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Abstract—Random Forest (RF) is known as one of the best 

classifiers in many fields. They are parallelizable, fast to train 

and to predict, robust to outlier, handle unbalanced data, have 

low bias, and moderate variance. Apart from these advantages, 

there are still opportunities to increase RF efficiency. The 

absence of recommendations regarding the number of trees 

involved in RF ensembles could make the number of trees very 

large. This can increase the computational complexity of RF. 

Recommendations for not pruning the decision tree further 

aggravates the condition. This research attempts to build an 

efficient RF ensemble while maintaining its accuracy, especially 

in problem activity. Data collection is performed using an 

accelerometer sensor on a smartphone device. The data used in 

this research are collected from five peoples who perform 11 

different activities. Each activity is carried out five times to 

enrich the data.  This study uses two steps to improve the 

efficiency of the classification of the activity: 1) Optimal splitting 

criteria for activity classification, 2) Measured pruning to limit 

the tree depth in RF ensemble. The first method in this study can 

be applied to determine the splitting criteria that are most 

suitable for the classification problem of activities using Random 

Forest. In this case, the decision model built using the Gini Index 

can produce the highest accuracy. The second method proposed 

in this research successfully builds less complex pruned-tree 

without reducing its classification accuracy. The research results 

showed that the method applied to the Random Forest in this 

study was able to produce a decision model that was simple but 

yet accurate to classify activity. 
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I. INTRODUCTION 

Nowadays, there were researches in the field of activity 
classification and fall detection due to the development of 
mobile  [1] and wearable device [2]. It promised an important 
role in improving human life quality. Among its application are 
healthcare, security, work safety [3], [4]. There were several 
techniques that could be utilized in the activity classification 
and fall detection system. Khojasteh et al. use a rule-based 
system to decrease computational cost [5].  Fall detection could 
also be solved using threshold-based algorithms [6]–[8]. 
Meanwhile, others trying to make use of machine learning 
algorithms to increase the accuracy of fall detection [9]–[11]. 
Aziz et al. compared the accuracy of the two methods in an 

experiment involving ten participants. The outcomes 
demonstrate that the general performance of falls detection of 
the five machine learning was superior to the performance of 
five threshold-based methods. Likewise, the testing of the five 
machine learning demonstrates Support Vector Machine 
(SVM) as the best performer notably when sensitivity and 
specificity measure combined [12]. Indeed,  current states of 
the art in Machine Learning are Random Forest and Support 
Vector Machine [14]. However, Support Vector Machine is 
more suitable in the case of two class problem [13]. 
Furthermore, Support Vector Machine tends to work best in a 
situation where data are reasonably clean with a few outliers. 
Random Forest generally outperforms Support Vector Machine 
in many class cases with many outliers to be expected. 
Research on fall detection which becomes part of human 
activity classification research needs to identify several 
activities. Moreover, the accelerometer data generated from 
human activity could be very noisy [15]. Hence, Random 
Forest will likely to be more suitable in this case as it needs to 
classify several classes. 

Random Forest is essentially a group classifier that 
comprises of several decision trees. Those trees then vote to get 
the final prediction result. It is one of the best-recognized 
ensemble methods. It could solve the classification task as well 
as regression task [16]. 

As Random Forest consisted of several decision trees, it 
shares the same traits which are bias, variance and overfitting 
as if in decision trees. The decision model will produce high 
accuracy if tested on training data. This is also known as the 
low bias term. However, when the resulting model is tested on 
testing data that has never been seen before, the accuracy is 
low. This is referred to as high variance. Supposedly, a good 
model must be able to produce high accuracy in both training 
and testing data. Random Forest will likely result in better 
model stability as it capable of suppressing variance while 
maintaining bias. 

Random Forest will have best performance if the decision 
tree produces high accuracy (low bias) from the start. Splitting 
criterion is one of the most influencing factors in decision tree 
accuracy [18]. Therefore, this study will investigate the most 
fitting splitting criteria to produce a classification model with 
highest accuracy. 
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Random Forest will build unpruned trees [19]. Unpruned 
trees will produce a model with high accuracy (low bias). 
However, this will make the generalization ability low (high 
variance). This research aim for classification model that 
produce high accuracy (low bias) while still having high 
generalization ability. As the trees accuracy seems to be not 
increased after a certain depth, this research proposes optimal 
depth limitation as a mean of pruning in Random Forest 
decision tree. 

