanding on search method, experiments 
were performed on CIFAR-10 datasets using random search 
method. In the first experiments, the model only had two 
convolutional layers as is trained on CPU. The height, width, 
channels and outputs are fixed which is 32x32x3 with output of 
10. 24 iterations within epoch will run on accuracy check. The 
maximum number of epochs was 500 with 4 rounds of early 
stopping. The model then is trained with the hyperparameter 
configurations based Table I and Table II. Note that the range 
values randomly. Then, the hyperparameter evaluations are 
being stored in training logs. The results were being evaluated 
with two other experiments that will run on GPU. Additional 
hyperparameters might be added to improve the accuracy, and 
then the selected hyperparameter configuration will be 
compared with the state-of-the-art accuracy on CIFAR-10 
datasets. 

Table I below highlights the hyperparameters considered in 
this study. Each of the hyperparameters is labeled with shorter 
and easier name (abbreviation). Also, ranges are indicated 
within square brackets. The following table presents the 
network trained hyperparameters. 

TABLE I.  NETWORK STRUCTURE HYPERPARAMETERS 

Hyperparameter Abbreviation Range 

Number of Filters Filters_1 [16, 32, 64, 96] 

Kernel Size Ksize_1 [3, 4, 5] 

Number of Filters Filters_2 [48, 64, 96, 128] 

Kernel Size Ksize_2 [3, 4, 5] 

Number of Filters Filter_3 [64, 96, 128] 

Kernel Size Ksize_3 [3, 4, 5] 

Hidden Layer  full_hidden1 [60, 100, 125] 

Hidden Layer  full_hidden2 [60, 100, 125] 

Activation activation [„relu‟, „lrelu‟, „elu‟] 

TABLE II.  NETWORK TRAINED HYPERPARAMETERS 

Hyperparameter Abbreviation Range 

Learning rate learning_rates [0.001, 0.003, 0.01,0.03] 

Batch Size batch_sizes [32, 64, 128, 256] 

Momentum momentum [0.9, 0.95, 0.99] 

Optimizer optimizer [„Adam, „rmsprop‟, „Nesterov'] 

In Table II above, the four-network trained 
hyperparameters are listed alongside their abbreviations. These 
abbreviations will be constantly used as reference to any of the 
above-listed hyperparameters. 

A. Results on Small CNNs on CPU 

The accuracy only reached at 60.85% and takes 5 days to 
run on CPU. Hence, the hyperparameter space were minimized 
by only performing optimization on network structure, learning 
rate, and batch size. Overall, small CNNs contain 9 network 
hyperparameters, 2 network trained hyperparameters and 2 
layer hyperparameters resulting total of 9 + 2 + 2 × 2 = 15 
configurable hyperparameters. The possible combinations of 
hyperparameters are 15,116,544. Based on the results, training 
accuracy did not reach satisfaction level and overfitting is not 
an issue. However, the learning rates were not congregating as 
shown in Fig. 3. Hence, this will be eliminated on further 
search experiments. Architecture with more features in fully 
connected layers perform better. Next experiments, the third 
convolutional layer are added. Few selections of activation 
functions and  optimization algorithms are included and run on 
GPU. 

B. Results on Small CNNs on GPU 

In second experiments, activation functions were added and 
optimization algorithms along with momentum for batch 
normalization. The border pixels [0, 1, 2] were removed. Third 
convolutional layers were added and running 3 days on GPU. 
Based on the results, the accuracy was increased from 60.85% 
to 71.17% and appears the model had difficulty on converging. 
Overall, small CNNs contain 9 network hyperparameters, 4 
networks trained hyperparameters and 3-layer resulting in a 
total of 9 + 4 + 3 × 3 = 22 configurable hyperparameters. 

In Fig. 3 below, the accuracy on fail learning rate were 
tested by 0.01 and 0.03. The numerical representation of these 
results is presented in Appendix 1. Subsequently, the accuracy 
was also tested on small CNN on GPU as depicted in Fig. 4 
below. Please refer to Appendix 2 for detailed results. 

 

Fig. 3. Test Accuracy on Fail Learning Rate by 0.01 and 0.03. 
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Fig. 4. Test Accuracy of Small CNNs on GPU. 

C. Benchmarks on CIFAR-10 Datasets 

In final experiments, hyperparameters that tended to 
underperform were eliminated. Fig. 4 shows the distribution of 
test accuracy appears to be models that had difficulty 
converging. The stride of first CNN layer are reduce from 2 to 
1 and patch reduction to 0. The possible combinations of 
hyperparameters were reduced from 15,116,544 to 3,072. The 
increasing number in hyperparameter to learn results in 
increasing training time. Hence, the hyperparameter setting 
was sampled accordingly as in Table III. Fig. 5 illustrates the 
test accuracy in finding the optimum hyperparameter that fits 
the CNNs model with additional third convolutional layers. 
„relu‟ or „lrelu‟ offer performing better than „elu‟, with „relu‟ 
dominating on activation functions. The Adam optimizer 
algorithm are better than „Nesterov Accelerated Gradient‟ or 
„RMSProp‟ in this case. Batch size of 32 gives inconsistent 
results. A batch size of 64 can achieve good results and is more 
reliable. However, while other CNNs have had success with 
this approach, there is no benefit from the current architecture. 

