
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

618 | P a g e

www.ijacsa.thesai.org

Virtualizing a Cluster to Optimize the Problems of

High Scientific Complexity within an Organization

Enrique Lee Huamaní
1
, Patricia Condori

2
, Avid Roman-Gonzalez

3

Image Processing Research Laboratory (INTI-Lab)

Universidad de Ciencias y Humanidades

Lima, Perú

Abstract—The Image Processing Research Laboratory (INTI-

Lab) of the Universidad de Ciencias y Humanidades has several

research projects related to computer science needing high

computational resources. Some of these projects are associated

with climate prediction, molecule modeling, physical simulations,

and others these applications generate a significant amount of

data, regarding the big data issue, despite having excellent

hardware features, the final result is obtained after hours or days

of calculation depending on the algorithm complexity. For this

reason, it is not possible to present optimal solutions at an ideal

time. .In this work, we propose the virtualization and

configuration of a high-performance cluster (HPC) known

commercially as a "supercomputer" that is composed of several

computers connected to a high-speed network to behave like a

single computer. The virtualization is used to run a scientific

algorithm that will apply performance tests using four virtual

computers to demonstrate that the reduction of time is achieved

by using more machines and thus be able to be implemented in

the laboratories of the institution.

Keywords—High-performance cluster; distributed

programming; computational parallelism; supercomputer; high-

efficiency computing

I. INTRODUCTION

High-performance clusters (HPC) or also considered
'supercomputers' are potent computers that perform calculation
tasks at high speeds compared to an ordinary computer [1].
These clusters are used in digital processing for scientific
research, big data, data mining, bioinformatics, remote sensing,
image processing, medical imaging, stage reconstruction,
realistic simulations for computational chemistry, etc. [2] as
new and emerging scientific findings, it is necessary to use the
maximum performance of a computer so that these can give
optimal results in an ideal time. By this necessity, it is possible
to implement the HPC architectures where they use the Central
Processing Unit (CPU) to obtain floating point operations per
second (FLOPS) that are the processing capacity of a computer
[3]. The use of several low cost machines that are
interconnected through a network to have a unique behavior
began with National Aeronautics and Space Administration
(NASA) in 1994, where they used recycled computers for the
creation of a supercomputer, this was called the Beowulf
project which was realized in the Center for the Excellence in
Data (CESDIS) [4]. The idea of the construction of low-
resource computing supercomputers was disseminated
worldwide to scientific and academic communities so they
decided to use their computing resources without the need to

purchase assembled supercomputers due to the considerable
costs that these generate by the specialized maintenance that
can occur over time, making these unnecessary purchases in
the future. The present work performs the virtualization of an
HPC using four virtual machines to apply performance tests
with a computational algorithm to prove its scalability and can
be implemented in the institution. Due to the new proposal of
projects, it is necessary to have equipment that uses the
maximum computation resource; some universities use these
architectures to carry out research. In Peru, there is the case of
the Universidad Nacional de Ingeniería [5] that performs
performance benchmarks to apply algorithms of high scientific
complexity. Another university in Latin America is the
Universidad de Quindío that uses HPC to carry out calculus of
quantum-mechanical chemistry [6], there are also
investigations related to urban traffic such as the case of [7]
that performs simulations to allow researchers to address real-
size traffic problems in large networks using powerful, precise
approaches to network traffic. The use of this architecture is
increasingly used worldwide as can be seen in the official page
of supercomputers top 500, where it shows a list of the most
powerful supercomputers in the world [8]. There is a
significant increase in its implementation regarding the area of
computer science; therefore, one must know the
implementation, because it will be very required for the
scientific community.

II. METHODOLOGY

High-performance cluster virtualization consists of 4 virtual
machines that will have the same open-source operating system
and process distribution package. Virtualization will be made
up of 2 or more computers that are interconnected by a network
computer to use the SSH protocol that facilitates secure
communications between systems [9]. The machine that
manages the algorithm and distributes the processes is called
the master node, and those that receive the information to be
processed in parallel are the slave nodes that will have a single
purpose that is to give the result to the master node, Fig. 1
shows its architecture.

A. Master Node

It is in charge of administering and controlling the
processes that will be sent to the receiving computers [3] its
function is to distribute the tasks in equal parts to the desired
amount of them that will use as a way of communication the
Protocol Secure Shell (SSH). If one wants to see the ecosystem
of the HPC graphical way, one can install monitoring

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

619 | P a g e

www.ijacsa.thesai.org

packages; therefore it is ideal that these have a graphical user
interface, one can also access the public network to get updates
of the operating system.