Therefore this research is answering the question of which 
splitting criterion will make the most accurate trees (resulting 
in low bias model) and the optimal depth of the tree to produce 
highest generalization model. 

II. THEORETICAL FRAMEWORK 

A. Random Forest 

Fall activity would be classified using the legacy random 
forest where a number of decision trees are constructed as 
sampling data using bootstrap and some randomly selected 
features. Classification by group of trees in Random Forest 
work by voting a class after each tree in the group make a 
classification. Random Forest will choose the class which is 
supported by most of the trees. Fundamentally, data 
classification techniques using Random Forest works as 
follows: 

1) Assume that the number of the original training data 

record is A. 

2) Perform bootstrapping on original data by sampling A 

into a which are chosen randomly with replacement such as 

a<A. 

3) Perform the bootstrapping for n time to create training 

data from n trees. 

4) Given some feature/predictor is B, select of b variable at 

random such as b<B for each sub-sample created before. 

5) Build decision trees for each sub-sample data by 

splitting a node using the best split on the n predictor. 

6) Grow tree as large as possible with no pruning. 

7) Make a classification by voting the classification result 

of n trees. The majority class will be selected as the Random 

Forest classification result. 

The decision trees vote to classify activity. This research 
tried to understand the effect of decision tree depth and the 
splitting criterion by performing classification on trees with the 
depth of 5, 10, 15, and 20. 

B. Splitting Criteria 

Decision Tree used several measures for selecting best split 
based on impurity measures. Decision tree tried to split the 
nodes on all available predictor and choose the best splitter 
which able to produce the most similar sub-nodes. This step 
resulted in sub-nodes with higher homogeneity compared to 
original nodes. There are three most commonly used measures 
in decision tree splitting: 

1) Information gain (IG): Information Gain provides an 

overview of how much information the feature provides in 

determining the class. When a feature highly determines a 

class, the value of information gain will be maximal. On the 

other hand, a feature that does not correspond to class 

determination will likely give no information [20]. IG provides 

an overview of the relation of the predictor to a class by 

measuring the reduction in entropy value. Entropy gives an 

overview of class impurity of several data records. Entropy is a 

measure of impurity in an arbitrary collection of examples. 

When the node is less impure, the information to describe it is 

lesser. On the contrary, the more impure node will likely give 

more information. Entropy function is expressed by (1). 

  ∑        
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Information Gain is described by (2). 
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2) Gain ratio: Information gain has a relatively high bias 

on high branching features. Gain ration modifies information 

gain so that bias could be reduced when applied on high 

branching features. Feature selection is taking into account the 

number and size of branches [20]. Information gain was 

normalized by intrinsic information of a split. Intrinsic 

information could be described as the number of information 

needed to decide on a node to classify a record. It gives an 

overview of how much information could be acquired 

whenever dataset split into i partitions. Intrinsic information 

could be described by (3). 
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Intrinsic information with higher value resulted make the 
size of sub-sample that is generated during splitting relatively 
to be the same. On the other hand, less intrinsic information 
resulted in few sub-sample that contain most of the data record. 
Gain ratio will select feature that generates a maximum gain 
ratio. Gain ratio could be described by (4). 

              
        

                 
            (4) 

3) Gini index: Gini index shows the number of randomly 

picked data that is incorrectly labeled. It reaches its maximum 

value on heterogeneous data [21]. Consequently, it gets a 

minimum value on similar data. Gini Index could be described 

by (5). 

       ∑     
  

   
             (5) 

III. MATERIALS 

The research data was obtained through accelerometer 
sensor readings from 5 respondents. Each respondent 
performed 11 different activities. Each activity was repeated 
five times to increase the variety of data. There are seven 
attribute information on the data recorded. Table I contains an 
example of one data. 

Accelerometer data type in Table I could be explained as 
follows: 
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TABLE. I. DATA DESCRIPTION 

Type Value 

Sequence Name A01 

Timestamp 633790226053172000 

Date 27.05.2009 14:03:25:317 

X 4.373908043 

Y 1.887959599 

Z 0.769018948 

Activity walking 

a) Sequence Name: It contains person and repetition 

code. Sensor readings of five respondents are marked with the 

letters A to E. Repetition activities marked with the number 01 

to 05. For example, C05 shows the results of the readings 

from the third respondent in the fifth repetition. 

b) Timestamp: Each data is given a timestamp to mark 

the time of the accelerometer sensor readings. 

c) Date 

d) X shows accelerometer sensor reading on axis X 

e) Y shows accelerometer sensor reading on axis Y 

f) Z shows accelerometer sensor reading on axis Z 

g) Activity: There are 11 activities which are 1) walking, 

2) falling, 3) sitting, 4) sitting down, 5) lying, 6) lying down, 

7)sitting on the ground, 8) on all fours, 9) standing up from 

sitting on the ground ,10) standing up from sitting, and 

11) standing up from lying. 