In the first convolutional layer, number of filters are 
increased and gives an improvement performance. 
Interestingly, the next two layers are not performing well with 
more filters. Perhaps because of overfitting. A 4x4 kernel gives 
slightly an average performance. In the second experiments, a 
batch size of 64 and the “lrelu” activation function looks 
promising. Hence, these were both fixed and with more 
features in 1st conv layers are helping gaining better 
performance. The stride is reduced from 2 to 1 in the final 
experiments. Signs of overfitting are shown. Thus, 
regularization is applied which is the dropout layers and 
running on 2 days on GPU. Based on the results, it achieved 
80.62% accuracy which then compared with the state-of-the-
art on CIFAR-10 datasets without interfering with the data 
(data augmentation). 

This put the results on  the bottom of the leaderboard for 
cifar-10 in Table IV, which is satisfying and the purpose of this 
study, was to investigate hyperparameter search on CIFAR-10 
datasets [36]. 

D. Random Search and Genetic Algorithm 

In [41], random search generates randomly individual 
solutions at any point of search space via calculating and 

comparing the value of each solution while genetic algorithms 
(GA) mimic the natural evolutions process. In the search space, 
GA works with populations of solutions which each generation 
is subjected to selection, crossover and mutation operations. 
This will help GA in obtaining the newly improved generations 
of the solutions. However, the questions arise as can genetic 
algorithm become the random search. The author in [41] stated 
that GA does not have the potential to become a purely random 
search alone. Conversely, Yahya et al. [42]  considered genetic 
algorithms as “Guided Random Search Algorithms”.  The 
randomness of the algorithms can be controlled and become 
guided search as GA takes inspirations from the evolution 
concepts such as survival of the fittest, crossover, mutation and 
selections. Moreover, the degree of randomness of algorithms 
can be determined by setting the values of its control 
parameters, and through it, the algorithms can be purely 
random search algorithms or deterministic algorithms [42]. 

The following figures depict the results obtained from the 
experiments. Starting from Fig. 5 to Fig. 7, accuracy is tested 
on activation function, optimizer, and batch size. 

It can be observed from Fig. 5 that „relu‟ or „lrelu‟ offer 
performing better than „elu‟, with „relu‟ dominating on 
activation functions. The raw results are shown in Appendix 2. 

On the other hand, Adam optimizer algorithm is better than 
„Nesterov Accelerated Gradient‟ or „RMSProp‟ in this case, 
please see Appendix 2. 

TABLE III.  NETWORK STRUCTURE HYPERPARAMETERS 

Hyperparameter Abbreviation Range 

Learning rate learning_rate 
[0.001, 0.003, 

0.002,0.0015] 

Batch Size batch_size [64] 

Momentum momentum [0.9, 0.95, 0.99] 

Optimizer optimizer [„adam‟] 

Number of Filters filters1 [64, 96] 

Kernal Size ksize1 [4, 5] 

Number of Filters filters2 [96, 128] 

Kernal Size ksize2 [4, 5] 

Number of Filters filter3 [96, 128] 

Kernal Size ksize3 [4, 5] 

Hidden Layer  full_hidd1 [100, 125] 

Hidden Layer  full_hidd2 [100, 125] 

Activation activation [„lrelu‟] 

TABLE IV.  ACCURACY ON CIFAR-10 WITHOUT DATA AUGMENTATION 

Network CIFAR-10 (%) 

ALL-CNN [37] 92.00 

Deeply-supervised [38] 90.22 

Network in Network [39] 89.60 

Maxout [40] 88.32 

3Conv + 2FC + Dropout + stride 1 on all layers  80.62 
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Fig. 5. Accuracy vs Optimizer. 

 

Fig. 6. Accuracy vs Activation Function. 

On batch size, results shows that batch size 32 have higher 
median performance. Although this seems to be good 
achievement, a higher batch size (64) is capable of achieving 

better and reliable results. Next, the results of the optimised 
network structure hyperparameters are presented. Appendix 2 
shows the results in a tabular form. 

In Fig. 8 Optimizing the network structure using random 
search for filters seems to improve performance at first 
convolutional layer. However, as number of layers increase, 
the performance begins to decline significantly. Although the 
exact reasons that have caused the drastic decline might be 
inconclusive at this stage, author attributed it to the possible 
overfitting. This is nonetheless subject to debate through more 
detailed experiments. Please refer to appendix 2 for raw results 
of filters after being optimized by random search. In Fig. 9 
below however, the situation shows better results. 