B. Slave Node

The computer that receives the algorithm and processes
part of the problem is called the slave node. Its primary
function is the processing of data designated by the master
node [10] they are interconnected by a high-speed network
where one has direct communication with the master node; it is
recommended that the slave nodes do not have a graphical
interface because they consume their computing resources.
They do not need to be connected to the public network
because their only function is communication with the master
node it is recommended that all the computer that receives the
algorithm and processes part of the problem is called the slave
node. Its primary function is the processing of data designated
by the master node [10]. They are interconnected by a high-
speed network where one has direct communication with the
master node. It is recommended that the slave nodes do not
have a graphical interface because they consume their
computing resources. They do not need to be connected to the
public network because their only function is communication
with the master node. It is recommended that all.

C. Communication Network

The interaction between the nodes is distributed through a
communication network. In this virtualization is used a
connector of Ethernet board thanks to this communication
channel, the master node can spread the tasks to the slave
nodes applying techniques of computational parallelism [11]. It
is recommended that this network equipment does not include
transit jobs outside the HPC operations because it can occur
unbalanced at the time of obtaining results.

D. Multiple Data Multi-Instruction

The MIMD (multiple instructions, multiple data) is a
technique that helps to achieve the parallelism between the
nodes. Processors can run different instructions in different
data [12]; it is recommended that this network equipment does
not transit tasks outside the HPC operations because it can
occur unbalanced at the time of obtaining results, in Fig. 2 its
architecture is shown.

Fig. 1. Design of an HPC Architecture.

Fig. 2. Mingle Instruction Stream Multiple Data Stream (MIMD)

Architecture.

E. Message Passing Interface

MPI (Message Passing Interface) is a specification for
developers and users of message-passing libraries, mainly
addressing the parallel message-passing programming model
[13]. It is designed to be used in programs that exploit the
existence of multiple processors. Different standards meet
these techniques; among them, one has the MPICH,
MVAPICH, and the Open MPI [14]. The tool used in this
virtualization is Open MPI.

F. Virtualization

Virtualization is the most used in the world of computing,
due to the advantage, it generates in saving energy, space, and
management of the less physical machine. The virtualization
tool used is Oracle VM Virtual Box, where four virtual
machines are used, using one of them as a master node and the
others as a slave node, as shown in Fig. 3.

Fig. 3. HPC Node Virtualization.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

620 | P a g e

www.ijacsa.thesai.org

G. GNU/LINUX

All HPC nodes must have the same operating system that
facilitates the interaction between the user and the project to be
developed; an open-source operating system is used where
modifications can be made without restrictions, in the Official
supercomputer page [12] shows that most implementations are
performed by open source operating systems, Fig. 4.

For the configuration, GNU/LINUX-Ubuntu was opted for
having a friendly graphical interface and being open source,
despite being one of the least used operating systems among
HPC architectures, its scientific community compensates that
one can always resort to having problems.

H. High-Performance Cluster Configurations

For the use of HPC, there is an open-source tool called
Open MPI. It is an open-source message step implementation
that is maintained and developed by a large consortium of
academic partners, research and industry. (To access to
download the package that contains the installer go to its
official page www.open-mpi.org) [13]. It is important to
download the most stable version in this case openmpi-
4.0.1.tar.gz, then use the following command from the terminal
to decompress the package: tar –xzvf openmpi-4.0.1.tar.gz.

After uncompressing specify installation point: ./configure
–prefix=$HOME/openmpi then install: make all install and
sudo apt-get install openmpi-bin, to conclude with: sudo apt
install libopenmpi-dev.

When the installation is complete, the following is written
to the terminal: export PATH=$PATH:$HOME/openmpi/bin
and export LD_LIBRARY_PATH=$LD_LIBRARY_PATH
:$HOME /openmpi/lib.

Then install the Secure Shell (SSH), this is a remote
management protocol that allows you to launch commands and
copy files from the master node to the slave nodes [14] with
the command:sudo apt-get install ssh and the network file
system is installed (NFS) which is the most used protocol for
access to storage [15] with sudo apt-get install nfs-common
portmap. From this point, the cloning of the nodes is started by
assigning one of them as the master node.

Fig. 4. Operating System Share.

From the master node the following command is entered:
sudo apt-get install nfs-kernel-server, package that allows
sharing the directory.

Each node has created a folder with the command: mkdir
clusterdir, then a static IP is assigned with the same gateway,
as shown in Table I.