IV. METHODOLOGY 

This research follows methodology including a) Data pre-
processing, b) Feature extraction, c) Splitting-Criteria 
Optimization, d) Tree-Depth Optimization, and e) Validation. 

A. Data Pre-Processing 

The data used in the study needs to be pre-processed so that 
it can be in accordance with the context of this study. The 
length of the data for each activity is different. Thus, the 
information regarding the minimum data of accelerometer 
record needed to be able to recognize an activity is necessary. 
This information will be used as a base reference for what is 
called the data window. Activities with the minimum record 
will only be represented by one data while activities with more 
data lengths than data window will be divided into several data. 
In this research, fall activities have the minimum data 
representation. The minimum data for fall activities is 17 data. 
Thus, all other activities data would be windowed by this 
number. 

B. Feature Extraction 

There are a number of accelerometer feature. It is important 
to extract the right features in order to be able to classify 
activity efficiently. Pannurat et al summarize 36 Accelerometer 
Feature to detect activities including fall [22]. This research 
extracts 21 features from the data which are: 

1) Mean    : This feature is informative in classifying 

static activities such as sitting and lying. This feature is 

extracted for each axis. Equation (6) used to obtain this feature. 

  
 

 
∑   

 
                 (6) 

where x = accelerometer data on each axis,  i = the data 
index, and N = number of data samples. 

2) Standard deviation (  ): This feature is useful for 

classifying dynamic activities such as walking and running. 

Equation (7) used to obtain this feature. 

  √
 

 
∑         

                (7) 

3) Variance (  ): This feature is calculated to measure the 

spread between accelerometer data in each axis. Equation (8) 

used to obtain this feature. 

   
 

 
∑         

                (8) 

4) Standard deviation magnitude ( | | ): This feature 

measure the spread between the combination of accelerometer 

data on all axis. Equation (9) used to obtain this feature. 

| |  √  
    

    
              (9) 

5) Sum vector magnitude (| |): This feature is useful for 

detecting abnormal activities such as falling. However, this 

feature alone is not enough to detect falls because jumping 

activity also results in sudden changes. Equation (10) used to 

obtain this feature. 

| |  √  
    

    
            (10) 

where ax, ay. and az denote the accelerometer value on the 
x, y, and z axis 

6) Standard deviation of sum vector magnitude ( | |): This 

feature measures the spread between the sum vector 

magnitudes values previously calculated. Equation (11) used to 

obtain this feature. 

 | |  √
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             (11) 

7) Sum vector magnitude on horizontal plane ( | | ): 

Instead of counting sum vectors from the entire axis, this 

feature only observes the sum vector in the horizontal plane 

between axis x and y. Equation (12) used to obtain this feature. 

| |  √  
    

             (12) 

8) Sum vector magnitude on vertical plane (| | ): This 

feature only observes the sum vector in the vertical plane 

between axis x and z. Equation (13) used to obtain this feature. 

| |  √  
    

             (13) 

9) Standard deviation of sum vector magnitude on 

horizontal plane ( | | 
): This feature analyzes the distribution 

of the data from the previous feature vector sum magnitude. 

Equation (14) used to obtain this feature. 

 | | 
 √

 

 
∑ (| |  

  | | 
)
  

             (14) 
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10) Energy on axis X (  ): This feature represents the 

change of acceleration at each measurement in a single window 

on the axis X. Equation (15) used to obtain this feature. 

   √
 

   
∑ |       |

   
             (15) 

where w is the window size. 

11) Energy on axis Y (  ): This feature represents the 

change of acceleration at each measurement in a single window 

on the axis Y. Equation (16) used to obtain this feature. 

   √
 

   
∑ |       |

   
             (16) 

12) Energy on axis Z (  ): This feature represents the 

change of acceleration at each measurement in a single window 

on the axis Z. Equation (17) used to obtain this feature. 