Alternatively, optimizing the network structure using 
random search for kernel performs better on 4x4 kernel. 
However, a similar situation with filters is observed in kernel 
too (Fig. 9). Kernel 1x1, 2x2 and 3x3 performed below average 
respectively. Yet, slightly better performance is noticed on the 
rest of the kernels. For better understanding of the results 
resented in Fig. 9, raw data of the results are as shown in 
Appendix 2. 

 

Fig. 7. Accuracy vs Batch Size. 

 

Fig. 8. Network Structure Hyperparameters after being Optimized by Random Search (Fiters). 
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Fig. 9. Network Structure Hyperparameters after being Optimized by Random Search (Kernel). 

E. Computational Considerations 

Computing random search on CPU is computational costly 
as it took around 5 days with limited 3GB memory. Running 
on GPU accelerate the computing process into 2 days while 
eliminating the huge hyperparameter combinations. Moreover, 
constructing CNNs architectures can consume a lot of memory. 
Modern GPU is equipped on limited of 3/4/6GB memory with 
the best GPUs of 12GB memory [30]. To avoid this, three 
sources of memory need to keep track on: 

 Activations: The raw number of activations can 
consume a lot. Running CNNs only at test time can 
reduce this by storing the currents activations at any 
layer and discards the previous activations. 

 Parameters: These are the number that holds the 
network parameters, step cache for optimization such as 
momentum, „Adagrad‟ or „RMSprop‟. The memory 
store needs to be multiplied by a factor of 3 or so. 

 Miscellaneous: Every CNN as to maintain the 
miscellaneous such as image data batches, etc. 

Calculate the amount of memory by taking the right 
estimate of the total number values of activations, parameters, 
misc. and multiply by 4 to get a raw number of bytes. And then 
divided by 1024 multiple times to get in KB, MB and finally 
GB. Another way to make the network fit is to decrease the 
batch size as the most memory was consumed by activations 
[30]. 

V. CONCLUSIONS AND FUTURE WORK 

Author presented a genetic algorithm method on optimizing 
the convolutional neural network hyperparameter. For this 
purpose, author first investigate the hyperparameter search 
method focusing on image classification of CIFAR-10 datasets. 
Random search method was to choose on running the trial of 
experiments. The small CNNs on CPU showed that learning 
rates with range of 0.01 and above are not giving good 
performance on the models. Performing grid search will waste 
a lot of time with the mention learning rates. Millions 
combination of hyperparameter will make Grid search seems 
impractical. Random search allows some hyperparameter 

values to be selected by process of elimination or selection. 
The random search did not achieve state-of-the-art accuracy by 
90% above. However, it satisfies enough to quality over par 
around 80% on the leaderboard of CIFAR-10 [36]. 

In the future, genetic algorithms (GA) will be used as an 
optimization search method with tested CNNs architectures. 
Combining search methods such as grid search, manual search, 
random search and local search with a global search like GA 
will be implement for further research. However, running GA 
as hyperparameter search space is computationally cost. Hence, 
running on multiple GPU are taken into considerations by the 
author. Given enough time, more optimization method such as 
Bayesian can be investigated like random search on this paper. 
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APPENDICES 

APPENDIX 1 (NUMERICAL RESULTS OF ACCURACY ON FAIL LEARNING RATE BY 0.01 AND 0.03) 

To get the best accuracy in the test sets, the experiment was performed in three rounds. Up to 60.85% was achieved in the first round (using 2 convolutional, 2 
fully connected). In this first round are equipped with two convolutional layers. This was progressively increased to 3 in the subsequent rounds as shown in 
Appendix 2 and 3. The training of this model was done on CPU; thereby limiting the number of convolutional. This results maps with Fig. 3. 
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APPENDIX 2 (NUMERICAL REPRESENTATION OF THE RESULTS PRESENTED FROM FIG. 4 – FIG. 9) 

In the second round of the experiments, up to 71.17% was achieved using 3 convolutional fully connected layers. This experiment was conducted to test the 
accuracy of small CNNs on GPU. Also, accuracy was tested against activation function (RELU, LRELU or ELU), optimizer (Adam, RMSProp or Nesterov Adam) 
as well as batch size. In addition, random search was used to optimise network structure hyperparameters for both filters and kernel. 

 

APPENDIX 3 

In third and final round of the experiments, up to 80.62% was achieved using 3 convolutional layers, This shows that increase in parameters learning, increase 
the training time. Accordingly, only 5 hyperparameter were sampled and values of hyperparameter that are not performing well will be eliminated. 

 