An SSH key is generated from the master node where a
copy is made to all the slave nodes in order not to ask for
access at the time of processing; the following command is
applied: ssh-keygen, where a unique key is generated as shown
in Fig. 5.

Each of the slave nodes is accessed and a. SSH folder is
created with: mkdir .ssh. The key is then copied from the
master node to the slave nodes, as an example applies to the
first node: scp .ssh/id_rsa.pub cluster-uch@172.16.9.201:
Permissions are created. SSH with the command chmod 700
then from all the slave nodes the copying of the id rsa.pub is
done: mv id_rsa.pub .ssh/authorized_keys. From the master
node is accessed: sudo nano/etc/hosts, in it we add the static
IPs of all the nodes of HPC with their respective prefix as
explained in Fig. 6.

A modification is made to the export file with the
command: sudo nano /etc/exports in it you enter the
following:/home/cluster-uch/Clusterdir 172.16.0.0/24(rw,no_
subtree_check,async,no_root_squash.

TABLE. I. THE IP LIST USED IN THE CLUSTER

Name IP Gateway

Master node 172.16.9.200 172.16.9.254

Slave node 1 172.16.9.201 172.16.9.254

Slave node 2 172.16.9.202 172.16.9.254

Slave node 3 172.16.9.203 172.16.9.254

Fig. 5. Getting SSH Key.

Fig. 6. Modification of the Hosts File.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

621 | P a g e

www.ijacsa.thesai.org

The service is restarted with the command: /etc/init.d/nfs-
kernel-server restart, rebooted the service applies the mount
from each slave node: sudo mount–t nfs 172.16.9.200:
/home/cluster-uch/clusterdir /home/cluster-uch/clusterdir.

As of last, a file is created from the master node with the
following command: sudo nano .mpi_hostfile, and the number
of nodes to be used by HPC is selected. As shown in Fig. 7, the
Nodo1, Nodo2, and Nodo3 are used. In this case a kernel is
used where it is assigned from the slots.

In most cases, the slave nodes do not have monitors,
keyboards or graphical interface because they want to avoid
that the computing resources are consumed by the graphical
user interface which is eliminated with the following command
in each one of the nodes: sudo apt-get remove xserver-xorg-
Core.

A computational algorithm is used that is programmed with
the C programming language where MPI applies. This
algorithm calculates the time it takes to find prime numbers
[16]. Fig. 8 shows the description of the algorithm.

Fig. 7. Enabling Slave Nodes with an Exact Amount of Kernels to use.

Fig. 8. Parallel Code for Calculating Prime Numbers.

To execute the code we will access the directory Clusterdir
where the following command is entered: mpic++ primos.c++ -
o primos. This way you get a compiled file for your use.

III. RESULT

In this section, two performance tests are performed to
make comparisons of scalability. The results of Table II are
performed without the HPC architecture unlike Table III which
uses 3 slave nodes and a master node, the final result shows
three values where N is the number of processes performed, S
the sum of the prime numbers and T the solution time, the
following process is performed using the following command
in its compiled directory: ./primos.

TABLE. II. RESULTS WITH A SINGLE COMPUTER

N S T

1 0 0.000003693

2 1 0.0000001214

4 2 0.0000001077

8 4 0.0000001214

16 6 0.000000184

32 11 0.0000003319

64 18 0.0000007894

128 31 0.0000023744

256 54 0.0000095883

512 97 0.000282498

1024 172 0.003585893

2048 309 0.0260807

4096 564 0.0677598

8192 1028 0.196943

16384 1900 0.700947

36768 3512 0.700947

65536 6542 2.61356

131072 12251 10.1143

TABLE. III. RESULTS WITH THE HPC ARCHITECTURE

N S T

1 0 0.0040071

2 1 0.000939131

4 2 0.00194287

8 4 0.00192809

16 6 0.00131488

32 11 0.00120115

64 18 0.000807047

128 31 0.000520945

256 54 0.000102179

512 97 0.000566006

1024 172 0.00029397

2048 309 0.000814915

4096 564 0.00234103

8192 1028 0.00741506

16384 1900 0.03195

36768 3512 0.101557

65536 6542 0.372828

131072 12251 1.33745

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

622 | P a g e

www.ijacsa.thesai.org

Fig. 9. Comparison of the Performance Test.

The algorithm is then executed using HPC virtualization
within its Clusterdir folder with the following command:
mpirun–np 3-hostfile ../.mpi_hostfile ./primos. The results are
shown in Table III, where it is observed that the calculation of
the last process takes 1.33745 seconds, which makes HPC
virtualization meet the scalability and objectives defined.