   √
 

   
∑ |       |

   
             (17) 

13) Energy XY (   ): This feature represents the change of 

acceleration at each measurement in a single window on the 

plane X and Y. Equation (18) used to obtain this feature. 

    √
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           (18) 

14) Energy YZ (   ): This feature represents the change of 

acceleration at each measurement in a single window on the 

plane Y and Z. Equation (19) used to obtain this feature. 

    √
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15) Energy XZ (   ): This feature represents the change of 

acceleration at each measurement in a single window on the 

plane X and Z. Equation (20) used to obtain this feature. 

    √
 

   
∑ |√  
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           (20) 

C. Splitting Criteria Optimization 

This method is used to determine whether splitting criteria 
have a significant impact on classification performance. If the 
impact is significant, this study will provide recommendations 
for splitting the most appropriate criteria to solve the problem 
of classification of human activity. Splitting Criteria 
Optimization stages can be illustrated in Fig. 1. 

The stages of Splitting Criteria Optimization in Fig. 1 can 
be explained as follows: 

1) Build the Random Forest ensemble n times where n is 

the number of splitting criteria that you want to investigate. 

This study evaluated three of the most widely used splitting 

criteria, namely Information Gain, Gain Ratio, and Gini Index.  

2) Generate decision trees in each forest without pruning. 

The number of decision trees that are generated is as many 

attributes as there are. Because this study uses 20 features / 

attributes, each forest will have 20 decision trees. 

3) Measure the average accuracy of the decision tree in 

each Random Forest using Out-Of-Bag data (data that is not 

used in the training process). 

4) Compare the results of the accuracy between the three 

ensembles with the same number of trees. 

5) Determine splitting criteria that is able to build Random 

Forest ensemble with the best average accuracy value. 

D. Tree-Depth Optimization 

One of the main contributions in this study was the 
limitation of tree depth with measured pruning techniques. The 
original Random Forest algorithm does not do pruning. Thus, 
the decision tree structure becomes very deep and large. 
Furthermore, it will make the variance even higher. High 
variance means that the classification model will be very 
accurate if tested using training data yet will be inaccurate if 
tested using testing data that is never seen before. This is 
known as overfitting which is often found in classification 
algorithms (Kuhn and Johnson, 2013). The pruning technique 
could makes the decision tree in Random Forest ensemble 
concise. It resulted in a group of small size trees. Thus, the 
complexity of the decision tree becomes smaller. It will give 
considerable classification strength even though the data 
conditions are diverse and have not been recognized before. 
However, this technique needs to be applied carefully as if it 
performed improperly will reduce the accuracy of the 
classification model. 

 

Fig. 1. Splitting Criteria Optimization Method. 
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This study proposes a measured pruning technique by 
evaluating the accuracy as a result of tree depth reduction. The 
steps to get the optimal tree depth are as follows: 

1) Build Random Forest ensemble without pruning to get 

maximum accuracy. 

2) Measure the classification accuracy of the Random 

Forest classification model. 

3) Reduce the depth of the tree in Random Forest 

classification model. 

4) Repeat the accuracy measurement for the new Random 

Forest classification model. 

5) If the accuracy does not changes significantly, go to 

step 3. 

6) If the accuracy changes significantly, stop reducing the 

depth of the tree as the optimum tree depth has been obtained. 

The pseudocode used in this study to reach the optimal 
depth in the Random Forest ensemble is as follows: 

k = 21 

for j=1 to 5 
     build trees() with depth of k; 

RF_vote(); 

Acc_old = RF_Accuracy(); 
 

Acc_new = 100; 

While Acc_new >= Acc_old 
     k = k -1 

     for j=1 to 5 

          build trees() with depth of k; 
     RF_vote(); 

     Acc_new = RF_Accuracy(); 

return k; 

In this study the initial depth of tree (k) is 21 because in the 
worst case scenario, the decision tree will use the entire feature 
(twenty one features) as leaf nodes to determine the class of a 
data. Variable i indicates the number of decision trees in 
Random Forest ensemble. This study only shows results of 
performance measurement in the ensemble Random Forest 
classification consisting of 5, 10, 15, and 20 decision tree as the 
results are significant to each other. 

E. Validation 

The performance of the activity classification system needs 
to be measured correctly to determine the quality of the system 
being built. The measuring index that is generally used to 
determine the performance of the classification system is the 
value of specificity, sensitivity, and accuracy (Han, Kamber et 
al., 2011). However, this study only uses accuracy as a 
measure of performance which is calculated using the 
following formula: 

         
     

   
           (21) 

where TP = True Positive, TN= True Negative, P = 
Positive, N = Negative. 

This research makes use of 10-Fold Cross-Validation to 
obtain accuracy value in activity classification as the 
performance value calculated by the K-fold cross-validation 
method is less dependent on the data distribution characteristics 
in the training set and test set. Therefore the resulting 
performance value can be considered more. 

 

Fig. 2. Ten-Fold Cross-Validation. 

The 10-Fold Cross Validation is superior to the usual split 
method. The number of folds selected, which is ten, also 
proved to have produced a variance against a relatively small 
performance. Taking into account the computational 
complexity required, this method is better than the more 
expensive methods, such as leave-one-out cross-validation 
[24]. The fold cross validation method with k = 10 becomes the 
standard for predicting the performance of algorithms in 
machine learning. The dataset benchmark test shows that k = 
10 represents the number of folds appropriate to obtain the best 
accuracy estimation [25] (Fig. 2). 

V. EXPERIMENT RESULT 

The resulting experiment shows Random Forest Accuracy 
with the number of trees in each ensemble varies from 5, 10, 
15, and 20 trees. On each ensemble, classification accuracy 
was measured and analyzed towards tree depth to find out the 
optimum tree depth for activity classification. 

A. Random Forest with 5 Trees 

The first experiment tested the accuracy of the Random 
Forest algorithm when using 5 trees. The results of the research 
show that initially, Random Forest was able to achieve 
accuracy up to 87.86% when classifying human activities. 

However, the accuracy starts to decrease significantly when 
the tree depths is 7. Here, Random Forest that uses Information 
Gain as the splitting criterion is slightly better than one that 
uses Gini Index and Gain Ratio as the splitting criterion 
(Fig. 3). 

Fig. 3 also shows that Gain Ratio and Gini Index have 
better ability to retain accuracy on the occasion of tree depth 
reduction. On the event that tree depth is reduced from 7 to 3, 
both splitting criteria have better result compared to 
Information Gain. Classification result in trees with 
Information gain shows significant accuracy drop to only 67%. 

B. Random Forest with 10 Trees 

The second experiment measures the classification 
accuracy of the Random Forest with 10 trees. Increasing the 
number of trees involved in Random Forest improved human 
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activities classification accuracy up to 89.29%. The accuracy 
starts to decrease significantly when the tree depths is 6. Gini 
Index exhibits better performance compared to Gini Index or 
Information Gain as Random Forest splitting criterion (Fig. 4). 
We also noticed that additional trees affect the tree depth as the 
classification accuracy started to decrease at the depth of 6 
instead of 7 in the first experiment. 

C. Random Forest with 15 Trees 

Further increment on the number of Random Forest trees 
shows that Random Forest with 15 trees could achieve 
accuracy up to 91.43% when classifying human activities. The 
accuracy starts to decrease significantly when the tree depths is 
5. This finding assures previous assumption that additional 
trees could reduce the tree depth as the more trees lead to 
shallower tree depth (Fig. 5). 

Gini Index and Gain Ratio exhibit better performance as 
Random Forest splitting criterion compared to Information 
Gain. However, Gini Index exhibits better performance on 
shallow tree depth as it gives better accuracy even at the depth 
of 3. 

 

Fig. 3. Splitting Criterion Impact on Random Forest with 5 Trees Activity 

Classification Accuracy. 

 

Fig. 4. Splitting Criterion Impact on Random Forest with 10 Trees Activity 

Classification Accuracy. 

 

Fig. 5. Splitting Criterion Impact on Random Forest with 15 Trees Activity 

Classification Accuracy. 

 

Fig. 6. Splitting Criterion Impact on Random Forest with 20 Trees Activity 

Classification Accuracy. 

D. Random Forest with 20 Trees 

The last experiment, Random Forest with 20 trees is able to 
achieve accuracy up to 93.57% when classifying human 
activities including falls. The accuracy starts to decrease 
significantly when the tree depths is 5 (Fig. 6). This result 
suggests that additional trees on Random Forest Ensemble no 
longer reduce tree depth. 