Below is Fig. 9, where the comparison of an ordinary
computer and the HPC virtualization is displayed, where it uses
two axes that are the results time and the process numbers.

Fig. 9 shows a blue line that is the representation of a
computer and the Orange Line of the HPC, as one can see, by
using more number of slave nodes considerably reduces the
time.

IV. DISCUSSION AND CONCLUSIONS

There are different ways to demonstrate scalability without
resorting to virtualization, and one option would be the use of
raspberry PI which is a low-cost computing platform, its
configuration is similar to HPC virtualization in this case we
have the work presented in [5] that performs benchmarks with
its two raspberry PI cluster prototypes. It is always necessary to
measure the number of FLOPs due to unbalance problem that
may occur when a specific amount of slave nodes is used due
to high-speed network bottlenecks. Some algorithms can give
us FLOPs by using different amounts of nodes. A clear
example is shown in [3] that use a package called Linpack that
makes intensive use of the operations of floating per second
applying basic linear algebra subroutines. These are applied by
assigning different amounts of slave nodes when the FLOPs
stop increasing; one must conclude that this is the ideal amount
to use.

In this work, it is concluded that the virtualization of the
cluster of high performance fulfills the reduction of time of the
algorithmic processes thanks to the connection of computers
that communicate using the protocol SSH. Therefore, this
project performs as evidence for its implementation in the
laboratories of the Universidad de Ciencias y Humanidades
due to the results that show its scalability using the architecture
to the comparison of a single computer. Also, it will contribute
a benefit for the scientific community INTI-Lab that has
thought in the accomplishment of machine learning applying
techniques of Big Data using the architecture HPC that will use
algorithms of high scientific complexity.

REFERENCE

[1] G. Atul, G. Bhargavi, and K. Uditnarayan, “Study of Supercomputer ’ s
Architecture , Application and Its Future Use,” p. 2, 2014.

[2] I. Ocampo and L. Exequiel, Introducción A La Supercomputación En El
Peru, vol. 39, no. 5. 2017.

[3] A. S. Carranza Sánchez, J. A. Verduzco Ramírez, N. Farías Mendoza, F.
Cervantes Zambrano, and F. Rodríguez Haro, “Plataforma de HPC
portable de bajo consumo energético para aplicaciones de minería de
datos,” RECI Rev. Iberoam. las Ciencias Comput. e Informática, vol. 6,
no. 11, pp. 16–24, 2017.

[4] J. Fiestas, “Construcción e Implementación de un Clúster con máquinas
PCs recicladas.,” vol. 14, no. 1, pp. 9–13, 2014.

[5] M. Cruz, “Medidas de rendimiento y comparación entre el Clúster Cruz
I y el Clúster Cruz II,” Rev. la Fac. Ciencias la UNI, vol. 17, no. 1, pp.
9–16, 2014.

[6] D. Armando et al., “Computación De Alto Desempeño Para Cálculos De
Química Mecano-Cuántica,” p. 3, 2015.

[7] W. Himpe, R. Ginestou, and M. J. C. Tampère, “High Performance
Computing applied to Dynamic Traffic Assignment,” Procedia Comput.
Sci., vol. 151, no. 2018, p. 411, 2019.

[8] “List Statistics.” [Online]. Available: www.top500.org.

[9] Massachusetts Institute of Technology, “Capítulo 20. Protocolo SSH.”
[Online]. Available: https://web.mit.edu/rhel-doc/4/RH-DOCS/rhel-rg-
es-4/ch-ssh.html.

[10] M. Brownell, “Building and Improving a Linux Cluster,” 2015.

[11] R. Samir and R. Caro, “Implementación De Un Clúster Experimental
Bajo,” p. 12, 2014.

[12] TOP500.org, “Operating System System Share.” [Online]. Available:
www.top500.org/statistics/list/.

[13] The Open MPI Project, “A High Performance Message Passing
Library,” 2019. [Online]. Available: https://www.open-mpi.org/.

[14] L. Alcántara, “Instalación y configuración de un cluster de alta
disponibilidad con reparto de carga,” p. 51, 2014.

[15] D. Jiménez and A. Medina, “Cluster de Alto Rendimiento,” pp. 16–17,
2014.

[16] R. Francisco and A. Moreno, “Escalabilidad de Multiplataforma sobre
OpenMPI,” 2016.