In this experiment setup, Gini Index clearly gives the best 
result in contrast to Information Gain or Gain Ratio. This 
experiment results even further emphasize the previous 
hypothesis that Gini Index has better performance compared to 
other splitting criteria as it could retain accuracy in the 
minimum tree depth. 

VI. DISCUSSION 

The experiment result indicates that Gini Index generally 
gives better performance for Activity Classification. When the 
number of trees in the RF ensemble is small, the three splitting 
criteria look like they give relatively the same accuracy, but 
when the number of trees increases, the Gini Index has a 
significant impact. The only time Gini Index has lower 
performance compared to other splitting criteria was in the 
experiment with 5 trees. Above those number, Gini Index 
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clearly outperforms other splitting criteria. Based on this, it can 
be concluded that the most optimum splitting criteria for 
activity classification is Gini Index. 

Furthermore, RF decision trees that are built using the Gini 
Index show the ability to produce better performance in 
conditions where decision trees depth are less. Fig. 3 shows 
that that Gini Index has the lowest performance at the 
beginning (deepest trees). At the end, as the depth of the trees 
becoming less, it was able to outperform other splitting criteria 
at the depth of 3. Thus, it can be inferred that Gini Index has 
the ability to maintain classification accuracy. 

The minimum depth to have good accuracy is 5. It could be 
achieved with 10 trees. By choosing the right splitting 
criterion, classification accuracy drop could be reduced. As 
could be seen in Fig. 3, Gini Index splitting criteria relatively 
could retain accuracy better than other splitting criteria. 

There is a trade-off between the number of trees and the 
depth of the tree. The more trees, the lower the depth of trees 
needed to achieve the best accuracy. Likewise the opposite, the 
smaller number of trees, the deeper is the tree in order to 
achieve the best accuracy. However, this thing only happens 
before a certain point. The depth of the tree involved in the 
ensemble could be suppressed until the number of trees is 15. 
Afterward, additional trees only improved accuracy only. It 
could not take advantage of lowering the depth of the trees. In 
another word, additional accuracy after that point would add 
significant complexity. As an illustration, 10 trees with the 
depth of 6 will have 10*(2^6) = 640 logic gate while 15 trees 
with the depth of 5 will only have 15*(2^5) = 480 logic gate. 
This proves that 15 trees with the depth of 5 are less complex 
than 10 trees with the depth of 6. Therefore other than Gini 
Index as splitting criteria and 5 as the most optimum depth in 
RF ensemble, it could be conclude that the most optimum 
number of trees in Random Forest ensemble is 15. 

VII. CONCLUSIONS 

This research proposed several methods to optimize 
Random Forest algorithm performance as Human Activity 
Classifier. Those are the selection of the most optimal splitting 
criterion and measured pruning to limit the tree depth in RF 
ensemble in order to find the minimum depth of the tree to get 
optimum accuracy. 

The results of this study indicate that splitting criteria 
greatly influence the accuracy of the decision models produced 
by Random Forest. The first method in this study found that 
Gini Index is the most suitable splitting criteria to construct 
decision tree models used solve activity classification. Gini 
Index exhibits the ability to retain classification accuracy on 
the shallow tree depth. Furthermore, trees that was build using 
Gini Index has the minimum accuracy reduction upon 
reduction of the tree depth. 

The measured pruning method applied in this research find 
that the minimum tree depth for activity classifier is 5. 
Additional depth no longer increases the accuracy yet 
significantly increases computational complexity. Limiting the 
depth of the decision tree will reduce the complexity of the 
algorithm, thereby increasing the efficiency of the decision 
model. 

VIII. FUTURE WORK 

This research was aimed to be preliminary research on 
efficient fall detection using the accelerometer. There is a trend 
in the increasing number of cores in the processor. The 
Random Forest can benefit from this trend by distributing 
decision trees evenly on each core. Therefore, the use of RF 
activity classification can be done quicker as it performed in 
parallel. 

This study provides methods to optimize decision tree 
models constructed with Random Forest algorithm by utilizing 
the most splitting criteria for certain problem and limiting the 
trees depth. Other than those two things, the number of trees in 
the Random Forest ensemble also influences the complexity of 
the decision model that is built. However, there are no exact 
numbers to determine the number of trees in the RF ensemble. 
Therefore, there is still an opportunity to maximize the 
Random Forest algorithm by compressing the number of RF 
trees. The next research could address this issue to extend the 
efficiency of Random Forest. 
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